blob: 461840c003a301ef3934538ce9988d1ec1df883d [file] [log] [blame]
Austin Schuhe89fa2d2019-08-14 20:24:23 -07001/*
2 * Copyright 2014 Google Inc. All rights reserved.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16#include <cmath>
17#include "flatbuffers/flatbuffers.h"
18#include "flatbuffers/idl.h"
19#include "flatbuffers/minireflect.h"
20#include "flatbuffers/registry.h"
21#include "flatbuffers/util.h"
22
23// clang-format off
24#ifdef FLATBUFFERS_CPP98_STL
25 #include "flatbuffers/stl_emulation.h"
26 namespace std {
27 using flatbuffers::unique_ptr;
28 }
29#endif
30// clang-format on
31
32#include "monster_test_generated.h"
33#include "namespace_test/namespace_test1_generated.h"
34#include "namespace_test/namespace_test2_generated.h"
35#include "union_vector/union_vector_generated.h"
36#include "monster_extra_generated.h"
37#if !defined(_MSC_VER) || _MSC_VER >= 1700
38#include "arrays_test_generated.h"
39#endif
40
41#include "native_type_test_generated.h"
42#include "test_assert.h"
43
44#include "flatbuffers/flexbuffers.h"
45
46
47// clang-format off
48// Check that char* and uint8_t* are interoperable types.
49// The reinterpret_cast<> between the pointers are used to simplify data loading.
50static_assert(flatbuffers::is_same<uint8_t, char>::value ||
51 flatbuffers::is_same<uint8_t, unsigned char>::value,
52 "unexpected uint8_t type");
53
54#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
55 // Ensure IEEE-754 support if tests of floats with NaN/Inf will run.
56 static_assert(std::numeric_limits<float>::is_iec559 &&
57 std::numeric_limits<double>::is_iec559,
58 "IEC-559 (IEEE-754) standard required");
59#endif
60// clang-format on
61
62// Shortcuts for the infinity.
63static const auto infinityf = std::numeric_limits<float>::infinity();
64static const auto infinityd = std::numeric_limits<double>::infinity();
65
66using namespace MyGame::Example;
67
68void FlatBufferBuilderTest();
69
70// Include simple random number generator to ensure results will be the
71// same cross platform.
72// http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator
73uint32_t lcg_seed = 48271;
74uint32_t lcg_rand() {
75 return lcg_seed = (static_cast<uint64_t>(lcg_seed) * 279470273UL) % 4294967291UL;
76}
77void lcg_reset() { lcg_seed = 48271; }
78
79std::string test_data_path =
80#ifdef BAZEL_TEST_DATA_PATH
81 "../com_github_google_flatbuffers/tests/";
82#else
83 "tests/";
84#endif
85
86// example of how to build up a serialized buffer algorithmically:
87flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) {
88 flatbuffers::FlatBufferBuilder builder;
89
90 auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20));
91
92 auto name = builder.CreateString("MyMonster");
93
94 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
95 auto inventory = builder.CreateVector(inv_data, 10);
96
97 // Alternatively, create the vector first, and fill in data later:
98 // unsigned char *inv_buf = nullptr;
99 // auto inventory = builder.CreateUninitializedVector<unsigned char>(
100 // 10, &inv_buf);
101 // memcpy(inv_buf, inv_data, 10);
102
103 Test tests[] = { Test(10, 20), Test(30, 40) };
104 auto testv = builder.CreateVectorOfStructs(tests, 2);
105
106 // clang-format off
107 #ifndef FLATBUFFERS_CPP98_STL
108 // Create a vector of structures from a lambda.
109 auto testv2 = builder.CreateVectorOfStructs<Test>(
110 2, [&](size_t i, Test* s) -> void {
111 *s = tests[i];
112 });
113 #else
114 // Create a vector of structures using a plain old C++ function.
115 auto testv2 = builder.CreateVectorOfStructs<Test>(
116 2, [](size_t i, Test* s, void *state) -> void {
117 *s = (reinterpret_cast<Test*>(state))[i];
118 }, tests);
119 #endif // FLATBUFFERS_CPP98_STL
120 // clang-format on
121
122 // create monster with very few fields set:
123 // (same functionality as CreateMonster below, but sets fields manually)
124 flatbuffers::Offset<Monster> mlocs[3];
125 auto fred = builder.CreateString("Fred");
126 auto barney = builder.CreateString("Barney");
127 auto wilma = builder.CreateString("Wilma");
128 MonsterBuilder mb1(builder);
129 mb1.add_name(fred);
130 mlocs[0] = mb1.Finish();
131 MonsterBuilder mb2(builder);
132 mb2.add_name(barney);
133 mb2.add_hp(1000);
134 mlocs[1] = mb2.Finish();
135 MonsterBuilder mb3(builder);
136 mb3.add_name(wilma);
137 mlocs[2] = mb3.Finish();
138
139 // Create an array of strings. Also test string pooling, and lambdas.
