Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD" |
| 5 | // research report written by Ming Gu and Stanley C.Eisenstat |
| 6 | // The code variable names correspond to the names they used in their |
| 7 | // report |
| 8 | // |
| 9 | // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> |
| 10 | // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> |
| 11 | // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> |
| 12 | // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> |
| 13 | // Copyright (C) 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 14 | // Copyright (C) 2014-2017 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 15 | // |
| 16 | // Source Code Form is subject to the terms of the Mozilla |
| 17 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 18 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 19 | |
| 20 | #ifndef EIGEN_BDCSVD_H |
| 21 | #define EIGEN_BDCSVD_H |
| 22 | // #define EIGEN_BDCSVD_DEBUG_VERBOSE |
| 23 | // #define EIGEN_BDCSVD_SANITY_CHECKS |
| 24 | |
| 25 | namespace Eigen { |
| 26 | |
| 27 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 28 | IOFormat bdcsvdfmt(8, 0, ", ", "\n", " [", "]"); |
| 29 | #endif |
| 30 | |
| 31 | template<typename _MatrixType> class BDCSVD; |
| 32 | |
| 33 | namespace internal { |
| 34 | |
| 35 | template<typename _MatrixType> |
| 36 | struct traits<BDCSVD<_MatrixType> > |
| 37 | { |
| 38 | typedef _MatrixType MatrixType; |
| 39 | }; |
| 40 | |
| 41 | } // end namespace internal |
| 42 | |
| 43 | |
| 44 | /** \ingroup SVD_Module |
| 45 | * |
| 46 | * |
| 47 | * \class BDCSVD |
| 48 | * |
| 49 | * \brief class Bidiagonal Divide and Conquer SVD |
| 50 | * |
| 51 | * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition |
| 52 | * |
| 53 | * This class first reduces the input matrix to bi-diagonal form using class UpperBidiagonalization, |
| 54 | * and then performs a divide-and-conquer diagonalization. Small blocks are diagonalized using class JacobiSVD. |
| 55 | * You can control the switching size with the setSwitchSize() method, default is 16. |
| 56 | * For small matrice (<16), it is thus preferable to directly use JacobiSVD. For larger ones, BDCSVD is highly |
| 57 | * recommended and can several order of magnitude faster. |
| 58 | * |
| 59 | * \warning this algorithm is unlikely to provide accurate result when compiled with unsafe math optimizations. |
| 60 | * For instance, this concerns Intel's compiler (ICC), which perfroms such optimization by default unless |
| 61 | * you compile with the \c -fp-model \c precise option. Likewise, the \c -ffast-math option of GCC or clang will |
| 62 | * significantly degrade the accuracy. |
| 63 | * |
| 64 | * \sa class JacobiSVD |
| 65 | */ |
| 66 | template<typename _MatrixType> |
| 67 | class BDCSVD : public SVDBase<BDCSVD<_MatrixType> > |
| 68 | { |
| 69 | typedef SVDBase<BDCSVD> Base; |
| 70 | |
| 71 | public: |
| 72 | using Base::rows; |
| 73 | using Base::cols; |
| 74 | using Base::computeU; |
| 75 | using Base::computeV; |
| 76 | |
| 77 | typedef _MatrixType MatrixType; |
| 78 | typedef typename MatrixType::Scalar Scalar; |
| 79 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; |
| 80 | typedef typename NumTraits<RealScalar>::Literal Literal; |
| 81 | enum { |
| 82 | RowsAtCompileTime = MatrixType::RowsAtCompileTime, |
| 83 | ColsAtCompileTime = MatrixType::ColsAtCompileTime, |
| 84 | DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime), |
| 85 | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, |
| 86 | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, |
| 87 | MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime), |
| 88 | MatrixOptions = MatrixType::Options |
| 89 | }; |
| 90 | |
| 91 | typedef typename Base::MatrixUType MatrixUType; |
| 92 | typedef typename Base::MatrixVType MatrixVType; |
| 93 | typedef typename Base::SingularValuesType SingularValuesType; |
| 94 | |
| 95 | typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> MatrixX; |
| 96 | typedef Matrix<RealScalar, Dynamic, Dynamic, ColMajor> MatrixXr; |
| 97 | typedef Matrix<RealScalar, Dynamic, 1> VectorType; |
| 98 | typedef Array<RealScalar, Dynamic, 1> ArrayXr; |
| 99 | typedef Array<Index,1,Dynamic> ArrayXi; |
| 100 | typedef Ref<ArrayXr> ArrayRef; |
| 101 | typedef Ref<ArrayXi> IndicesRef; |
| 102 | |
| 103 | /** \brief Default Constructor. |
| 104 | * |
| 105 | * The default constructor is useful in cases in which the user intends to |
| 106 | * perform decompositions via BDCSVD::compute(const MatrixType&). |
| 107 | */ |
| 108 | BDCSVD() : m_algoswap(16), m_numIters(0) |
| 109 | {} |
| 110 | |
| 111 | |
| 112 | /** \brief Default Constructor with memory preallocation |
| 113 | * |
| 114 | * Like the default constructor but with preallocation of the internal data |
| 115 | * according to the specified problem size. |
| 116 | * \sa BDCSVD() |
| 117 | */ |
| 118 | BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0) |
| 119 | : m_algoswap(16), m_numIters(0) |
| 120 | { |
| 121 | allocate(rows, cols, computationOptions); |
| 122 | } |
| 123 | |
| 124 | /** \brief Constructor performing the decomposition of given matrix. |
| 125 | * |
| 126 | * \param matrix the matrix to decompose |
| 127 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
| 128 | * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, |
| 129 | * #ComputeFullV, #ComputeThinV. |
| 130 | * |
| 131 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
| 132 | * available with the (non - default) FullPivHouseholderQR preconditioner. |
| 133 | */ |
| 134 | BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0) |
| 135 | : m_algoswap(16), m_numIters(0) |
| 136 | { |
| 137 | compute(matrix, computationOptions); |
| 138 | } |
| 139 | |
| 140 | ~BDCSVD() |
| 141 | { |
| 142 | } |
| 143 | |
| 144 | /** \brief Method performing the decomposition of given matrix using custom options. |
| 145 | * |
| 146 | * \param matrix the matrix to decompose |
| 147 | * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. |
| 148 | * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, |
| 149 | * #ComputeFullV, #ComputeThinV. |
| 150 | * |
| 151 | * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not |
| 152 | * available with the (non - default) FullPivHouseholderQR preconditioner. |
| 153 | */ |
| 154 | BDCSVD& compute(const MatrixType& matrix, unsigned int computationOptions); |
| 155 | |
| 156 | /** \brief Method performing the decomposition of given matrix using current options. |
| 157 | * |
| 158 | * \param matrix the matrix to decompose |
| 159 | * |
| 160 | * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). |
| 161 | */ |
| 162 | BDCSVD& compute(const MatrixType& matrix) |
| 163 | { |
| 164 | return compute(matrix, this->m_computationOptions); |
| 165 | } |
