blob: f0eaf04986b657e9d7b37735579bd799ccf08c6b [file] [log] [blame]
James Kuszmaulf5eb4682023-09-22 17:16:59 -07001#include "aos/flatbuffers/base.h"
2
Stephan Pleines6191f1d2024-05-30 20:44:45 -07003#include <stddef.h>
4
5#include <algorithm>
6
James Kuszmaulf5eb4682023-09-22 17:16:59 -07007#include "gtest/gtest.h"
8
9namespace aos::fbs::testing {
10// Tests that PaddedSize() behaves as expected.
11TEST(BaseTest, PaddedSize) {
12 EXPECT_EQ(0, PaddedSize(0, 4));
13 EXPECT_EQ(4, PaddedSize(4, 4));
14 EXPECT_EQ(8, PaddedSize(5, 4));
15 EXPECT_EQ(8, PaddedSize(6, 4));
16 EXPECT_EQ(8, PaddedSize(7, 4));
17}
18
19inline constexpr size_t kDefaultSize = 16;
20template <typename T>
21class AllocatorTest : public ::testing::Test {
22 protected:
23 AllocatorTest() : allocator_(std::make_unique<T>()) {}
24 std::vector<uint8_t> buffer_;
25 // unique_ptr so that we can destroy the allocator at will.
26 std::unique_ptr<T> allocator_;
27};
28
29template <>
30AllocatorTest<SpanAllocator>::AllocatorTest()
31 : buffer_(kDefaultSize),
32 allocator_(std::make_unique<SpanAllocator>(
33 std::span<uint8_t>{buffer_.data(), buffer_.size()})) {}
34
35using AllocatorTypes = ::testing::Types<SpanAllocator, VectorAllocator>;
36TYPED_TEST_SUITE(AllocatorTest, AllocatorTypes);
37
38// Tests that we can create and not use a VectorAllocator.
39TYPED_TEST(AllocatorTest, UnusedAllocator) {}
40
41// Tests that a simple allocate works.
42TYPED_TEST(AllocatorTest, BasicAllocate) {
43 std::span<uint8_t> span =
44 this->allocator_->Allocate(kDefaultSize, 4, SetZero::kYes).value();
45 ASSERT_EQ(kDefaultSize, span.size());
46 // We set SetZero::kYes; it should be zero-initialized.
47 EXPECT_EQ(kDefaultSize, std::count(span.begin(), span.end(), 0));
48 this->allocator_->Deallocate(span);
49}
50
51// Tests that we can insert bytes into an arbitrary spot in the buffer.
52TYPED_TEST(AllocatorTest, InsertBytes) {
53 const size_t half_size = kDefaultSize / 2;
54 std::span<uint8_t> span =
55 this->allocator_->Allocate(half_size, 4, SetZero::kYes).value();
56 ASSERT_EQ(half_size, span.size());
57 // Set the span with some sentinel values so that we can detect that the
58 // insertion occurred correctly.
59 for (size_t ii = 0; ii < span.size(); ++ii) {
60 span[ii] = ii + 1;
61 }
62
63 // Insert new bytes such that one old byte will still be at the start.
64 span = this->allocator_
65 ->InsertBytes(span.data() + 1u, half_size, 0, SetZero::kYes)
66 .value();
67 ASSERT_EQ(kDefaultSize, span.size());
68 size_t index = 0;
69 EXPECT_EQ(1u, span[index]);
70 index++;
71 for (; index < half_size + 1u; ++index) {
72 EXPECT_EQ(0u, span[index]);
73 }
74 for (; index < span.size(); ++index) {
75 EXPECT_EQ(index - half_size + 1, span[index]);
76 }
77 this->allocator_->Deallocate(span);
78}
79
80// Tests that we can remove bytes from an arbitrary spot in the buffer.
81TYPED_TEST(AllocatorTest, RemoveBytes) {
82 const size_t half_size = kDefaultSize / 2;
83 std::span<uint8_t> span =
84 this->allocator_->Allocate(kDefaultSize, 4, SetZero::kYes).value();
85 ASSERT_EQ(kDefaultSize, span.size());
86 // Set the span with some sentinel values so that we can detect that the
87 // removal occurred correctly.