140 auto vecofstrings =
141 builder.CreateVector<flatbuffers::Offset<flatbuffers::String>>(
142 4,
143 [](size_t i, flatbuffers::FlatBufferBuilder *b)
144 -> flatbuffers::Offset<flatbuffers::String> {
145 static const char *names[] = { "bob", "fred", "bob", "fred" };
146 return b->CreateSharedString(names[i]);
147 },
148 &builder);
149
150 // Creating vectors of strings in one convenient call.
151 std::vector<std::string> names2;
152 names2.push_back("jane");
153 names2.push_back("mary");
154 auto vecofstrings2 = builder.CreateVectorOfStrings(names2);
155
156 // Create an array of sorted tables, can be used with binary search when read:
157 auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3);
158
159 // Create an array of sorted structs,
160 // can be used with binary search when read:
161 std::vector<Ability> abilities;
162 abilities.push_back(Ability(4, 40));
163 abilities.push_back(Ability(3, 30));
164 abilities.push_back(Ability(2, 20));
165 abilities.push_back(Ability(1, 10));
166 auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities);
167
168 // Create a nested FlatBuffer.
169 // Nested FlatBuffers are stored in a ubyte vector, which can be convenient
170 // since they can be memcpy'd around much easier than other FlatBuffer
171 // values. They have little overhead compared to storing the table directly.
172 // As a test, create a mostly empty Monster buffer:
173 flatbuffers::FlatBufferBuilder nested_builder;
174 auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0,
175 nested_builder.CreateString("NestedMonster"));
176 FinishMonsterBuffer(nested_builder, nmloc);
177 // Now we can store the buffer in the parent. Note that by default, vectors
178 // are only aligned to their elements or size field, so in this case if the
179 // buffer contains 64-bit elements, they may not be correctly aligned. We fix
180 // that with:
181 builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t),
182 nested_builder.GetBufferMinAlignment());
183 // If for whatever reason you don't have the nested_builder available, you
184 // can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or
185 // the largest force_align value in your schema if you're using it.
186 auto nested_flatbuffer_vector = builder.CreateVector(
187 nested_builder.GetBufferPointer(), nested_builder.GetSize());
188
189 // Test a nested FlexBuffer:
190 flexbuffers::Builder flexbuild;
191 flexbuild.Int(1234);
192 flexbuild.Finish();
193 auto flex = builder.CreateVector(flexbuild.GetBuffer());
194
195 // Test vector of enums.
196 Color colors[] = { Color_Blue, Color_Green };
197 // We use this special creation function because we have an array of
198 // pre-C++11 (enum class) enums whose size likely is int, yet its declared
199 // type in the schema is byte.
200 auto vecofcolors = builder.CreateVectorScalarCast<uint8_t, Color>(colors, 2);
201
202 // shortcut for creating monster with all fields set:
203 auto mloc = CreateMonster(builder, &vec, 150, 80, name, inventory, Color_Blue,
204 Any_Monster, mlocs[1].Union(), // Store a union.
205 testv, vecofstrings, vecoftables, 0,
206 nested_flatbuffer_vector, 0, false, 0, 0, 0, 0, 0,
207 0, 0, 0, 0, 3.14159f, 3.0f, 0.0f, vecofstrings2,
208 vecofstructs, flex, testv2, 0, 0, 0, 0, 0, 0, 0, 0,
209 0, 0, 0, AnyUniqueAliases_NONE, 0,
210 AnyAmbiguousAliases_NONE, 0, vecofcolors);
211
212 FinishMonsterBuffer(builder, mloc);
213
214 // clang-format off
215 #ifdef FLATBUFFERS_TEST_VERBOSE
216 // print byte data for debugging:
217 auto p = builder.GetBufferPointer();
218 for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++)
219 printf("%d ", p[i]);
220 #endif
221 // clang-format on
222
223 // return the buffer for the caller to use.