| 166 | |
| 167 | void setSwitchSize(int s) |
| 168 | { |
| 169 | eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3"); |
| 170 | m_algoswap = s; |
| 171 | } |
| 172 | |
| 173 | private: |
| 174 | void allocate(Index rows, Index cols, unsigned int computationOptions); |
| 175 | void divide(Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift); |
| 176 | void computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V); |
| 177 | void computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, VectorType& singVals, ArrayRef shifts, ArrayRef mus); |
| 178 | void perturbCol0(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat); |
| 179 | void computeSingVecs(const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef& perm, const VectorType& singVals, const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V); |
| 180 | void deflation43(Index firstCol, Index shift, Index i, Index size); |
| 181 | void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size); |
| 182 | void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift); |
| 183 | template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV> |
| 184 | void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev); |
| 185 | void structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1); |
| 186 | static RealScalar secularEq(RealScalar x, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift); |
| 187 | |
| 188 | protected: |
| 189 | MatrixXr m_naiveU, m_naiveV; |
| 190 | MatrixXr m_computed; |
| 191 | Index m_nRec; |
| 192 | ArrayXr m_workspace; |
| 193 | ArrayXi m_workspaceI; |
| 194 | int m_algoswap; |
| 195 | bool m_isTranspose, m_compU, m_compV; |
| 196 | |
| 197 | using Base::m_singularValues; |
| 198 | using Base::m_diagSize; |
| 199 | using Base::m_computeFullU; |
| 200 | using Base::m_computeFullV; |
| 201 | using Base::m_computeThinU; |
| 202 | using Base::m_computeThinV; |
| 203 | using Base::m_matrixU; |
| 204 | using Base::m_matrixV; |
| 205 | using Base::m_isInitialized; |
| 206 | using Base::m_nonzeroSingularValues; |
| 207 | |
| 208 | public: |
| 209 | int m_numIters; |
| 210 | }; //end class BDCSVD |
| 211 | |
| 212 | |
| 213 | // Method to allocate and initialize matrix and attributes |
| 214 | template<typename MatrixType> |
| 215 | void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions) |
| 216 | { |
| 217 | m_isTranspose = (cols > rows); |
| 218 | |
| 219 | if (Base::allocate(rows, cols, computationOptions)) |
| 220 | return; |
| 221 | |
| 222 | m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize ); |
| 223 | m_compU = computeV(); |
| 224 | m_compV = computeU(); |
| 225 | if (m_isTranspose) |
| 226 | std::swap(m_compU, m_compV); |
| 227 | |
| 228 | if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 ); |
| 229 | else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 ); |
| 230 | |
| 231 | if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize); |
| 232 | |
| 233 | m_workspace.resize((m_diagSize+1)*(m_diagSize+1)*3); |
| 234 | m_workspaceI.resize(3*m_diagSize); |
| 235 | }// end allocate |
| 236 | |
| 237 | template<typename MatrixType> |
| 238 | BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions) |
| 239 | { |
| 240 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 241 | std::cout << "\n\n\n======================================================================================================================\n\n\n"; |
| 242 | #endif |
| 243 | allocate(matrix.rows(), matrix.cols(), computationOptions); |
| 244 | using std::abs; |
| 245 | |
| 246 | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); |
| 247 | |
| 248 | //**** step -1 - If the problem is too small, directly falls back to JacobiSVD and return |
| 249 | if(matrix.cols() < m_algoswap) |
| 250 | { |
| 251 | // FIXME this line involves temporaries |
| 252 | JacobiSVD<MatrixType> jsvd(matrix,computationOptions); |
| 253 | if(computeU()) m_matrixU = jsvd.matrixU(); |
| 254 | if(computeV()) m_matrixV = jsvd.matrixV(); |
| 255 | m_singularValues = jsvd.singularValues(); |
| 256 | m_nonzeroSingularValues = jsvd.nonzeroSingularValues(); |
| 257 | m_isInitialized = true; |
| 258 | return *this; |
| 259 | } |
| 260 | |
| 261 | //**** step 0 - Copy the input matrix and apply scaling to reduce over/under-flows |
| 262 | RealScalar scale = matrix.cwiseAbs().maxCoeff(); |
| 263 | if(scale==Literal(0)) scale = Literal(1); |
| 264 | MatrixX copy; |
| 265 | if (m_isTranspose) copy = matrix.adjoint()/scale; |
| 266 | else copy = matrix/scale; |
| 267 | |
| 268 | //**** step 1 - Bidiagonalization |
| 269 | // FIXME this line involves temporaries |
| 270 | internal::UpperBidiagonalization<MatrixX> bid(copy); |
| 271 | |
| 272 | //**** step 2 - Divide & Conquer |
| 273 | m_naiveU.setZero(); |
| 274 | m_naiveV.setZero(); |
| 275 | // FIXME this line involves a temporary matrix |
| 276 | m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose(); |
| 277 | m_computed.template bottomRows<1>().setZero(); |
| 278 | divide(0, m_diagSize - 1, 0, 0, 0); |
| 279 | |
| 280 | //**** step 3 - Copy singular values and vectors |
| 281 | for (int i=0; i<m_diagSize; i++) |
| 282 | { |
| 283 | RealScalar a = abs(m_computed.coeff(i, i)); |
| 284 | m_singularValues.coeffRef(i) = a * scale; |
| 285 | if (a<considerZero) |
| 286 | { |
| 287 | m_nonzeroSingularValues = i; |
| 288 | m_singularValues.tail(m_diagSize - i - 1).setZero(); |
| 289 | break; |
| 290 | } |
| 291 | else if (i == m_diagSize - 1) |
| 292 | { |
| 293 | m_nonzeroSingularValues = i + 1; |
| 294 | break; |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 299 | // std::cout << "m_naiveU\n" << m_naiveU << "\n\n"; |
| 300 | // std::cout << "m_naiveV\n" << m_naiveV << "\n\n"; |
| 301 | #endif |
| 302 | if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU); |
| 303 | else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV); |
| 304 | |
| 305 | m_isInitialized = true; |
| 306 | return *this; |
| 307 | }// end compute |
| 308 | |
| 309 | |
| 310 | template<typename MatrixType> |
| 311 | template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV> |
| 312 | void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV) |
| 313 | { |
| 314 | // Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa |
| 315 | if (computeU()) |
| 316 | { |
| 317 | Index Ucols = m_computeThinU ? m_diagSize : householderU.cols(); |
| 318 | m_matrixU = MatrixX::Identity(householderU.cols(), Ucols); |
| 319 | m_matrixU.topLeftCorner(m_diagSize, m_diagSize) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize); |
| 320 | householderU.applyThisOnTheLeft(m_matrixU); // FIXME this line involves a temporary buffer |
| 321 | } |
| 322 | if (computeV()) |
| 323 | { |
| 324 | Index Vcols = m_computeThinV ? m_diagSize : householderV.cols(); |
