Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_SCALING_H |
| 11 | #define EIGEN_SCALING_H |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | /** \geometry_module \ingroup Geometry_Module |
| 16 | * |
| 17 | * \class Scaling |
| 18 | * |
| 19 | * \brief Represents a generic uniform scaling transformation |
| 20 | * |
| 21 | * \param _Scalar the scalar type, i.e., the type of the coefficients. |
| 22 | * |
| 23 | * This class represent a uniform scaling transformation. It is the return |
| 24 | * type of Scaling(Scalar), and most of the time this is the only way it |
| 25 | * is used. In particular, this class is not aimed to be used to store a scaling transformation, |
| 26 | * but rather to make easier the constructions and updates of Transform objects. |
| 27 | * |
| 28 | * To represent an axis aligned scaling, use the DiagonalMatrix class. |
| 29 | * |
| 30 | * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform |
| 31 | */ |
| 32 | template<typename _Scalar> |
| 33 | class UniformScaling |
| 34 | { |
| 35 | public: |
| 36 | /** the scalar type of the coefficients */ |
| 37 | typedef _Scalar Scalar; |
| 38 | |
| 39 | protected: |
| 40 | |
| 41 | Scalar m_factor; |
| 42 | |
| 43 | public: |
| 44 | |
| 45 | /** Default constructor without initialization. */ |
| 46 | UniformScaling() {} |
| 47 | /** Constructs and initialize a uniform scaling transformation */ |
| 48 | explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} |
| 49 | |
| 50 | inline const Scalar& factor() const { return m_factor; } |
| 51 | inline Scalar& factor() { return m_factor; } |
| 52 | |
| 53 | /** Concatenates two uniform scaling */ |
| 54 | inline UniformScaling operator* (const UniformScaling& other) const |
| 55 | { return UniformScaling(m_factor * other.factor()); } |
| 56 | |
| 57 | /** Concatenates a uniform scaling and a translation */ |
| 58 | template<int Dim> |
| 59 | inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const; |
| 60 | |
| 61 | /** Concatenates a uniform scaling and an affine transformation */ |
| 62 | template<int Dim, int Mode, int Options> |
| 63 | inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const |
| 64 | { |
| 65 | Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t; |
| 66 | res.prescale(factor()); |
| 67 | return res; |
| 68 | } |
| 69 | |
| 70 | /** Concatenates a uniform scaling and a linear transformation matrix */ |
| 71 | // TODO returns an expression |
| 72 | template<typename Derived> |
| 73 | inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const |
| 74 | { return other * m_factor; } |
| 75 | |
| 76 | template<typename Derived,int Dim> |
| 77 | inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const |
| 78 | { return r.toRotationMatrix() * m_factor; } |
| 79 | |
| 80 | /** \returns the inverse scaling */ |
| 81 | inline UniformScaling inverse() const |
| 82 | { return UniformScaling(Scalar(1)/m_factor); } |
| 83 | |
| 84 | /** \returns \c *this with scalar type casted to \a NewScalarType |
| 85 | * |
| 86 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| 87 | * then this function smartly returns a const reference to \c *this. |
| 88 | */ |
| 89 | template<typename NewScalarType> |
| 90 | inline UniformScaling<NewScalarType> cast() const |
| 91 | { return UniformScaling<NewScalarType>(NewScalarType(m_factor)); } |
| 92 | |
| 93 | /** Copy constructor with scalar type conversion */ |
| 94 | template<typename OtherScalarType> |
| 95 | inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other) |
| 96 | { m_factor = Scalar(other.factor()); } |
| 97 | |
| 98 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| 99 | * determined by \a prec. |
| 100 | * |
| 101 | * \sa MatrixBase::isApprox() */ |
| 102 | bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const |
| 103 | { return internal::isApprox(m_factor, other.factor(), prec); } |
| 104 | |
| 105 | }; |
| 106 | |
| 107 | /** Concatenates a linear transformation matrix and a uniform scaling */ |
| 108 | // NOTE this operator is defiend in MatrixBase and not as a friend function |
| 109 | // of UniformScaling to fix an internal crash of Intel's ICC |
| 110 | template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType |
| 111 | MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const |
| 112 | { return derived() * s.factor(); } |
| 113 | |
| 114 | /** Constructs a uniform scaling from scale factor \a s */ |
| 115 | static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); } |
| 116 | /** Constructs a uniform scaling from scale factor \a s */ |
| 117 | static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); } |
| 118 | /** Constructs a uniform scaling from scale factor \a s */ |
| 119 | template<typename RealScalar> |
| 120 | static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s) |
| 121 | { return UniformScaling<std::complex<RealScalar> >(s); } |
| 122 | |
| 123 | /** Constructs a 2D axis aligned scaling */ |
| 124 | template<typename Scalar> |
| 125 | static inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy) |
| 126 | { return DiagonalMatrix<Scalar,2>(sx, sy); } |
| 127 | /** Constructs a 3D axis aligned scaling */ |
| 128 | template<typename Scalar> |
| 129 | static inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz) |
| 130 | { return DiagonalMatrix<Scalar,3>(sx, sy, sz); } |
| 131 | |
| 132 | /** Constructs an axis aligned scaling expression from vector expression \a coeffs |
| 133 | * This is an alias for coeffs.asDiagonal() |
| 134 | */ |
| 135 | template<typename Derived> |
| 136 | static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs) |
| 137 | { return coeffs.asDiagonal(); } |
| 138 | |
| 139 | /** \addtogroup Geometry_Module */ |
| 140 | //@{ |
| 141 | /** \deprecated */ |
| 142 | typedef DiagonalMatrix<float, 2> AlignedScaling2f; |
| 143 | /** \deprecated */ |
| 144 | typedef DiagonalMatrix<double,2> AlignedScaling2d; |
| 145 | /** \deprecated */ |
| 146 | typedef DiagonalMatrix<float, 3> AlignedScaling3f; |
| 147 | /** \deprecated */ |
| 148 | typedef DiagonalMatrix<double,3> AlignedScaling3d; |
| 149 | //@} |
| 150 | |
| 151 | template<typename Scalar> |
| 152 | template<int Dim> |
| 153 | inline Transform<Scalar,Dim,Affine> |
| 154 | UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const |
| 155 | { |
| 156 | Transform<Scalar,Dim,Affine> res; |
| 157 | res.matrix().setZero(); |
| 158 | res.linear().diagonal().fill(factor()); |
| 159 | res.translation() = factor() * t.vector(); |
| 160 | res(Dim,Dim) = Scalar(1); |
| 161 | return res; |
| 162 | } |
| 163 | |
| 164 | } // end namespace Eigen |
| 165 | |
| 166 | #endif // EIGEN_SCALING_H |