224 auto bufferpointer =
225 reinterpret_cast<const char *>(builder.GetBufferPointer());
226 buffer.assign(bufferpointer, bufferpointer + builder.GetSize());
227
228 return builder.Release();
229}
230
231// example of accessing a buffer loaded in memory:
232void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length,
233 bool pooled = true) {
234 // First, verify the buffers integrity (optional)
235 flatbuffers::Verifier verifier(flatbuf, length);
236 TEST_EQ(VerifyMonsterBuffer(verifier), true);
237
238 // clang-format off
239 #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
240 std::vector<uint8_t> test_buff;
241 test_buff.resize(length * 2);
242 std::memcpy(&test_buff[0], flatbuf, length);
243 std::memcpy(&test_buff[length], flatbuf, length);
244
245 flatbuffers::Verifier verifier1(&test_buff[0], length);
246 TEST_EQ(VerifyMonsterBuffer(verifier1), true);
247 TEST_EQ(verifier1.GetComputedSize(), length);
248
249 flatbuffers::Verifier verifier2(&test_buff[length], length);
250 TEST_EQ(VerifyMonsterBuffer(verifier2), true);
251 TEST_EQ(verifier2.GetComputedSize(), length);
252 #endif
253 // clang-format on
254
255 TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0);
256 TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true);
257 TEST_EQ(strcmp(MonsterExtension(), "mon"), 0);
258
259 // Access the buffer from the root.
260 auto monster = GetMonster(flatbuf);
261
262 TEST_EQ(monster->hp(), 80);
263 TEST_EQ(monster->mana(), 150); // default
264 TEST_EQ_STR(monster->name()->c_str(), "MyMonster");
265 // Can't access the following field, it is deprecated in the schema,
266 // which means accessors are not generated:
267 // monster.friendly()
268
269 auto pos = monster->pos();
270 TEST_NOTNULL(pos);
271 TEST_EQ(pos->z(), 3);
272 TEST_EQ(pos->test3().a(), 10);
273 TEST_EQ(pos->test3().b(), 20);
274
275 auto inventory = monster->inventory();
276 TEST_EQ(VectorLength(inventory), 10UL); // Works even if inventory is null.
277 TEST_NOTNULL(inventory);
278 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
279 // Check compatibilty of iterators with STL.
280 std::vector<unsigned char> inv_vec(inventory->begin(), inventory->end());
281 int n = 0;
282 for (auto it = inventory->begin(); it != inventory->end(); ++it, ++n) {
283 auto indx = it - inventory->begin();
284 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
285 TEST_EQ(*it, inv_data[indx]);
286 }
287 TEST_EQ(n, inv_vec.size());
288
289 n = 0;
290 for (auto it = inventory->cbegin(); it != inventory->cend(); ++it, ++n) {
291 auto indx = it - inventory->cbegin();
292 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
293 TEST_EQ(*it, inv_data[indx]);
294 }
295 TEST_EQ(n, inv_vec.size());
296
297 n = 0;
298 for (auto it = inventory->rbegin(); it != inventory->rend(); ++it, ++n) {
299 auto indx = inventory->rend() - it - 1;
300 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
301 TEST_EQ(*it, inv_data[indx]);
302 }
303 TEST_EQ(n, inv_vec.size());
304
305 n = 0;
306 for (auto it = inventory->crbegin(); it != inventory->crend(); ++it, ++n) {
307 auto indx = inventory->crend() - it - 1;
308 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
309 TEST_EQ(*it, inv_data[indx]);
310 }
311 TEST_EQ(n, inv_vec.size());
312
313 TEST_EQ(monster->color(), Color_Blue);
314
315 // Example of accessing a union:
316 TEST_EQ(monster->test_type(), Any_Monster); // First make sure which it is.
317 auto monster2 = reinterpret_cast<const Monster *>(monster->test());
318 TEST_NOTNULL(monster2);
319 TEST_EQ_STR(monster2->name()->c_str(), "Fred");
320
321 // Example of accessing a vector of strings:
322 auto vecofstrings = monster->testarrayofstring();
323 TEST_EQ(vecofstrings->size(), 4U);
324 TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob");
325 TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred");
326 if (pooled) {
327 // These should have pointer equality because of string pooling.