| 325 | m_matrixV = MatrixX::Identity(householderV.cols(), Vcols); |
| 326 | m_matrixV.topLeftCorner(m_diagSize, m_diagSize) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, m_diagSize); |
| 327 | householderV.applyThisOnTheLeft(m_matrixV); // FIXME this line involves a temporary buffer |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | /** \internal |
| 332 | * Performs A = A * B exploiting the special structure of the matrix A. Splitting A as: |
| 333 | * A = [A1] |
| 334 | * [A2] |
| 335 | * such that A1.rows()==n1, then we assume that at least half of the columns of A1 and A2 are zeros. |
| 336 | * We can thus pack them prior to the the matrix product. However, this is only worth the effort if the matrix is large |
| 337 | * enough. |
| 338 | */ |
| 339 | template<typename MatrixType> |
| 340 | void BDCSVD<MatrixType>::structured_update(Block<MatrixXr,Dynamic,Dynamic> A, const MatrixXr &B, Index n1) |
| 341 | { |
| 342 | Index n = A.rows(); |
| 343 | if(n>100) |
| 344 | { |
| 345 | // If the matrices are large enough, let's exploit the sparse structure of A by |
| 346 | // splitting it in half (wrt n1), and packing the non-zero columns. |
| 347 | Index n2 = n - n1; |
| 348 | Map<MatrixXr> A1(m_workspace.data() , n1, n); |
| 349 | Map<MatrixXr> A2(m_workspace.data()+ n1*n, n2, n); |
| 350 | Map<MatrixXr> B1(m_workspace.data()+ n*n, n, n); |
| 351 | Map<MatrixXr> B2(m_workspace.data()+2*n*n, n, n); |
| 352 | Index k1=0, k2=0; |
| 353 | for(Index j=0; j<n; ++j) |
| 354 | { |
| 355 | if( (A.col(j).head(n1).array()!=Literal(0)).any() ) |
| 356 | { |
| 357 | A1.col(k1) = A.col(j).head(n1); |
| 358 | B1.row(k1) = B.row(j); |
| 359 | ++k1; |
| 360 | } |
| 361 | if( (A.col(j).tail(n2).array()!=Literal(0)).any() ) |
| 362 | { |
| 363 | A2.col(k2) = A.col(j).tail(n2); |
| 364 | B2.row(k2) = B.row(j); |
| 365 | ++k2; |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | A.topRows(n1).noalias() = A1.leftCols(k1) * B1.topRows(k1); |
| 370 | A.bottomRows(n2).noalias() = A2.leftCols(k2) * B2.topRows(k2); |
| 371 | } |
| 372 | else |
| 373 | { |
| 374 | Map<MatrixXr,Aligned> tmp(m_workspace.data(),n,n); |
| 375 | tmp.noalias() = A*B; |
| 376 | A = tmp; |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | // The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the |
| 381 | // place of the submatrix we are currently working on. |
| 382 | |
| 383 | //@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU; |
| 384 | //@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; |
| 385 | // lastCol + 1 - firstCol is the size of the submatrix. |
| 386 | //@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W) |
| 387 | //@param firstRowW : Same as firstRowW with the column. |
| 388 | //@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix |
| 389 | // to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper. |
| 390 | template<typename MatrixType> |
| 391 | void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift) |
| 392 | { |
| 393 | // requires rows = cols + 1; |
| 394 | using std::pow; |
| 395 | using std::sqrt; |
| 396 | using std::abs; |
| 397 | const Index n = lastCol - firstCol + 1; |
| 398 | const Index k = n/2; |
| 399 | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); |
| 400 | RealScalar alphaK; |
| 401 | RealScalar betaK; |
| 402 | RealScalar r0; |
| 403 | RealScalar lambda, phi, c0, s0; |
| 404 | VectorType l, f; |
| 405 | // We use the other algorithm which is more efficient for small |
| 406 | // matrices. |
| 407 | if (n < m_algoswap) |
| 408 | { |
| 409 | // FIXME this line involves temporaries |
| 410 | JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0)); |
| 411 | if (m_compU) |
| 412 | m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU(); |
| 413 | else |
| 414 | { |
| 415 | m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0); |
| 416 | m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n); |
| 417 | } |
| 418 | if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV(); |
| 419 | m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero(); |
| 420 | m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n); |
| 421 | return; |
| 422 | } |
| 423 | // We use the divide and conquer algorithm |
| 424 | alphaK = m_computed(firstCol + k, firstCol + k); |
| 425 | betaK = m_computed(firstCol + k + 1, firstCol + k); |
| 426 | // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices |
| 427 | // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the |
| 428 | // right submatrix before the left one. |
| 429 | divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift); |
| 430 | divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1); |
| 431 | |
| 432 | if (m_compU) |
| 433 | { |
| 434 | lambda = m_naiveU(firstCol + k, firstCol + k); |
| 435 | phi = m_naiveU(firstCol + k + 1, lastCol + 1); |
| 436 | } |
| 437 | else |
| 438 | { |
| 439 | lambda = m_naiveU(1, firstCol + k); |
| 440 | phi = m_naiveU(0, lastCol + 1); |
| 441 | } |
| 442 | r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi)); |
| 443 | if (m_compU) |
| 444 | { |
| 445 | l = m_naiveU.row(firstCol + k).segment(firstCol, k); |
| 446 | f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1); |
| 447 | } |
| 448 | else |
| 449 | { |
| 450 | l = m_naiveU.row(1).segment(firstCol, k); |
| 451 | f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1); |
| 452 | } |
| 453 | if (m_compV) m_naiveV(firstRowW+k, firstColW) = Literal(1); |
| 454 | if (r0<considerZero) |
| 455 | { |
| 456 | c0 = Literal(1); |
| 457 | s0 = Literal(0); |
| 458 | } |
| 459 | else |
| 460 | { |
| 461 | c0 = alphaK * lambda / r0; |
| 462 | s0 = betaK * phi / r0; |
| 463 | } |
| 464 | |
| 465 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 466 | assert(m_naiveU.allFinite()); |
| 467 | assert(m_naiveV.allFinite()); |
| 468 | assert(m_computed.allFinite()); |
| 469 | #endif |
| 470 | |
| 471 | if (m_compU) |
| 472 | { |
| 473 | MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1)); |
| 474 | // we shiftW Q1 to the right |
| 475 | for (Index i = firstCol + k - 1; i >= firstCol; i--) |
| 476 | m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1); |
| 477 | // we shift q1 at the left with a factor c0 |
| 478 | m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0); |
| 479 | // last column = q1 * - s0 |
| 480 | m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0)); |
| 481 | // first column = q2 * s0 |
| 482 | m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0; |
| 483 | // q2 *= c0 |
| 484 | m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0; |
| 485 | } |
| 486 | else |
| 487 | { |
| 488 | RealScalar q1 = m_naiveU(0, firstCol + k); |
| 489 | // we shift Q1 to the right |
| 490 | for (Index i = firstCol + k - 1; i >= firstCol; i--) |
| 491 | m_naiveU(0, i + 1) = m_naiveU(0, i); |
