Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_SCALING_H |
| 11 | #define EIGEN_SCALING_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | /** \geometry_module \ingroup Geometry_Module |
| 16 | * |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 17 | * \class UniformScaling |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 18 | * |
| 19 | * \brief Represents a generic uniform scaling transformation |
| 20 | * |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 21 | * \tparam _Scalar the scalar type, i.e., the type of the coefficients. |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 22 | * |
| 23 | * This class represent a uniform scaling transformation. It is the return |
| 24 | * type of Scaling(Scalar), and most of the time this is the only way it |
| 25 | * is used. In particular, this class is not aimed to be used to store a scaling transformation, |
| 26 | * but rather to make easier the constructions and updates of Transform objects. |
| 27 | * |
| 28 | * To represent an axis aligned scaling, use the DiagonalMatrix class. |
| 29 | * |
| 30 | * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform |
| 31 | */ |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 32 | |
| 33 | namespace internal |
| 34 | { |
| 35 | // This helper helps nvcc+MSVC to properly parse this file. |
| 36 | // See bug 1412. |
| 37 | template <typename Scalar, int Dim, int Mode> |
| 38 | struct uniformscaling_times_affine_returntype |
| 39 | { |
| 40 | enum |
| 41 | { |
| 42 | NewMode = int(Mode) == int(Isometry) ? Affine : Mode |
| 43 | }; |
| 44 | typedef Transform <Scalar, Dim, NewMode> type; |
| 45 | }; |
| 46 | } |
| 47 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 48 | template<typename _Scalar> |
| 49 | class UniformScaling |
| 50 | { |
| 51 | public: |
| 52 | /** the scalar type of the coefficients */ |
| 53 | typedef _Scalar Scalar; |
| 54 | |
| 55 | protected: |
| 56 | |
| 57 | Scalar m_factor; |
| 58 | |
| 59 | public: |
| 60 | |
| 61 | /** Default constructor without initialization. */ |
| 62 | UniformScaling() {} |
| 63 | /** Constructs and initialize a uniform scaling transformation */ |
| 64 | explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} |
| 65 | |
| 66 | inline const Scalar& factor() const { return m_factor; } |
| 67 | inline Scalar& factor() { return m_factor; } |
| 68 | |
| 69 | /** Concatenates two uniform scaling */ |
| 70 | inline UniformScaling operator* (const UniformScaling& other) const |
| 71 | { return UniformScaling(m_factor * other.factor()); } |
| 72 | |
| 73 | /** Concatenates a uniform scaling and a translation */ |
| 74 | template<int Dim> |
| 75 | inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const; |
| 76 | |
| 77 | /** Concatenates a uniform scaling and an affine transformation */ |
| 78 | template<int Dim, int Mode, int Options> |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 79 | inline typename |
| 80 | internal::uniformscaling_times_affine_returntype<Scalar,Dim,Mode>::type |
| 81 | operator* (const Transform<Scalar, Dim, Mode, Options>& t) const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 82 | { |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 83 | typename internal::uniformscaling_times_affine_returntype<Scalar,Dim,Mode>::type res = t; |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 84 | res.prescale(factor()); |
| 85 | return res; |
| 86 | } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 87 | |
| 88 | /** Concatenates a uniform scaling and a linear transformation matrix */ |
| 89 | // TODO returns an expression |
| 90 | template<typename Derived> |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 91 | inline typename Eigen::internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 92 | { return other * m_factor; } |
| 93 | |
| 94 | template<typename Derived,int Dim> |
| 95 | inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const |
| 96 | { return r.toRotationMatrix() * m_factor; } |
| 97 | |
| 98 | /** \returns the inverse scaling */ |
| 99 | inline UniformScaling inverse() const |
| 100 | { return UniformScaling(Scalar(1)/m_factor); } |
| 101 | |
| 102 | /** \returns \c *this with scalar type casted to \a NewScalarType |
| 103 | * |
| 104 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| 105 | * then this function smartly returns a const reference to \c *this. |