328 TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str());
329 TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str());
330 }
331
332 auto vecofstrings2 = monster->testarrayofstring2();
333 if (vecofstrings2) {
334 TEST_EQ(vecofstrings2->size(), 2U);
335 TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane");
336 TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary");
337 }
338
339 // Example of accessing a vector of tables:
340 auto vecoftables = monster->testarrayoftables();
341 TEST_EQ(vecoftables->size(), 3U);
342 for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it)
343 TEST_EQ(strlen(it->name()->c_str()) >= 4, true);
344 TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney");
345 TEST_EQ(vecoftables->Get(0)->hp(), 1000);
346 TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred");
347 TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma");
348 TEST_NOTNULL(vecoftables->LookupByKey("Barney"));
349 TEST_NOTNULL(vecoftables->LookupByKey("Fred"));
350 TEST_NOTNULL(vecoftables->LookupByKey("Wilma"));
351
352 // Test accessing a vector of sorted structs
353 auto vecofstructs = monster->testarrayofsortedstruct();
354 if (vecofstructs) { // not filled in monster_test.bfbs
355 for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size() - 1; i++) {
356 auto left = vecofstructs->Get(i);
357 auto right = vecofstructs->Get(i + 1);
358 TEST_EQ(true, (left->KeyCompareLessThan(right)));
359 }
360 TEST_NOTNULL(vecofstructs->LookupByKey(3));
361 TEST_EQ(static_cast<const Ability *>(nullptr),
362 vecofstructs->LookupByKey(5));
363 }
364
365 // Test nested FlatBuffers if available:
366 auto nested_buffer = monster->testnestedflatbuffer();
367 if (nested_buffer) {
368 // nested_buffer is a vector of bytes you can memcpy. However, if you
369 // actually want to access the nested data, this is a convenient
370 // accessor that directly gives you the root table:
371 auto nested_monster = monster->testnestedflatbuffer_nested_root();
372 TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster");
373 }
374
375 // Test flexbuffer if available:
376 auto flex = monster->flex();
377 // flex is a vector of bytes you can memcpy etc.
378 TEST_EQ(flex->size(), 4); // Encoded FlexBuffer bytes.
379 // However, if you actually want to access the nested data, this is a
380 // convenient accessor that directly gives you the root value:
381 TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234);
382
383 // Test vector of enums:
384 auto colors = monster->vector_of_enums();
385 if (colors) {
386 TEST_EQ(colors->size(), 2);
387 TEST_EQ(colors->Get(0), Color_Blue);
388 TEST_EQ(colors->Get(1), Color_Green);
389 }
390
391 // Since Flatbuffers uses explicit mechanisms to override the default
392 // compiler alignment, double check that the compiler indeed obeys them:
393 // (Test consists of a short and byte):
394 TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL);
395 TEST_EQ(sizeof(Test), 4UL);
396
397 const flatbuffers::Vector<const Test *> *tests_array[] = {
398 monster->test4(),
399 monster->test5(),
400 };
401 for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) {
402 auto tests = tests_array[i];
403 TEST_NOTNULL(tests);
404 auto test_0 = tests->Get(0);
405 auto test_1 = tests->Get(1);
406 TEST_EQ(test_0->a(), 10);
407 TEST_EQ(test_0->b(), 20);
408 TEST_EQ(test_1->a(), 30);
409 TEST_EQ(test_1->b(), 40);
410 for (auto it = tests->begin(); it != tests->end(); ++it) {
411 TEST_EQ(it->a() == 10 || it->a() == 30, true); // Just testing iterators.
412 }
413 }
414
415 // Checking for presence of fields:
416 TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true);
417 TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false);
418
419 // Obtaining a buffer from a root:
420 TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf);
421}
422
423// Change a FlatBuffer in-place, after it has been constructed.
424void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) {
425 // Get non-const pointer to root.
426 auto monster = GetMutableMonster(flatbuf);
427
428 // Each of these tests mutates, then tests, then set back to the original,
429 // so we can test that the buffer in the end still passes our original test.
430 auto hp_ok = monster->mutate_hp(10);
431 TEST_EQ(hp_ok, true); // Field was present.
432 TEST_EQ(monster->hp(), 10);
433 // Mutate to default value
434 auto hp_ok_default = monster->mutate_hp(100);
435 TEST_EQ(hp_ok_default, true); // Field was present.
436 TEST_EQ(monster->hp(), 100);
437 // Test that mutate to default above keeps field valid for further mutations
438 auto hp_ok_2 = monster->mutate_hp(20);
439 TEST_EQ(hp_ok_2, true);
440 TEST_EQ(monster->hp(), 20);
441 monster->mutate_hp(80);
442
443 // Monster originally at 150 mana (default value)
444 auto mana_default_ok = monster->mutate_mana(150); // Mutate to default value.