| 492 | // we shift q1 at the left with a factor c0 |
| 493 | m_naiveU(0, firstCol) = (q1 * c0); |
| 494 | // last column = q1 * - s0 |
| 495 | m_naiveU(0, lastCol + 1) = (q1 * ( - s0)); |
| 496 | // first column = q2 * s0 |
| 497 | m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0; |
| 498 | // q2 *= c0 |
| 499 | m_naiveU(1, lastCol + 1) *= c0; |
| 500 | m_naiveU.row(1).segment(firstCol + 1, k).setZero(); |
| 501 | m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero(); |
| 502 | } |
| 503 | |
| 504 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 505 | assert(m_naiveU.allFinite()); |
| 506 | assert(m_naiveV.allFinite()); |
| 507 | assert(m_computed.allFinite()); |
| 508 | #endif |
| 509 | |
| 510 | m_computed(firstCol + shift, firstCol + shift) = r0; |
| 511 | m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real(); |
| 512 | m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real(); |
| 513 | |
| 514 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 515 | ArrayXr tmp1 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues(); |
| 516 | #endif |
| 517 | // Second part: try to deflate singular values in combined matrix |
| 518 | deflation(firstCol, lastCol, k, firstRowW, firstColW, shift); |
| 519 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 520 | ArrayXr tmp2 = (m_computed.block(firstCol+shift, firstCol+shift, n, n)).jacobiSvd().singularValues(); |
| 521 | std::cout << "\n\nj1 = " << tmp1.transpose().format(bdcsvdfmt) << "\n"; |
| 522 | std::cout << "j2 = " << tmp2.transpose().format(bdcsvdfmt) << "\n\n"; |
| 523 | std::cout << "err: " << ((tmp1-tmp2).abs()>1e-12*tmp2.abs()).transpose() << "\n"; |
| 524 | static int count = 0; |
| 525 | std::cout << "# " << ++count << "\n\n"; |
| 526 | assert((tmp1-tmp2).matrix().norm() < 1e-14*tmp2.matrix().norm()); |
| 527 | // assert(count<681); |
| 528 | // assert(((tmp1-tmp2).abs()<1e-13*tmp2.abs()).all()); |
| 529 | #endif |
| 530 | |
| 531 | // Third part: compute SVD of combined matrix |
| 532 | MatrixXr UofSVD, VofSVD; |
| 533 | VectorType singVals; |
| 534 | computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD); |
| 535 | |
| 536 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 537 | assert(UofSVD.allFinite()); |
| 538 | assert(VofSVD.allFinite()); |
| 539 | #endif |
| 540 | |
| 541 | if (m_compU) |
| 542 | structured_update(m_naiveU.block(firstCol, firstCol, n + 1, n + 1), UofSVD, (n+2)/2); |
| 543 | else |
| 544 | { |
| 545 | Map<Matrix<RealScalar,2,Dynamic>,Aligned> tmp(m_workspace.data(),2,n+1); |
| 546 | tmp.noalias() = m_naiveU.middleCols(firstCol, n+1) * UofSVD; |
| 547 | m_naiveU.middleCols(firstCol, n + 1) = tmp; |
| 548 | } |
| 549 | |
| 550 | if (m_compV) structured_update(m_naiveV.block(firstRowW, firstColW, n, n), VofSVD, (n+1)/2); |
| 551 | |
| 552 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 553 | assert(m_naiveU.allFinite()); |
| 554 | assert(m_naiveV.allFinite()); |
| 555 | assert(m_computed.allFinite()); |
| 556 | #endif |
| 557 | |
| 558 | m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero(); |
| 559 | m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals; |
| 560 | }// end divide |
| 561 | |
| 562 | // Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in |
| 563 | // the first column and on the diagonal and has undergone deflation, so diagonal is in increasing |
| 564 | // order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except |
| 565 | // that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order. |
| 566 | // |
| 567 | // TODO Opportunities for optimization: better root finding algo, better stopping criterion, better |
| 568 | // handling of round-off errors, be consistent in ordering |
| 569 | // For instance, to solve the secular equation using FMM, see http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf |
| 570 | template <typename MatrixType> |
| 571 | void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, VectorType& singVals, MatrixXr& V) |
| 572 | { |
| 573 | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); |
| 574 | using std::abs; |
| 575 | ArrayRef col0 = m_computed.col(firstCol).segment(firstCol, n); |
| 576 | m_workspace.head(n) = m_computed.block(firstCol, firstCol, n, n).diagonal(); |
| 577 | ArrayRef diag = m_workspace.head(n); |
| 578 | diag(0) = Literal(0); |
| 579 | |
| 580 | // Allocate space for singular values and vectors |
| 581 | singVals.resize(n); |
| 582 | U.resize(n+1, n+1); |
| 583 | if (m_compV) V.resize(n, n); |
| 584 | |
| 585 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 586 | if (col0.hasNaN() || diag.hasNaN()) |
| 587 | std::cout << "\n\nHAS NAN\n\n"; |
| 588 | #endif |
| 589 | |
| 590 | // Many singular values might have been deflated, the zero ones have been moved to the end, |
| 591 | // but others are interleaved and we must ignore them at this stage. |
| 592 | // To this end, let's compute a permutation skipping them: |
| 593 | Index actual_n = n; |
| 594 | while(actual_n>1 && diag(actual_n-1)==Literal(0)) --actual_n; |
| 595 | Index m = 0; // size of the deflated problem |
| 596 | for(Index k=0;k<actual_n;++k) |
| 597 | if(abs(col0(k))>considerZero) |
| 598 | m_workspaceI(m++) = k; |
| 599 | Map<ArrayXi> perm(m_workspaceI.data(),m); |
| 600 | |
| 601 | Map<ArrayXr> shifts(m_workspace.data()+1*n, n); |
| 602 | Map<ArrayXr> mus(m_workspace.data()+2*n, n); |
| 603 | Map<ArrayXr> zhat(m_workspace.data()+3*n, n); |
| 604 | |
| 605 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 606 | std::cout << "computeSVDofM using:\n"; |
| 607 | std::cout << " z: " << col0.transpose() << "\n"; |
| 608 | std::cout << " d: " << diag.transpose() << "\n"; |
| 609 | #endif |
| 610 | |
| 611 | // Compute singVals, shifts, and mus |
| 612 | computeSingVals(col0, diag, perm, singVals, shifts, mus); |
| 613 | |
| 614 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 615 | std::cout << " j: " << (m_computed.block(firstCol, firstCol, n, n)).jacobiSvd().singularValues().transpose().reverse() << "\n\n"; |
| 616 | std::cout << " sing-val: " << singVals.transpose() << "\n"; |
| 617 | std::cout << " mu: " << mus.transpose() << "\n"; |
| 618 | std::cout << " shift: " << shifts.transpose() << "\n"; |
| 619 | |
| 620 | { |
| 621 | Index actual_n = n; |
| 622 | while(actual_n>1 && abs(col0(actual_n-1))<considerZero) --actual_n; |
| 623 | std::cout << "\n\n mus: " << mus.head(actual_n).transpose() << "\n\n"; |
| 624 | std::cout << " check1 (expect0) : " << ((singVals.array()-(shifts+mus)) / singVals.array()).head(actual_n).transpose() << "\n\n"; |
| 625 | std::cout << " check2 (>0) : " << ((singVals.array()-diag) / singVals.array()).head(actual_n).transpose() << "\n\n"; |
| 626 | std::cout << " check3 (>0) : " << ((diag.segment(1,actual_n-1)-singVals.head(actual_n-1).array()) / singVals.head(actual_n-1).array()).transpose() << "\n\n\n"; |