| 106 | */ |
| 107 | template<typename NewScalarType> |
| 108 | inline UniformScaling<NewScalarType> cast() const |
| 109 | { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); } |
| 110 | |
| 111 | /** Copy constructor with scalar type conversion */ |
| 112 | template<typename OtherScalarType> |
| 113 | inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other) |
| 114 | { m_factor = Scalar(other.factor()); } |
| 115 | |
| 116 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| 117 | * determined by \a prec. |
| 118 | * |
| 119 | * \sa MatrixBase::isApprox() */ |
| 120 | bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const |
| 121 | { return internal::isApprox(m_factor, other.factor(), prec); } |
| 122 | |
| 123 | }; |
| 124 | |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 125 | /** \addtogroup Geometry_Module */ |
| 126 | //@{ |
| 127 | |
| 128 | /** Concatenates a linear transformation matrix and a uniform scaling |
| 129 | * \relates UniformScaling |
| 130 | */ |
Austin Schuh | c55b017 | 2022-02-20 17:52:35 -0800 | [diff] [blame^] | 131 | // NOTE this operator is defined in MatrixBase and not as a friend function |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 132 | // of UniformScaling to fix an internal crash of Intel's ICC |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 133 | template<typename Derived,typename Scalar> |
| 134 | EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,Scalar,product) |
| 135 | operator*(const MatrixBase<Derived>& matrix, const UniformScaling<Scalar>& s) |
| 136 | { return matrix.derived() * s.factor(); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 137 | |
| 138 | /** Constructs a uniform scaling from scale factor \a s */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 139 | inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 140 | /** Constructs a uniform scaling from scale factor \a s */ |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 141 | inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); } |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 142 | /** Constructs a uniform scaling from scale factor \a s */ |
| 143 | template<typename RealScalar> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 144 | inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 145 | { return UniformScaling<std::complex<RealScalar> >(s); } |
| 146 | |
| 147 | /** Constructs a 2D axis aligned scaling */ |
| 148 | template<typename Scalar> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 149 | inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 150 | { return DiagonalMatrix<Scalar,2>(sx, sy); } |
| 151 | /** Constructs a 3D axis aligned scaling */ |
| 152 | template<typename Scalar> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 153 | inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 154 | { return DiagonalMatrix<Scalar,3>(sx, sy, sz); } |
| 155 | |
| 156 | /** Constructs an axis aligned scaling expression from vector expression \a coeffs |
| 157 | * This is an alias for coeffs.asDiagonal() |
| 158 | */ |
| 159 | template<typename Derived> |
Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 160 | inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs) |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 161 | { return coeffs.asDiagonal(); } |
| 162 | |
Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame] | 163 | /** \deprecated */ |
| 164 | typedef DiagonalMatrix<float, 2> AlignedScaling2f; |
| 165 | /** \deprecated */ |
| 166 | typedef DiagonalMatrix<double,2> AlignedScaling2d; |
| 167 | /** \deprecated */ |
| 168 | typedef DiagonalMatrix<float, 3> AlignedScaling3f; |
| 169 | /** \deprecated */ |
| 170 | typedef DiagonalMatrix<double,3> AlignedScaling3d; |
| 171 | //@} |
| 172 | |
| 173 | template<typename Scalar> |
| 174 | template<int Dim> |
| 175 | inline Transform<Scalar,Dim,Affine> |
| 176 | UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const |
| 177 | { |
| 178 | Transform<Scalar,Dim,Affine> res; |
| 179 | res.matrix().setZero(); |
| 180 | res.linear().diagonal().fill(factor()); |
| 181 | res.translation() = factor() * t.vector(); |
| 182 | res(Dim,Dim) = Scalar(1); |
| 183 | return res; |
| 184 | } |
| 185 | |
| 186 | } // end namespace Eigen |
| 187 | |
| 188 | #endif // EIGEN_SCALING_H |