445 TEST_EQ(mana_default_ok,
446 true); // Mutation should succeed, because default value.
447 TEST_EQ(monster->mana(), 150);
448 auto mana_ok = monster->mutate_mana(10);
449 TEST_EQ(mana_ok, false); // Field was NOT present, because default value.
450 TEST_EQ(monster->mana(), 150);
451
452 // Mutate structs.
453 auto pos = monster->mutable_pos();
454 auto test3 = pos->mutable_test3(); // Struct inside a struct.
455 test3.mutate_a(50); // Struct fields never fail.
456 TEST_EQ(test3.a(), 50);
457 test3.mutate_a(10);
458
459 // Mutate vectors.
460 auto inventory = monster->mutable_inventory();
461 inventory->Mutate(9, 100);
462 TEST_EQ(inventory->Get(9), 100);
463 inventory->Mutate(9, 9);
464
465 auto tables = monster->mutable_testarrayoftables();
466 auto first = tables->GetMutableObject(0);
467 TEST_EQ(first->hp(), 1000);
468 first->mutate_hp(0);
469 TEST_EQ(first->hp(), 0);
470 first->mutate_hp(1000);
471
472 // Run the verifier and the regular test to make sure we didn't trample on
473 // anything.
474 AccessFlatBufferTest(flatbuf, length);
475}
476
477// Unpack a FlatBuffer into objects.
478void ObjectFlatBuffersTest(uint8_t *flatbuf) {
479 // Optional: we can specify resolver and rehasher functions to turn hashed
480 // strings into object pointers and back, to implement remote references
481 // and such.
482 auto resolver = flatbuffers::resolver_function_t(
483 [](void **pointer_adr, flatbuffers::hash_value_t hash) {
484 (void)pointer_adr;
485 (void)hash;
486 // Don't actually do anything, leave variable null.
487 });
488 auto rehasher = flatbuffers::rehasher_function_t(
489 [](void *pointer) -> flatbuffers::hash_value_t {
490 (void)pointer;
491 return 0;
492 });
493
494 // Turn a buffer into C++ objects.
495 auto monster1 = UnPackMonster(flatbuf, &resolver);
496
497 // Re-serialize the data.
498 flatbuffers::FlatBufferBuilder fbb1;
499 fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher),
500 MonsterIdentifier());
501
502 // Unpack again, and re-serialize again.
503 auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver);
504 flatbuffers::FlatBufferBuilder fbb2;
505 fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher),
506 MonsterIdentifier());
507
508 // Now we've gone full round-trip, the two buffers should match.
509 auto len1 = fbb1.GetSize();
510 auto len2 = fbb2.GetSize();
511 TEST_EQ(len1, len2);
512 TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(), len1), 0);
513
514 // Test it with the original buffer test to make sure all data survived.
515 AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false);
516
517 // Test accessing fields, similar to AccessFlatBufferTest above.
518 TEST_EQ(monster2->hp, 80);
519 TEST_EQ(monster2->mana, 150); // default
520 TEST_EQ_STR(monster2->name.c_str(), "MyMonster");
521
522 auto &pos = monster2->pos;
523 TEST_NOTNULL(pos);
524 TEST_EQ(pos->z(), 3);
525 TEST_EQ(pos->test3().a(), 10);
526 TEST_EQ(pos->test3().b(), 20);
527
528 auto &inventory = monster2->inventory;
529 TEST_EQ(inventory.size(), 10UL);
530 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
531 for (auto it = inventory.begin(); it != inventory.end(); ++it)
532 TEST_EQ(*it, inv_data[it - inventory.begin()]);
533
534 TEST_EQ(monster2->color, Color_Blue);
535
536 auto monster3 = monster2->test.AsMonster();
537 TEST_NOTNULL(monster3);
538 TEST_EQ_STR(monster3->name.c_str(), "Fred");
539
540 auto &vecofstrings = monster2->testarrayofstring;
541 TEST_EQ(vecofstrings.size(), 4U);
542 TEST_EQ_STR(vecofstrings[0].c_str(), "bob");
543 TEST_EQ_STR(vecofstrings[1].c_str(), "fred");
544
545 auto &vecofstrings2 = monster2->testarrayofstring2;
546 TEST_EQ(vecofstrings2.size(), 2U);
547 TEST_EQ_STR(vecofstrings2[0].c_str(), "jane");
548 TEST_EQ_STR(vecofstrings2[1].c_str(), "mary");
549
550 auto &vecoftables = monster2->testarrayoftables;
551 TEST_EQ(vecoftables.size(), 3U);
552 TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney");
553 TEST_EQ(vecoftables[0]->hp, 1000);
554 TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred");
555 TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma");
556
557 auto &tests = monster2->test4;
558 TEST_EQ(tests[0].a(), 10);
559 TEST_EQ(tests[0].b(), 20);
560 TEST_EQ(tests[1].a(), 30);
561 TEST_EQ(tests[1].b(), 40);
562}
563
564// Prefix a FlatBuffer with a size field.