| 627 | std::cout << " check4 (>0) : " << ((singVals.segment(1,actual_n-1)-singVals.head(actual_n-1))).transpose() << "\n\n\n"; |
| 628 | } |
| 629 | #endif |
| 630 | |
| 631 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 632 | assert(singVals.allFinite()); |
| 633 | assert(mus.allFinite()); |
| 634 | assert(shifts.allFinite()); |
| 635 | #endif |
| 636 | |
| 637 | // Compute zhat |
| 638 | perturbCol0(col0, diag, perm, singVals, shifts, mus, zhat); |
| 639 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 640 | std::cout << " zhat: " << zhat.transpose() << "\n"; |
| 641 | #endif |
| 642 | |
| 643 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 644 | assert(zhat.allFinite()); |
| 645 | #endif |
| 646 | |
| 647 | computeSingVecs(zhat, diag, perm, singVals, shifts, mus, U, V); |
| 648 | |
| 649 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 650 | std::cout << "U^T U: " << (U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() << "\n"; |
| 651 | std::cout << "V^T V: " << (V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() << "\n"; |
| 652 | #endif |
| 653 | |
| 654 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 655 | assert(U.allFinite()); |
| 656 | assert(V.allFinite()); |
| 657 | assert((U.transpose() * U - MatrixXr(MatrixXr::Identity(U.cols(),U.cols()))).norm() < 1e-14 * n); |
| 658 | assert((V.transpose() * V - MatrixXr(MatrixXr::Identity(V.cols(),V.cols()))).norm() < 1e-14 * n); |
| 659 | assert(m_naiveU.allFinite()); |
| 660 | assert(m_naiveV.allFinite()); |
| 661 | assert(m_computed.allFinite()); |
| 662 | #endif |
| 663 | |
| 664 | // Because of deflation, the singular values might not be completely sorted. |
| 665 | // Fortunately, reordering them is a O(n) problem |
| 666 | for(Index i=0; i<actual_n-1; ++i) |
| 667 | { |
| 668 | if(singVals(i)>singVals(i+1)) |
| 669 | { |
| 670 | using std::swap; |
| 671 | swap(singVals(i),singVals(i+1)); |
| 672 | U.col(i).swap(U.col(i+1)); |
| 673 | if(m_compV) V.col(i).swap(V.col(i+1)); |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | // Reverse order so that singular values in increased order |
| 678 | // Because of deflation, the zeros singular-values are already at the end |
| 679 | singVals.head(actual_n).reverseInPlace(); |
| 680 | U.leftCols(actual_n).rowwise().reverseInPlace(); |
| 681 | if (m_compV) V.leftCols(actual_n).rowwise().reverseInPlace(); |
| 682 | |
| 683 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 684 | JacobiSVD<MatrixXr> jsvd(m_computed.block(firstCol, firstCol, n, n) ); |
| 685 | std::cout << " * j: " << jsvd.singularValues().transpose() << "\n\n"; |
| 686 | std::cout << " * sing-val: " << singVals.transpose() << "\n"; |
| 687 | // std::cout << " * err: " << ((jsvd.singularValues()-singVals)>1e-13*singVals.norm()).transpose() << "\n"; |
| 688 | #endif |
| 689 | } |
| 690 | |
| 691 | template <typename MatrixType> |
| 692 | typename BDCSVD<MatrixType>::RealScalar BDCSVD<MatrixType>::secularEq(RealScalar mu, const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const ArrayRef& diagShifted, RealScalar shift) |
| 693 | { |
| 694 | Index m = perm.size(); |
| 695 | RealScalar res = Literal(1); |
| 696 | for(Index i=0; i<m; ++i) |
| 697 | { |
| 698 | Index j = perm(i); |
| 699 | // The following expression could be rewritten to involve only a single division, |
| 700 | // but this would make the expression more sensitive to overflow. |
| 701 | res += (col0(j) / (diagShifted(j) - mu)) * (col0(j) / (diag(j) + shift + mu)); |
| 702 | } |
| 703 | return res; |
| 704 | |
| 705 | } |
| 706 | |
| 707 | template <typename MatrixType> |
| 708 | void BDCSVD<MatrixType>::computeSingVals(const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, |
| 709 | VectorType& singVals, ArrayRef shifts, ArrayRef mus) |
| 710 | { |
| 711 | using std::abs; |
| 712 | using std::swap; |
| 713 | using std::sqrt; |
| 714 | |
| 715 | Index n = col0.size(); |
| 716 | Index actual_n = n; |
| 717 | // Note that here actual_n is computed based on col0(i)==0 instead of diag(i)==0 as above |
| 718 | // because 1) we have diag(i)==0 => col0(i)==0 and 2) if col0(i)==0, then diag(i) is already a singular value. |
| 719 | while(actual_n>1 && col0(actual_n-1)==Literal(0)) --actual_n; |
| 720 | |
| 721 | for (Index k = 0; k < n; ++k) |
| 722 | { |
| 723 | if (col0(k) == Literal(0) || actual_n==1) |
| 724 | { |
| 725 | // if col0(k) == 0, then entry is deflated, so singular value is on diagonal |
| 726 | // if actual_n==1, then the deflated problem is already diagonalized |
| 727 | singVals(k) = k==0 ? col0(0) : diag(k); |
| 728 | mus(k) = Literal(0); |
| 729 | shifts(k) = k==0 ? col0(0) : diag(k); |
| 730 | continue; |
| 731 | } |
| 732 | |
| 733 | // otherwise, use secular equation to find singular value |
| 734 | RealScalar left = diag(k); |
| 735 | RealScalar right; // was: = (k != actual_n-1) ? diag(k+1) : (diag(actual_n-1) + col0.matrix().norm()); |
| 736 | if(k==actual_n-1) |
| 737 | right = (diag(actual_n-1) + col0.matrix().norm()); |
| 738 | else |
| 739 | { |
| 740 | // Skip deflated singular values, |
| 741 | // recall that at this stage we assume that z[j]!=0 and all entries for which z[j]==0 have been put aside. |
| 742 | // This should be equivalent to using perm[] |
| 743 | Index l = k+1; |
| 744 | while(col0(l)==Literal(0)) { ++l; eigen_internal_assert(l<actual_n); } |
| 745 | right = diag(l); |
| 746 | } |
| 747 | |
| 748 | // first decide whether it's closer to the left end or the right end |
| 749 | RealScalar mid = left + (right-left) / Literal(2); |
| 750 | RealScalar fMid = secularEq(mid, col0, diag, perm, diag, Literal(0)); |
| 751 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 752 | std::cout << right-left << "\n"; |
| 753 | std::cout << "fMid = " << fMid << " " << secularEq(mid-left, col0, diag, perm, diag-left, left) << " " << secularEq(mid-right, col0, diag, perm, diag-right, right) << "\n"; |
| 754 | std::cout << " = " << secularEq(0.1*(left+right), col0, diag, perm, diag, 0) |
| 755 | << " " << secularEq(0.2*(left+right), col0, diag, perm, diag, 0) |
| 756 | << " " << secularEq(0.3*(left+right), col0, diag, perm, diag, 0) |
| 757 | << " " << secularEq(0.4*(left+right), col0, diag, perm, diag, 0) |
| 758 | << " " << secularEq(0.49*(left+right), col0, diag, perm, diag, 0) |
| 759 | << " " << secularEq(0.5*(left+right), col0, diag, perm, diag, 0) |
| 760 | << " " << secularEq(0.51*(left+right), col0, diag, perm, diag, 0) |
| 761 | << " " << secularEq(0.6*(left+right), col0, diag, perm, diag, 0) |
| 762 | << " " << secularEq(0.7*(left+right), col0, diag, perm, diag, 0) |
| 763 | << " " << secularEq(0.8*(left+right), col0, diag, perm, diag, 0) |
| 764 | << " " << secularEq(0.9*(left+right), col0, diag, perm, diag, 0) << "\n"; |
