blob: b77f352ad5738845c54d173cd036053ee896bab9 [file] [log] [blame]
James Kuszmaulf5eb4682023-09-22 17:16:59 -07001#include "aos/flatbuffers/base.h"
2
Stephan Pleines6191f1d2024-05-30 20:44:45 -07003#include <stddef.h>
4
5#include <algorithm>
6
James Kuszmaulf5eb4682023-09-22 17:16:59 -07007#include "gtest/gtest.h"
8
9namespace aos::fbs::testing {
Austin Schuhf8440852024-05-31 10:46:50 -070010// Tests that AlignOffset() behaves as expected.
11TEST(BaseTest, AlignOffset) {
12 EXPECT_EQ(0, AlignOffset(0, 4));
13 EXPECT_EQ(4, AlignOffset(4, 4));
14 EXPECT_EQ(8, AlignOffset(5, 4));
15 EXPECT_EQ(8, AlignOffset(6, 4));
16 EXPECT_EQ(8, AlignOffset(7, 4));
17}
18
19// Tests that AlignOffset handles the alignment point being nonzero. This shows
20// up when you want 8 byte alignment 4 bytes into the start of the buffer, and
21// don't want to pad out the front of the buffer.
22TEST(BaseTest, AlignOffsetWithOffset) {
23 EXPECT_EQ(4, AlignOffset(4, 4, 4));
24
25 EXPECT_EQ(4, AlignOffset(0, 8, 4));
26 EXPECT_EQ(4, AlignOffset(1, 8, 4));
27 EXPECT_EQ(4, AlignOffset(2, 8, 4));
28 EXPECT_EQ(4, AlignOffset(3, 8, 4));
29 EXPECT_EQ(4, AlignOffset(4, 8, 4));
30 EXPECT_EQ(12, AlignOffset(5, 8, 4));
James Kuszmaulf5eb4682023-09-22 17:16:59 -070031}
32
Austin Schuh3c9f92c2024-04-30 17:56:42 -070033inline constexpr size_t kDefaultSize = AlignedVectorAllocator::kAlignment * 2;
James Kuszmaulf5eb4682023-09-22 17:16:59 -070034template <typename T>
35class AllocatorTest : public ::testing::Test {
36 protected:
37 AllocatorTest() : allocator_(std::make_unique<T>()) {}
Austin Schuh02e0d772024-05-30 16:41:06 -070038 alignas(64) std::array<uint8_t, kDefaultSize> buffer_;
James Kuszmaulf5eb4682023-09-22 17:16:59 -070039 // unique_ptr so that we can destroy the allocator at will.
40 std::unique_ptr<T> allocator_;
41};
42
43template <>
44AllocatorTest<SpanAllocator>::AllocatorTest()
Austin Schuh02e0d772024-05-30 16:41:06 -070045 : allocator_(std::make_unique<SpanAllocator>(
James Kuszmaulf5eb4682023-09-22 17:16:59 -070046 std::span<uint8_t>{buffer_.data(), buffer_.size()})) {}
47
Austin Schuh02e0d772024-05-30 16:41:06 -070048using AllocatorTypes = ::testing::Types<SpanAllocator, AlignedVectorAllocator,
49 FixedStackAllocator<kDefaultSize>>;
James Kuszmaulf5eb4682023-09-22 17:16:59 -070050TYPED_TEST_SUITE(AllocatorTest, AllocatorTypes);
51
52// Tests that we can create and not use a VectorAllocator.
53TYPED_TEST(AllocatorTest, UnusedAllocator) {}
54
55// Tests that a simple allocate works.
56TYPED_TEST(AllocatorTest, BasicAllocate) {
57 std::span<uint8_t> span =
58 this->allocator_->Allocate(kDefaultSize, 4, SetZero::kYes).value();
59 ASSERT_EQ(kDefaultSize, span.size());
60 // We set SetZero::kYes; it should be zero-initialized.
61 EXPECT_EQ(kDefaultSize, std::count(span.begin(), span.end(), 0));
62 this->allocator_->Deallocate(span);
63}
64
65// Tests that we can insert bytes into an arbitrary spot in the buffer.
66TYPED_TEST(AllocatorTest, InsertBytes) {
67 const size_t half_size = kDefaultSize / 2;
68 std::span<uint8_t> span =
69 this->allocator_->Allocate(half_size, 4, SetZero::kYes).value();
70 ASSERT_EQ(half_size, span.size());
71 // Set the span with some sentinel values so that we can detect that the
72 // insertion occurred correctly.
73 for (size_t ii = 0; ii < span.size(); ++ii) {
74 span[ii] = ii + 1;
75 }
76
77 // Insert new bytes such that one old byte will still be at the start.