565void SizePrefixedTest() {
566 // Create size prefixed buffer.
567 flatbuffers::FlatBufferBuilder fbb;
568 FinishSizePrefixedMonsterBuffer(
569 fbb,
570 CreateMonster(fbb, 0, 200, 300, fbb.CreateString("bob")));
571
572 // Verify it.
573 flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
574 TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier), true);
575
576 // Access it.
577 auto m = GetSizePrefixedMonster(fbb.GetBufferPointer());
578 TEST_EQ(m->mana(), 200);
579 TEST_EQ(m->hp(), 300);
580 TEST_EQ_STR(m->name()->c_str(), "bob");
581}
582
583void TriviallyCopyableTest() {
584 // clang-format off
585 #if __GNUG__ && __GNUC__ < 5
586 TEST_EQ(__has_trivial_copy(Vec3), true);
587 #else
588 #if __cplusplus >= 201103L
589 TEST_EQ(std::is_trivially_copyable<Vec3>::value, true);
590 #endif
591 #endif
592 // clang-format on
593}
594
595// Check stringify of an default enum value to json
596void JsonDefaultTest() {
597 // load FlatBuffer schema (.fbs) from disk
598 std::string schemafile;
599 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
600 false, &schemafile), true);
601 // parse schema first, so we can use it to parse the data after
602 flatbuffers::Parser parser;
603 auto include_test_path =
604 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
605 const char *include_directories[] = { test_data_path.c_str(),
606 include_test_path.c_str(), nullptr };
607
608 TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
609 // create incomplete monster and store to json
610 parser.opts.output_default_scalars_in_json = true;
611 parser.opts.output_enum_identifiers = true;
612 flatbuffers::FlatBufferBuilder builder;
613 auto name = builder.CreateString("default_enum");
614 MonsterBuilder color_monster(builder);
615 color_monster.add_name(name);
616 FinishMonsterBuffer(builder, color_monster.Finish());
617 std::string jsongen;
618 auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen);
619 TEST_EQ(result, true);
620 // default value of the "color" field is Blue
621 TEST_EQ(std::string::npos != jsongen.find("color: \"Blue\""), true);
622 // default value of the "testf" field is 3.14159
623 TEST_EQ(std::string::npos != jsongen.find("testf: 3.14159"), true);
624}
625
626void JsonEnumsTest() {
627 // load FlatBuffer schema (.fbs) from disk
628 std::string schemafile;
629 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
630 false, &schemafile),
631 true);
632 // parse schema first, so we can use it to parse the data after
633 flatbuffers::Parser parser;
634 auto include_test_path =
635 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
636 const char *include_directories[] = { test_data_path.c_str(),
637 include_test_path.c_str(), nullptr };
638 parser.opts.output_enum_identifiers = true;
639 TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
640 flatbuffers::FlatBufferBuilder builder;
641 auto name = builder.CreateString("bitflag_enum");
642 MonsterBuilder color_monster(builder);
643 color_monster.add_name(name);
644 color_monster.add_color(Color(Color_Blue | Color_Red));
645 FinishMonsterBuffer(builder, color_monster.Finish());
646 std::string jsongen;
647 auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen);
648 TEST_EQ(result, true);
649 TEST_EQ(std::string::npos != jsongen.find("color: \"Red Blue\""), true);
650}
651
652#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
653// The IEEE-754 quiet_NaN is not simple binary constant.
654// All binary NaN bit strings have all the bits of the biased exponent field E
655// set to 1. A quiet NaN bit string should be encoded with the first bit d[1]
656// of the trailing significand field T being 1 (d[0] is implicit bit).
657// It is assumed that endianness of floating-point is same as integer.