| 765 | #endif |
| 766 | RealScalar shift = (k == actual_n-1 || fMid > Literal(0)) ? left : right; |
| 767 | |
| 768 | // measure everything relative to shift |
| 769 | Map<ArrayXr> diagShifted(m_workspace.data()+4*n, n); |
| 770 | diagShifted = diag - shift; |
| 771 | |
| 772 | // initial guess |
| 773 | RealScalar muPrev, muCur; |
| 774 | if (shift == left) |
| 775 | { |
| 776 | muPrev = (right - left) * RealScalar(0.1); |
| 777 | if (k == actual_n-1) muCur = right - left; |
| 778 | else muCur = (right - left) * RealScalar(0.5); |
| 779 | } |
| 780 | else |
| 781 | { |
| 782 | muPrev = -(right - left) * RealScalar(0.1); |
| 783 | muCur = -(right - left) * RealScalar(0.5); |
| 784 | } |
| 785 | |
| 786 | RealScalar fPrev = secularEq(muPrev, col0, diag, perm, diagShifted, shift); |
| 787 | RealScalar fCur = secularEq(muCur, col0, diag, perm, diagShifted, shift); |
| 788 | if (abs(fPrev) < abs(fCur)) |
| 789 | { |
| 790 | swap(fPrev, fCur); |
| 791 | swap(muPrev, muCur); |
| 792 | } |
| 793 | |
| 794 | // rational interpolation: fit a function of the form a / mu + b through the two previous |
| 795 | // iterates and use its zero to compute the next iterate |
| 796 | bool useBisection = fPrev*fCur>Literal(0); |
| 797 | while (fCur!=Literal(0) && abs(muCur - muPrev) > Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(muCur), abs(muPrev)) && abs(fCur - fPrev)>NumTraits<RealScalar>::epsilon() && !useBisection) |
| 798 | { |
| 799 | ++m_numIters; |
| 800 | |
| 801 | // Find a and b such that the function f(mu) = a / mu + b matches the current and previous samples. |
| 802 | RealScalar a = (fCur - fPrev) / (Literal(1)/muCur - Literal(1)/muPrev); |
| 803 | RealScalar b = fCur - a / muCur; |
| 804 | // And find mu such that f(mu)==0: |
| 805 | RealScalar muZero = -a/b; |
| 806 | RealScalar fZero = secularEq(muZero, col0, diag, perm, diagShifted, shift); |
| 807 | |
| 808 | muPrev = muCur; |
| 809 | fPrev = fCur; |
| 810 | muCur = muZero; |
| 811 | fCur = fZero; |
| 812 | |
| 813 | |
| 814 | if (shift == left && (muCur < Literal(0) || muCur > right - left)) useBisection = true; |
| 815 | if (shift == right && (muCur < -(right - left) || muCur > Literal(0))) useBisection = true; |
| 816 | if (abs(fCur)>abs(fPrev)) useBisection = true; |
| 817 | } |
| 818 | |
| 819 | // fall back on bisection method if rational interpolation did not work |
| 820 | if (useBisection) |
| 821 | { |
| 822 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 823 | std::cout << "useBisection for k = " << k << ", actual_n = " << actual_n << "\n"; |
| 824 | #endif |
| 825 | RealScalar leftShifted, rightShifted; |
| 826 | if (shift == left) |
| 827 | { |
| 828 | // to avoid overflow, we must have mu > max(real_min, |z(k)|/sqrt(real_max)), |
| 829 | // the factor 2 is to be more conservative |
| 830 | leftShifted = numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), Literal(2) * abs(col0(k)) / sqrt((std::numeric_limits<RealScalar>::max)()) ); |
| 831 | |
| 832 | // check that we did it right: |
| 833 | eigen_internal_assert( (numext::isfinite)( (col0(k)/leftShifted)*(col0(k)/(diag(k)+shift+leftShifted)) ) ); |
| 834 | // I don't understand why the case k==0 would be special there: |
| 835 | // if (k == 0) rightShifted = right - left; else |
| 836 | rightShifted = (k==actual_n-1) ? right : ((right - left) * RealScalar(0.51)); // theoretically we can take 0.5, but let's be safe |
| 837 | } |
| 838 | else |
| 839 | { |
| 840 | leftShifted = -(right - left) * RealScalar(0.51); |
| 841 | if(k+1<n) |
| 842 | rightShifted = -numext::maxi<RealScalar>( (std::numeric_limits<RealScalar>::min)(), abs(col0(k+1)) / sqrt((std::numeric_limits<RealScalar>::max)()) ); |
| 843 | else |
| 844 | rightShifted = -(std::numeric_limits<RealScalar>::min)(); |
| 845 | } |
| 846 | |
| 847 | RealScalar fLeft = secularEq(leftShifted, col0, diag, perm, diagShifted, shift); |
| 848 | |
| 849 | #if defined EIGEN_INTERNAL_DEBUGGING || defined EIGEN_BDCSVD_DEBUG_VERBOSE |
| 850 | RealScalar fRight = secularEq(rightShifted, col0, diag, perm, diagShifted, shift); |
| 851 | #endif |
| 852 | |
| 853 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 854 | if(!(fLeft * fRight<0)) |
| 855 | { |
| 856 | std::cout << "fLeft: " << leftShifted << " - " << diagShifted.head(10).transpose() << "\n ; " << bool(left==shift) << " " << (left-shift) << "\n"; |
| 857 | std::cout << k << " : " << fLeft << " * " << fRight << " == " << fLeft * fRight << " ; " << left << " - " << right << " -> " << leftShifted << " " << rightShifted << " shift=" << shift << "\n"; |
| 858 | } |
| 859 | #endif |
| 860 | eigen_internal_assert(fLeft * fRight < Literal(0)); |
| 861 | |
| 862 | while (rightShifted - leftShifted > Literal(2) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(abs(leftShifted), abs(rightShifted))) |
| 863 | { |
| 864 | RealScalar midShifted = (leftShifted + rightShifted) / Literal(2); |
| 865 | fMid = secularEq(midShifted, col0, diag, perm, diagShifted, shift); |
| 866 | if (fLeft * fMid < Literal(0)) |
| 867 | { |
| 868 | rightShifted = midShifted; |
| 869 | } |
| 870 | else |
| 871 | { |
| 872 | leftShifted = midShifted; |
| 873 | fLeft = fMid; |
| 874 | } |
| 875 | } |
| 876 | |
| 877 | muCur = (leftShifted + rightShifted) / Literal(2); |
| 878 | } |
| 879 | |
| 880 | singVals[k] = shift + muCur; |
| 881 | shifts[k] = shift; |
| 882 | mus[k] = muCur; |
| 883 | |
| 884 | // perturb singular value slightly if it equals diagonal entry to avoid division by zero later |
| 885 | // (deflation is supposed to avoid this from happening) |
| 886 | // - this does no seem to be necessary anymore - |
| 887 | // if (singVals[k] == left) singVals[k] *= 1 + NumTraits<RealScalar>::epsilon(); |
| 888 | // if (singVals[k] == right) singVals[k] *= 1 - NumTraits<RealScalar>::epsilon(); |
| 889 | } |
| 890 | } |
| 891 | |
| 892 | |
| 893 | // zhat is perturbation of col0 for which singular vectors can be computed stably (see Section 3.1) |
| 894 | template <typename MatrixType> |
| 895 | void BDCSVD<MatrixType>::perturbCol0 |
| 896 | (const ArrayRef& col0, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals, |
| 897 | const ArrayRef& shifts, const ArrayRef& mus, ArrayRef zhat) |
| 898 | { |
| 899 | using std::sqrt; |
| 900 | Index n = col0.size(); |
| 901 | Index m = perm.size(); |
| 902 | if(m==0) |
| 903 | { |
| 904 | zhat.setZero(); |
| 905 | return; |
| 906 | } |
| 907 | Index last = perm(m-1); |
| 908 | // The offset permits to skip deflated entries while computing zhat |
| 909 | for (Index k = 0; k < n; ++k) |
| 910 | { |
| 911 | if (col0(k) == Literal(0)) // deflated |
| 912 | zhat(k) = Literal(0); |
| 913 | else |
| 914 | { |
| 915 | // see equation (3.6) |
| 916 | RealScalar dk = diag(k); |