88 for (size_t ii = 0; ii < span.size(); ++ii) {
89 span[ii] = ii + 1;
90 }
91
92 // Remove bytes such that one old byte will remain at the start, and a chunk
93 // of 8 bytes will be cut out after that..
94 span = this->allocator_->RemoveBytes(span.subspan(1, half_size));
95 ASSERT_EQ(half_size, span.size());
96 size_t index = 0;
97 EXPECT_EQ(1u, span[index]);
98 index++;
99 for (; index < span.size(); ++index) {
100 EXPECT_EQ(index + half_size + 1, span[index]);
101 }
102 this->allocator_->Deallocate(span);
103}
104
105// Tests that if we fail to deallocate that we fail during destruction.
106TYPED_TEST(AllocatorTest, NoDeallocate) {
107 EXPECT_DEATH(
108 {
109 EXPECT_EQ(
110 4, this->allocator_->Allocate(4, 4, SetZero::kYes).value().size());
111 this->allocator_.reset();
112 },
113 "Must deallocate");
114}
115
116// Tests that if we never allocate that we cannot deallocate.
117TYPED_TEST(AllocatorTest, NoAllocateThenDeallocate) {
118 EXPECT_DEATH(this->allocator_->Deallocate(std::span<uint8_t>()),
119 "prior allocation");
120}
121
122// Tests that if we attempt to allocate more than the backing span allows that
123// we correctly return an empty span.
124TEST(SpanAllocatorTest, OverAllocate) {
125 std::vector<uint8_t> buffer(kDefaultSize);
126 SpanAllocator allocator({buffer.data(), buffer.size()});
127 EXPECT_FALSE(
128 allocator.Allocate(kDefaultSize + 1u, 0, SetZero::kYes).has_value());
129}
130
131// Tests that if we attempt to insert more than the backing span allows that
132// we correctly return an empty span.
133TEST(SpanAllocatorTest, OverInsert) {
134 std::vector<uint8_t> buffer(kDefaultSize);
135 SpanAllocator allocator({buffer.data(), buffer.size()});
136 std::span<uint8_t> span =
137 allocator.Allocate(kDefaultSize, 0, SetZero::kYes).value();
138 EXPECT_EQ(kDefaultSize, span.size());
139 EXPECT_FALSE(
140 allocator.InsertBytes(span.data(), 1u, 0, SetZero::kYes).has_value());
141 allocator.Deallocate(span);
142}
143
144// Because we really aren't meant to instantiate ResizeableObject's directly (if
145// nothing else it has virtual member functions), define a testing
146// implementation.
147
148class TestResizeableObject : public ResizeableObject {
149 public:
150 TestResizeableObject(std::span<uint8_t> buffer, ResizeableObject *parent)
151 : ResizeableObject(buffer, parent) {}
152 TestResizeableObject(std::span<uint8_t> buffer, Allocator *allocator)
153 : ResizeableObject(buffer, allocator) {}
154 virtual ~TestResizeableObject() {}
155 using ResizeableObject::SubObject;
156 bool InsertBytes(void *insertion_point, size_t bytes) {
157 return ResizeableObject::InsertBytes(insertion_point, bytes, SetZero::kYes);
158 }
159 TestResizeableObject(TestResizeableObject &&) = default;
160
161 struct TestObject {
162 uoffset_t inline_entry_offset;
163 std::unique_ptr<TestResizeableObject> object;
164 size_t absolute_offset;
165 };
166
167 // Adds a new object of the requested size.