78 span = this->allocator_
79 ->InsertBytes(span.data() + 1u, half_size, 0, SetZero::kYes)
80 .value();
81 ASSERT_EQ(kDefaultSize, span.size());
82 size_t index = 0;
83 EXPECT_EQ(1u, span[index]);
84 index++;
85 for (; index < half_size + 1u; ++index) {
86 EXPECT_EQ(0u, span[index]);
87 }
88 for (; index < span.size(); ++index) {
89 EXPECT_EQ(index - half_size + 1, span[index]);
90 }
91 this->allocator_->Deallocate(span);
92}
93
Austin Schuh02e0d772024-05-30 16:41:06 -070094// Tests that all allocators return data aligned to the requested alignment.
95TYPED_TEST(AllocatorTest, Alignment) {
96 for (size_t alignment : {4, 8, 16, 32, 64}) {
97 std::span<uint8_t> span =
98 this->allocator_->Allocate(kDefaultSize, alignment, SetZero::kYes)
99 .value();
100 EXPECT_EQ(reinterpret_cast<size_t>(span.data()) % alignment, 0);
101 this->allocator_->Deallocate(span);
102 }
103}
104
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700105// Tests that we can remove bytes from an arbitrary spot in the buffer.
106TYPED_TEST(AllocatorTest, RemoveBytes) {
Austin Schuh3c9f92c2024-04-30 17:56:42 -0700107 // Deletion doesn't require resizing, so we don't need to worry about it being
108 // larger than the alignment to test everything. The test requires the size
109 // to be < 255 to store the sentinal values.
110 const size_t kDefaultSize = 128;
111
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700112 const size_t half_size = kDefaultSize / 2;
113 std::span<uint8_t> span =
114 this->allocator_->Allocate(kDefaultSize, 4, SetZero::kYes).value();
115 ASSERT_EQ(kDefaultSize, span.size());
116 // Set the span with some sentinel values so that we can detect that the
117 // removal occurred correctly.
118 for (size_t ii = 0; ii < span.size(); ++ii) {
119 span[ii] = ii + 1;
120 }
121
122 // Remove bytes such that one old byte will remain at the start, and a chunk
123 // of 8 bytes will be cut out after that..
124 span = this->allocator_->RemoveBytes(span.subspan(1, half_size));
125 ASSERT_EQ(half_size, span.size());
126 size_t index = 0;
127 EXPECT_EQ(1u, span[index]);
128 index++;
129 for (; index < span.size(); ++index) {
130 EXPECT_EQ(index + half_size + 1, span[index]);
131 }
132 this->allocator_->Deallocate(span);
133}
134
135// Tests that if we fail to deallocate that we fail during destruction.
136TYPED_TEST(AllocatorTest, NoDeallocate) {
137 EXPECT_DEATH(
138 {
139 EXPECT_EQ(
140 4, this->allocator_->Allocate(4, 4, SetZero::kYes).value().size());
141 this->allocator_.reset();
142 },
143 "Must deallocate");
144}
145
146// Tests that if we never allocate that we cannot deallocate.
147TYPED_TEST(AllocatorTest, NoAllocateThenDeallocate) {
148 EXPECT_DEATH(this->allocator_->Deallocate(std::span<uint8_t>()),
149 "prior allocation");
150}
151
152// Tests that if we attempt to allocate more than the backing span allows that
153// we correctly return an empty span.
154TEST(SpanAllocatorTest, OverAllocate) {
155 std::vector<uint8_t> buffer(kDefaultSize);
156 SpanAllocator allocator({buffer.data(), buffer.size()});
157 EXPECT_FALSE(
158 allocator.Allocate(kDefaultSize + 1u, 0, SetZero::kYes).has_value());
159}
160
161// Tests that if we attempt to insert more than the backing span allows that
162// we correctly return an empty span.
163TEST(SpanAllocatorTest, OverInsert) {
164 std::vector<uint8_t> buffer(kDefaultSize);
165 SpanAllocator allocator({buffer.data(), buffer.size()});
166 std::span<uint8_t> span =
Austin Schuh02e0d772024-05-30 16:41:06 -0700167 allocator.Allocate(kDefaultSize, 1, SetZero::kYes).value();
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700168 EXPECT_EQ(kDefaultSize, span.size());
169 EXPECT_FALSE(
170 allocator.InsertBytes(span.data(), 1u, 0, SetZero::kYes).has_value());
171 allocator.Deallocate(span);
172}
173
174// Because we really aren't meant to instantiate ResizeableObject's directly (if
175// nothing else it has virtual member functions), define a testing
176// implementation.
177
178class TestResizeableObject : public ResizeableObject {
179 public:
180 TestResizeableObject(std::span<uint8_t> buffer, ResizeableObject *parent)
181 : ResizeableObject(buffer, parent) {}
182 TestResizeableObject(std::span<uint8_t> buffer, Allocator *allocator)
183 : ResizeableObject(buffer, allocator) {}
184 virtual ~TestResizeableObject() {}
185 using ResizeableObject::SubObject;
186 bool InsertBytes(void *insertion_point, size_t bytes) {
Austin Schuhf8440852024-05-31 10:46:50 -0700187 return ResizeableObject::InsertBytes(insertion_point, bytes, SetZero::kYes)
188 .has_value();
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700189 }
190 TestResizeableObject(TestResizeableObject &&) = default;
191
192 struct TestObject {
193 uoffset_t inline_entry_offset;
194 std::unique_ptr<TestResizeableObject> object;
195 size_t absolute_offset;
196 };
197
198 // Adds a new object of the requested size.