| 917 | RealScalar prod = (singVals(last) + dk) * (mus(last) + (shifts(last) - dk)); |
| 918 | |
| 919 | for(Index l = 0; l<m; ++l) |
| 920 | { |
| 921 | Index i = perm(l); |
| 922 | if(i!=k) |
| 923 | { |
| 924 | Index j = i<k ? i : perm(l-1); |
| 925 | prod *= ((singVals(j)+dk) / ((diag(i)+dk))) * ((mus(j)+(shifts(j)-dk)) / ((diag(i)-dk))); |
| 926 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 927 | if(i!=k && std::abs(((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) - 1) > 0.9 ) |
| 928 | std::cout << " " << ((singVals(j)+dk)*(mus(j)+(shifts(j)-dk)))/((diag(i)+dk)*(diag(i)-dk)) << " == (" << (singVals(j)+dk) << " * " << (mus(j)+(shifts(j)-dk)) |
| 929 | << ") / (" << (diag(i)+dk) << " * " << (diag(i)-dk) << ")\n"; |
| 930 | #endif |
| 931 | } |
| 932 | } |
| 933 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 934 | std::cout << "zhat(" << k << ") = sqrt( " << prod << ") ; " << (singVals(last) + dk) << " * " << mus(last) + shifts(last) << " - " << dk << "\n"; |
| 935 | #endif |
| 936 | RealScalar tmp = sqrt(prod); |
| 937 | zhat(k) = col0(k) > Literal(0) ? tmp : -tmp; |
| 938 | } |
| 939 | } |
| 940 | } |
| 941 | |
| 942 | // compute singular vectors |
| 943 | template <typename MatrixType> |
| 944 | void BDCSVD<MatrixType>::computeSingVecs |
| 945 | (const ArrayRef& zhat, const ArrayRef& diag, const IndicesRef &perm, const VectorType& singVals, |
| 946 | const ArrayRef& shifts, const ArrayRef& mus, MatrixXr& U, MatrixXr& V) |
| 947 | { |
| 948 | Index n = zhat.size(); |
| 949 | Index m = perm.size(); |
| 950 | |
| 951 | for (Index k = 0; k < n; ++k) |
| 952 | { |
| 953 | if (zhat(k) == Literal(0)) |
| 954 | { |
| 955 | U.col(k) = VectorType::Unit(n+1, k); |
| 956 | if (m_compV) V.col(k) = VectorType::Unit(n, k); |
| 957 | } |
| 958 | else |
| 959 | { |
| 960 | U.col(k).setZero(); |
| 961 | for(Index l=0;l<m;++l) |
| 962 | { |
| 963 | Index i = perm(l); |
| 964 | U(i,k) = zhat(i)/(((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k])); |
| 965 | } |
| 966 | U(n,k) = Literal(0); |
| 967 | U.col(k).normalize(); |
| 968 | |
| 969 | if (m_compV) |
| 970 | { |
| 971 | V.col(k).setZero(); |
| 972 | for(Index l=1;l<m;++l) |
| 973 | { |
| 974 | Index i = perm(l); |
| 975 | V(i,k) = diag(i) * zhat(i) / (((diag(i) - shifts(k)) - mus(k)) )/( (diag(i) + singVals[k])); |
| 976 | } |
| 977 | V(0,k) = Literal(-1); |
| 978 | V.col(k).normalize(); |
| 979 | } |
| 980 | } |
| 981 | } |
| 982 | U.col(n) = VectorType::Unit(n+1, n); |
| 983 | } |
| 984 | |
| 985 | |
| 986 | // page 12_13 |
| 987 | // i >= 1, di almost null and zi non null. |
| 988 | // We use a rotation to zero out zi applied to the left of M |
| 989 | template <typename MatrixType> |
| 990 | void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size) |
| 991 | { |
| 992 | using std::abs; |
| 993 | using std::sqrt; |
| 994 | using std::pow; |
| 995 | Index start = firstCol + shift; |
| 996 | RealScalar c = m_computed(start, start); |
| 997 | RealScalar s = m_computed(start+i, start); |
| 998 | RealScalar r = numext::hypot(c,s); |
| 999 | if (r == Literal(0)) |
| 1000 | { |
| 1001 | m_computed(start+i, start+i) = Literal(0); |
| 1002 | return; |
| 1003 | } |
| 1004 | m_computed(start,start) = r; |
| 1005 | m_computed(start+i, start) = Literal(0); |
| 1006 | m_computed(start+i, start+i) = Literal(0); |
| 1007 | |
| 1008 | JacobiRotation<RealScalar> J(c/r,-s/r); |
| 1009 | if (m_compU) m_naiveU.middleRows(firstCol, size+1).applyOnTheRight(firstCol, firstCol+i, J); |
| 1010 | else m_naiveU.applyOnTheRight(firstCol, firstCol+i, J); |
| 1011 | }// end deflation 43 |
| 1012 | |
| 1013 | |
| 1014 | // page 13 |
| 1015 | // i,j >= 1, i!=j and |di - dj| < epsilon * norm2(M) |
| 1016 | // We apply two rotations to have zj = 0; |
| 1017 | // TODO deflation44 is still broken and not properly tested |
| 1018 | template <typename MatrixType> |
| 1019 | void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size) |
| 1020 | { |
| 1021 | using std::abs; |
| 1022 | using std::sqrt; |
| 1023 | using std::conj; |
| 1024 | using std::pow; |
| 1025 | RealScalar c = m_computed(firstColm+i, firstColm); |
| 1026 | RealScalar s = m_computed(firstColm+j, firstColm); |
| 1027 | RealScalar r = sqrt(numext::abs2(c) + numext::abs2(s)); |
| 1028 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1029 | std::cout << "deflation 4.4: " << i << "," << j << " -> " << c << " " << s << " " << r << " ; " |
| 1030 | << m_computed(firstColm + i-1, firstColm) << " " |
| 1031 | << m_computed(firstColm + i, firstColm) << " " |
| 1032 | << m_computed(firstColm + i+1, firstColm) << " " |
| 1033 | << m_computed(firstColm + i+2, firstColm) << "\n"; |
| 1034 | std::cout << m_computed(firstColm + i-1, firstColm + i-1) << " " |
| 1035 | << m_computed(firstColm + i, firstColm+i) << " " |
| 1036 | << m_computed(firstColm + i+1, firstColm+i+1) << " " |
| 1037 | << m_computed(firstColm + i+2, firstColm+i+2) << "\n"; |
| 1038 | #endif |
| 1039 | if (r==Literal(0)) |
| 1040 | { |
| 1041 | m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j); |
| 1042 | return; |
| 1043 | } |
| 1044 | c/=r; |
| 1045 | s/=r; |
| 1046 | m_computed(firstColm + i, firstColm) = r; |
| 1047 | m_computed(firstColm + j, firstColm + j) = m_computed(firstColm + i, firstColm + i); |
| 1048 | m_computed(firstColm + j, firstColm) = Literal(0); |
| 1049 | |
| 1050 | JacobiRotation<RealScalar> J(c,-s); |
| 1051 | if (m_compU) m_naiveU.middleRows(firstColu, size+1).applyOnTheRight(firstColu + i, firstColu + j, J); |
| 1052 | else m_naiveU.applyOnTheRight(firstColu+i, firstColu+j, J); |
| 1053 | if (m_compV) m_naiveV.middleRows(firstRowW, size).applyOnTheRight(firstColW + i, firstColW + j, J); |
| 1054 | }// end deflation 44 |
| 1055 | |
| 1056 | |
| 1057 | // acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive] |
| 1058 | template <typename MatrixType> |
| 1059 | void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift) |
| 1060 | { |
| 1061 | using std::sqrt; |
| 1062 | using std::abs; |
| 1063 | const Index length = lastCol + 1 - firstCol; |
| 1064 | |
| 1065 | Block<MatrixXr,Dynamic,1> col0(m_computed, firstCol+shift, firstCol+shift, length, 1); |
| 1066 | Diagonal<MatrixXr> fulldiag(m_computed); |
| 1067 | VectorBlock<Diagonal<MatrixXr>,Dynamic> diag(fulldiag, firstCol+shift, length); |
| 1068 | |
| 1069 | const RealScalar considerZero = (std::numeric_limits<RealScalar>::min)(); |
| 1070 | RealScalar maxDiag = diag.tail((std::max)(Index(1),length-1)).cwiseAbs().maxCoeff(); |
| 1071 | RealScalar epsilon_strict = numext::maxi<RealScalar>(considerZero,NumTraits<RealScalar>::epsilon() * maxDiag); |
| 1072 | RealScalar epsilon_coarse = Literal(8) * NumTraits<RealScalar>::epsilon() * numext::maxi<RealScalar>(col0.cwiseAbs().maxCoeff(), maxDiag); |
| 1073 | |