168 void AddEntry(uoffset_t inline_entry_offset, size_t absolute_offset,
169 size_t buffer_size, bool set_object) {
170 *reinterpret_cast<uoffset_t *>(buffer_.data() + inline_entry_offset) =
171 set_object ? (absolute_offset - inline_entry_offset) : 0;
172 objects_.emplace_back(
173 TestObject{inline_entry_offset, nullptr, absolute_offset});
174 if (set_object) {
175 objects_.back().object = std::make_unique<TestResizeableObject>(
176 buffer().subspan(absolute_offset, buffer_size), this);
177 }
178 }
179
180 size_t NumberOfSubObjects() const override { return objects_.size(); }
181 SubObject GetSubObject(size_t index) override {
182 TestObject &subobject = objects_.at(index);
183 return {reinterpret_cast<uoffset_t *>(buffer_.data() +
184 subobject.inline_entry_offset),
185 subobject.object.get(), &subobject.absolute_offset};
186 }
187
188 TestObject &GetObject(size_t index) { return objects_.at(index); }
189
190 size_t Alignment() const override { return 64; }
191 size_t AbsoluteOffsetOffset() const override { return 0; }
192
193 private:
194 std::vector<TestObject> objects_;
195};
196
197class ResizeableObjectTest : public ::testing::Test {
198 protected:
199 static constexpr size_t kInitialSize = 128;
200 ResizeableObjectTest()
201 : object_(allocator_.Allocate(kInitialSize, 4, SetZero::kYes).value(),
202 &allocator_) {}
203 ~ResizeableObjectTest() { allocator_.Deallocate(object_.buffer()); }
204 VectorAllocator allocator_;
205 TestResizeableObject object_;
206};
207
208// Tests that if we created an object and then do nothing with it that nothing
209// untoward happens.
210TEST_F(ResizeableObjectTest, DoNothing) {}
211
212// Test that when we move the ResizeableObject we clear the reference to the old
213// buffer.
214TEST_F(ResizeableObjectTest, Move) {
215 TestResizeableObject target_object = std::move(object_);
216 ASSERT_EQ(0u, object_.buffer().size());
217 ASSERT_EQ(kInitialSize, target_object.buffer().size());
218}
219
220// Tests the pathways for resizing a nested ResizeableObject works.
221TEST_F(ResizeableObjectTest, ResizeNested) {
222 constexpr size_t kAbsoluteOffset = 64;
223 object_.AddEntry(4, kAbsoluteOffset, 64, true);
224 TestResizeableObject *subobject = object_.GetObject(0).object.get();
225 object_.AddEntry(0, kAbsoluteOffset, 64, false);
226 EXPECT_EQ(60, *object_.GetSubObject(0).inline_entry);
227 EXPECT_EQ(0, *object_.GetSubObject(1).inline_entry);
228 EXPECT_EQ(64, object_.GetObject(0).object->buffer().data() -
229 object_.buffer().data());
230
231 constexpr size_t kInsertBytes = 5;
232 // The insert should succeed.
233 ASSERT_TRUE(
234 subobject->InsertBytes(subobject->buffer().data() + 1u, kInsertBytes));
235 // We should now observe the size of the buffers increasing, but the start
236 // _not_ moving.
237 // We should've rounded the insert up to the alignment we areusing (64 bytes).
238 EXPECT_EQ(kInitialSize + 64, object_.buffer().size());
239 EXPECT_EQ(128, subobject->buffer().size());
240 EXPECT_EQ(60, *object_.GetSubObject(0).inline_entry);
241 EXPECT_EQ(0, *object_.GetSubObject(1).inline_entry);
242 EXPECT_EQ(kAbsoluteOffset, object_.GetObject(0).absolute_offset);
243 EXPECT_EQ(kAbsoluteOffset, object_.GetObject(1).absolute_offset);
244
245 // And next we insert before the subobjects, so that we can see their offsets
246 // shift. The insert should succeed.
247 ASSERT_TRUE(object_.InsertBytes(subobject->buffer().data(), kInsertBytes));
248 EXPECT_EQ(kInitialSize + 2 * 64, object_.buffer().size());
249 EXPECT_EQ(128, subobject->buffer().size());
250 EXPECT_EQ(60 + 64, *object_.GetSubObject(0).inline_entry);
251 // The unpopulated object's inline entry should not have changed since
252 // it was zero.
253 EXPECT_EQ(0, *object_.GetSubObject(1).inline_entry);
254 EXPECT_EQ(kAbsoluteOffset + 64, object_.GetObject(0).absolute_offset);
255 EXPECT_EQ(kAbsoluteOffset + 64, object_.GetObject(1).absolute_offset);
256}
257
258} // namespace aos::fbs::testing