199 void AddEntry(uoffset_t inline_entry_offset, size_t absolute_offset,
200 size_t buffer_size, bool set_object) {
201 *reinterpret_cast<uoffset_t *>(buffer_.data() + inline_entry_offset) =
202 set_object ? (absolute_offset - inline_entry_offset) : 0;
203 objects_.emplace_back(
204 TestObject{inline_entry_offset, nullptr, absolute_offset});
205 if (set_object) {
206 objects_.back().object = std::make_unique<TestResizeableObject>(
207 buffer().subspan(absolute_offset, buffer_size), this);
208 }
209 }
210
211 size_t NumberOfSubObjects() const override { return objects_.size(); }
212 SubObject GetSubObject(size_t index) override {
213 TestObject &subobject = objects_.at(index);
214 return {reinterpret_cast<uoffset_t *>(buffer_.data() +
215 subobject.inline_entry_offset),
216 subobject.object.get(), &subobject.absolute_offset};
217 }
218
219 TestObject &GetObject(size_t index) { return objects_.at(index); }
220
221 size_t Alignment() const override { return 64; }
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700222
223 private:
224 std::vector<TestObject> objects_;
225};
226
227class ResizeableObjectTest : public ::testing::Test {
228 protected:
229 static constexpr size_t kInitialSize = 128;
230 ResizeableObjectTest()
231 : object_(allocator_.Allocate(kInitialSize, 4, SetZero::kYes).value(),
232 &allocator_) {}
233 ~ResizeableObjectTest() { allocator_.Deallocate(object_.buffer()); }
Austin Schuh02e0d772024-05-30 16:41:06 -0700234 AlignedVectorAllocator allocator_;
James Kuszmaulf5eb4682023-09-22 17:16:59 -0700235 TestResizeableObject object_;
236};
237
238// Tests that if we created an object and then do nothing with it that nothing
239// untoward happens.
240TEST_F(ResizeableObjectTest, DoNothing) {}
241
242// Test that when we move the ResizeableObject we clear the reference to the old
243// buffer.
244TEST_F(ResizeableObjectTest, Move) {
245 TestResizeableObject target_object = std::move(object_);
246 ASSERT_EQ(0u, object_.buffer().size());
247 ASSERT_EQ(kInitialSize, target_object.buffer().size());
248}
249
250// Tests the pathways for resizing a nested ResizeableObject works.
251TEST_F(ResizeableObjectTest, ResizeNested) {
252 constexpr size_t kAbsoluteOffset = 64;
253 object_.AddEntry(4, kAbsoluteOffset, 64, true);
254 TestResizeableObject *subobject = object_.GetObject(0).object.get();
255 object_.AddEntry(0, kAbsoluteOffset, 64, false);
256 EXPECT_EQ(60, *object_.GetSubObject(0).inline_entry);
257 EXPECT_EQ(0, *object_.GetSubObject(1).inline_entry);
258 EXPECT_EQ(64, object_.GetObject(0).object->buffer().data() -
259 object_.buffer().data());
260
261 constexpr size_t kInsertBytes = 5;
262 // The insert should succeed.
263 ASSERT_TRUE(
264 subobject->InsertBytes(subobject->buffer().data() + 1u, kInsertBytes));
265 // We should now observe the size of the buffers increasing, but the start
266 // _not_ moving.
267 // We should've rounded the insert up to the alignment we areusing (64 bytes).
268 EXPECT_EQ(kInitialSize + 64, object_.buffer().size());
269 EXPECT_EQ(128, subobject->buffer().size());
270 EXPECT_EQ(60, *object_.GetSubObject(0).inline_entry);
271 EXPECT_EQ(0, *object_.GetSubObject(1).inline_entry);
272 EXPECT_EQ(kAbsoluteOffset, object_.GetObject(0).absolute_offset);
273 EXPECT_EQ(kAbsoluteOffset, object_.GetObject(1).absolute_offset);
274
275 // And next we insert before the subobjects, so that we can see their offsets
276 // shift. The insert should succeed.
277 ASSERT_TRUE(object_.InsertBytes(subobject->buffer().data(), kInsertBytes));
278 EXPECT_EQ(kInitialSize + 2 * 64, object_.buffer().size());
279 EXPECT_EQ(128, subobject->buffer().size());
280 EXPECT_EQ(60 + 64, *object_.GetSubObject(0).inline_entry);
281 // The unpopulated object's inline entry should not have changed since
282 // it was zero.
283 EXPECT_EQ(0, *object_.GetSubObject(1).inline_entry);
284 EXPECT_EQ(kAbsoluteOffset + 64, object_.GetObject(0).absolute_offset);
285 EXPECT_EQ(kAbsoluteOffset + 64, object_.GetObject(1).absolute_offset);
286}
287
288} // namespace aos::fbs::testing