| 1074 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1075 | assert(m_naiveU.allFinite()); |
| 1076 | assert(m_naiveV.allFinite()); |
| 1077 | assert(m_computed.allFinite()); |
| 1078 | #endif |
| 1079 | |
| 1080 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1081 | std::cout << "\ndeflate:" << diag.head(k+1).transpose() << " | " << diag.segment(k+1,length-k-1).transpose() << "\n"; |
| 1082 | #endif |
| 1083 | |
| 1084 | //condition 4.1 |
| 1085 | if (diag(0) < epsilon_coarse) |
| 1086 | { |
| 1087 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1088 | std::cout << "deflation 4.1, because " << diag(0) << " < " << epsilon_coarse << "\n"; |
| 1089 | #endif |
| 1090 | diag(0) = epsilon_coarse; |
| 1091 | } |
| 1092 | |
| 1093 | //condition 4.2 |
| 1094 | for (Index i=1;i<length;++i) |
| 1095 | if (abs(col0(i)) < epsilon_strict) |
| 1096 | { |
| 1097 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1098 | std::cout << "deflation 4.2, set z(" << i << ") to zero because " << abs(col0(i)) << " < " << epsilon_strict << " (diag(" << i << ")=" << diag(i) << ")\n"; |
| 1099 | #endif |
| 1100 | col0(i) = Literal(0); |
| 1101 | } |
| 1102 | |
| 1103 | //condition 4.3 |
| 1104 | for (Index i=1;i<length; i++) |
| 1105 | if (diag(i) < epsilon_coarse) |
| 1106 | { |
| 1107 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1108 | std::cout << "deflation 4.3, cancel z(" << i << ")=" << col0(i) << " because diag(" << i << ")=" << diag(i) << " < " << epsilon_coarse << "\n"; |
| 1109 | #endif |
| 1110 | deflation43(firstCol, shift, i, length); |
| 1111 | } |
| 1112 | |
| 1113 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1114 | assert(m_naiveU.allFinite()); |
| 1115 | assert(m_naiveV.allFinite()); |
| 1116 | assert(m_computed.allFinite()); |
| 1117 | #endif |
| 1118 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1119 | std::cout << "to be sorted: " << diag.transpose() << "\n\n"; |
| 1120 | #endif |
| 1121 | { |
| 1122 | // Check for total deflation |
| 1123 | // If we have a total deflation, then we have to consider col0(0)==diag(0) as a singular value during sorting |
| 1124 | bool total_deflation = (col0.tail(length-1).array()<considerZero).all(); |
| 1125 | |
| 1126 | // Sort the diagonal entries, since diag(1:k-1) and diag(k:length) are already sorted, let's do a sorted merge. |
| 1127 | // First, compute the respective permutation. |
| 1128 | Index *permutation = m_workspaceI.data(); |
| 1129 | { |
| 1130 | permutation[0] = 0; |
| 1131 | Index p = 1; |
| 1132 | |
| 1133 | // Move deflated diagonal entries at the end. |
| 1134 | for(Index i=1; i<length; ++i) |
| 1135 | if(abs(diag(i))<considerZero) |
| 1136 | permutation[p++] = i; |
| 1137 | |
| 1138 | Index i=1, j=k+1; |
| 1139 | for( ; p < length; ++p) |
| 1140 | { |
| 1141 | if (i > k) permutation[p] = j++; |
| 1142 | else if (j >= length) permutation[p] = i++; |
| 1143 | else if (diag(i) < diag(j)) permutation[p] = j++; |
| 1144 | else permutation[p] = i++; |
| 1145 | } |
| 1146 | } |
| 1147 | |
| 1148 | // If we have a total deflation, then we have to insert diag(0) at the right place |
| 1149 | if(total_deflation) |
| 1150 | { |
| 1151 | for(Index i=1; i<length; ++i) |
| 1152 | { |
| 1153 | Index pi = permutation[i]; |
| 1154 | if(abs(diag(pi))<considerZero || diag(0)<diag(pi)) |
| 1155 | permutation[i-1] = permutation[i]; |
| 1156 | else |
| 1157 | { |
| 1158 | permutation[i-1] = 0; |
| 1159 | break; |
| 1160 | } |
| 1161 | } |
| 1162 | } |
| 1163 | |
| 1164 | // Current index of each col, and current column of each index |
| 1165 | Index *realInd = m_workspaceI.data()+length; |
| 1166 | Index *realCol = m_workspaceI.data()+2*length; |
| 1167 | |
| 1168 | for(int pos = 0; pos< length; pos++) |
| 1169 | { |
| 1170 | realCol[pos] = pos; |
| 1171 | realInd[pos] = pos; |
| 1172 | } |
| 1173 | |
| 1174 | for(Index i = total_deflation?0:1; i < length; i++) |
| 1175 | { |
| 1176 | const Index pi = permutation[length - (total_deflation ? i+1 : i)]; |
| 1177 | const Index J = realCol[pi]; |
| 1178 | |
| 1179 | using std::swap; |
| 1180 | // swap diagonal and first column entries: |
| 1181 | swap(diag(i), diag(J)); |
| 1182 | if(i!=0 && J!=0) swap(col0(i), col0(J)); |
| 1183 | |
| 1184 | // change columns |
| 1185 | if (m_compU) m_naiveU.col(firstCol+i).segment(firstCol, length + 1).swap(m_naiveU.col(firstCol+J).segment(firstCol, length + 1)); |
| 1186 | else m_naiveU.col(firstCol+i).segment(0, 2) .swap(m_naiveU.col(firstCol+J).segment(0, 2)); |
| 1187 | if (m_compV) m_naiveV.col(firstColW + i).segment(firstRowW, length).swap(m_naiveV.col(firstColW + J).segment(firstRowW, length)); |
| 1188 | |
| 1189 | //update real pos |
| 1190 | const Index realI = realInd[i]; |
| 1191 | realCol[realI] = J; |
| 1192 | realCol[pi] = i; |
| 1193 | realInd[J] = realI; |
| 1194 | realInd[i] = pi; |
| 1195 | } |
| 1196 | } |
| 1197 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1198 | std::cout << "sorted: " << diag.transpose().format(bdcsvdfmt) << "\n"; |
| 1199 | std::cout << " : " << col0.transpose() << "\n\n"; |
| 1200 | #endif |
| 1201 | |
| 1202 | //condition 4.4 |
| 1203 | { |
| 1204 | Index i = length-1; |
| 1205 | while(i>0 && (abs(diag(i))<considerZero || abs(col0(i))<considerZero)) --i; |
| 1206 | for(; i>1;--i) |
| 1207 | if( (diag(i) - diag(i-1)) < NumTraits<RealScalar>::epsilon()*maxDiag ) |
| 1208 | { |
| 1209 | #ifdef EIGEN_BDCSVD_DEBUG_VERBOSE |
| 1210 | std::cout << "deflation 4.4 with i = " << i << " because " << (diag(i) - diag(i-1)) << " < " << NumTraits<RealScalar>::epsilon()*diag(i) << "\n"; |
| 1211 | #endif |
| 1212 | eigen_internal_assert(abs(diag(i) - diag(i-1))<epsilon_coarse && " diagonal entries are not properly sorted"); |
| 1213 | deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i-1, i, length); |
| 1214 | } |
| 1215 | } |
| 1216 | |
| 1217 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1218 | for(Index j=2;j<length;++j) |
| 1219 | assert(diag(j-1)<=diag(j) || abs(diag(j))<considerZero); |
| 1220 | #endif |
| 1221 | |
| 1222 | #ifdef EIGEN_BDCSVD_SANITY_CHECKS |
| 1223 | assert(m_naiveU.allFinite()); |
| 1224 | assert(m_naiveV.allFinite()); |
| 1225 | assert(m_computed.allFinite()); |
| 1226 | #endif |
| 1227 | }//end deflation |
| 1228 | |
| 1229 | #ifndef __CUDACC__ |
| 1230 | /** \svd_module |
| 1231 | * |
| 1232 | * \return the singular value decomposition of \c *this computed by Divide & Conquer algorithm |
| 1233 | * |
| 1234 | * \sa class BDCSVD |
| 1235 | */ |
| 1236 | template<typename Derived> |
| 1237 | BDCSVD<typename MatrixBase<Derived>::PlainObject> |
| 1238 | MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const |
| 1239 | { |
| 1240 | return BDCSVD<PlainObject>(*this, computationOptions); |
| 1241 | } |
| 1242 | #endif |
| 1243 | |
| 1244 | } // end namespace Eigen |
| 1245 | |
| 1246 | #endif |