658template<typename T, typename U, U qnan_base> bool is_quiet_nan_impl(T v) {
659 static_assert(sizeof(T) == sizeof(U), "unexpected");
660 U b = 0;
661 std::memcpy(&b, &v, sizeof(T));
662 return ((b & qnan_base) == qnan_base);
663}
664static bool is_quiet_nan(float v) {
665 return is_quiet_nan_impl<float, uint32_t, 0x7FC00000u>(v);
666}
667static bool is_quiet_nan(double v) {
668 return is_quiet_nan_impl<double, uint64_t, 0x7FF8000000000000ul>(v);
669}
670
671void TestMonsterExtraFloats() {
672 TEST_EQ(is_quiet_nan(1.0), false);
673 TEST_EQ(is_quiet_nan(infinityd), false);
674 TEST_EQ(is_quiet_nan(-infinityf), false);
675 TEST_EQ(is_quiet_nan(std::numeric_limits<float>::quiet_NaN()), true);
676 TEST_EQ(is_quiet_nan(std::numeric_limits<double>::quiet_NaN()), true);
677
678 using namespace flatbuffers;
679 using namespace MyGame;
680 // Load FlatBuffer schema (.fbs) from disk.
681 std::string schemafile;
682 TEST_EQ(LoadFile((test_data_path + "monster_extra.fbs").c_str(), false,
683 &schemafile),
684 true);
685 // Parse schema first, so we can use it to parse the data after.
686 Parser parser;
687 auto include_test_path = ConCatPathFileName(test_data_path, "include_test");
688 const char *include_directories[] = { test_data_path.c_str(),
689 include_test_path.c_str(), nullptr };
690 TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
691 // Create empty extra and store to json.
692 parser.opts.output_default_scalars_in_json = true;
693 parser.opts.output_enum_identifiers = true;
694 FlatBufferBuilder builder;
695 const auto def_root = MonsterExtraBuilder(builder).Finish();
696 FinishMonsterExtraBuffer(builder, def_root);
697 const auto def_obj = builder.GetBufferPointer();
698 const auto def_extra = GetMonsterExtra(def_obj);
699 TEST_NOTNULL(def_extra);
700 TEST_EQ(is_quiet_nan(def_extra->f0()), true);
701 TEST_EQ(is_quiet_nan(def_extra->f1()), true);
702 TEST_EQ(def_extra->f2(), +infinityf);
703 TEST_EQ(def_extra->f3(), -infinityf);
704 TEST_EQ(is_quiet_nan(def_extra->d0()), true);
705 TEST_EQ(is_quiet_nan(def_extra->d1()), true);
706 TEST_EQ(def_extra->d2(), +infinityd);
707 TEST_EQ(def_extra->d3(), -infinityd);
708 std::string jsongen;
709 auto result = GenerateText(parser, def_obj, &jsongen);
710 TEST_EQ(result, true);
711 // Check expected default values.
712 TEST_EQ(std::string::npos != jsongen.find("f0: nan"), true);
713 TEST_EQ(std::string::npos != jsongen.find("f1: nan"), true);
714 TEST_EQ(std::string::npos != jsongen.find("f2: inf"), true);
715 TEST_EQ(std::string::npos != jsongen.find("f3: -inf"), true);
716 TEST_EQ(std::string::npos != jsongen.find("d0: nan"), true);
717 TEST_EQ(std::string::npos != jsongen.find("d1: nan"), true);
718 TEST_EQ(std::string::npos != jsongen.find("d2: inf"), true);
719 TEST_EQ(std::string::npos != jsongen.find("d3: -inf"), true);
720 // Parse 'mosterdata_extra.json'.
721 const auto extra_base = test_data_path + "monsterdata_extra";
722 jsongen = "";
723 TEST_EQ(LoadFile((extra_base + ".json").c_str(), false, &jsongen), true);
724 TEST_EQ(parser.Parse(jsongen.c_str()), true);
725 const auto test_file = parser.builder_.GetBufferPointer();
726 const auto test_size = parser.builder_.GetSize();
727 Verifier verifier(test_file, test_size);
728 TEST_ASSERT(VerifyMonsterExtraBuffer(verifier));
729 const auto extra = GetMonsterExtra(test_file);
730 TEST_NOTNULL(extra);
731 TEST_EQ(is_quiet_nan(extra->f0()), true);
732 TEST_EQ(is_quiet_nan(extra->f1()), true);
733 TEST_EQ(extra->f2(), +infinityf);
734 TEST_EQ(extra->f3(), -infinityf);
735 TEST_EQ(is_quiet_nan(extra->d0()), true);
736 TEST_EQ(extra->d1(), +infinityd);
737 TEST_EQ(extra->d2(), -infinityd);
738 TEST_EQ(is_quiet_nan(extra->d3()), true);
739 TEST_NOTNULL(extra->fvec());
740 TEST_EQ(extra->fvec()->size(), 4);
741 TEST_EQ(extra->fvec()->Get(0), 1.0f);
742 TEST_EQ(extra->fvec()->Get(1), -infinityf);
743 TEST_EQ(extra->fvec()->Get(2), +infinityf);
744 TEST_EQ(is_quiet_nan(extra->fvec()->Get(3)), true);
745 TEST_NOTNULL(extra->dvec());
746 TEST_EQ(extra->dvec()->size(), 4);
747 TEST_EQ(extra->dvec()->Get(0), 2.0);
748 TEST_EQ(extra->dvec()->Get(1), +infinityd);
749 TEST_EQ(extra->dvec()->Get(2), -infinityd);
750 TEST_EQ(is_quiet_nan(extra->dvec()->Get(3)), true);
751}
752#else
753void TestMonsterExtraFloats() {}
754#endif
755
756// example of parsing text straight into a buffer, and generating
757// text back from it:
758void ParseAndGenerateTextTest(bool binary) {
759 // load FlatBuffer schema (.fbs) and JSON from disk
760 std::string schemafile;
761 std::string jsonfile;
762 TEST_EQ(flatbuffers::LoadFile(
763 (test_data_path + "monster_test." + (binary ? "bfbs" : "fbs"))
764 .c_str(),
765 binary, &schemafile),
766 true);
767 TEST_EQ(flatbuffers::LoadFile(
768 (test_data_path + "monsterdata_test.golden").c_str(), false,
769 &jsonfile),
770 true);
771
772 auto include_test_path =
773 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
774 const char *include_directories[] = { test_data_path.c_str(),
775 include_test_path.c_str(), nullptr };
776
777 // parse schema first, so we can use it to parse the data after
778 flatbuffers::Parser parser;
779 if (binary) {
780 flatbuffers::Verifier verifier(
781 reinterpret_cast<const uint8_t *>(schemafile.c_str()),
782 schemafile.size());
783 TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
784 //auto schema = reflection::GetSchema(schemafile.c_str());
785 TEST_EQ(parser.Deserialize((const uint8_t *)schemafile.c_str(), schemafile.size()), true);
786 } else {
787 TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
788 }
789 TEST_EQ(parser.Parse(jsonfile.c_str(), include_directories), true);
790
791 // here, parser.builder_ contains a binary buffer that is the parsed data.
792
793 // First, verify it, just in case:
794 flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(),
795 parser.builder_.GetSize());
796 TEST_EQ(VerifyMonsterBuffer(verifier), true);
797
798 AccessFlatBufferTest(parser.builder_.GetBufferPointer(),
799 parser.builder_.GetSize(), false);
800
801 // to ensure it is correct, we now generate text back from the binary,
802 // and compare the two:
803 std::string jsongen;
804 auto result =
805 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
806 TEST_EQ(result, true);
807 TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str());
808
809 // We can also do the above using the convenient Registry that knows about
810 // a set of file_identifiers mapped to schemas.
811 flatbuffers::Registry registry;
812 // Make sure schemas can find their includes.
813 registry.AddIncludeDirectory(test_data_path.c_str());
814 registry.AddIncludeDirectory(include_test_path.c_str());
815 // Call this with many schemas if possible.
816 registry.Register(MonsterIdentifier(),
817 (test_data_path + "monster_test.fbs").c_str());
818 // Now we got this set up, we can parse by just specifying the identifier,
819 // the correct schema will be loaded on the fly:
820 auto buf = registry.TextToFlatBuffer(jsonfile.c_str(), MonsterIdentifier());
821 // If this fails, check registry.lasterror_.
822 TEST_NOTNULL(buf.data());
823 // Test the buffer, to be sure:
824 AccessFlatBufferTest(buf.data(), buf.size(), false);
825 // We can use the registry to turn this back into text, in this case it
826 // will get the file_identifier from the binary:
827 std::string text;
828 auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text);
829 // If this fails, check registry.lasterror_.
830 TEST_EQ(ok, true);
831 TEST_EQ_STR(text.c_str(), jsonfile.c_str());
832
833 // Generate text for UTF-8 strings without escapes.
834 std::string jsonfile_utf8;
835 TEST_EQ(flatbuffers::LoadFile((test_data_path + "unicode_test.json").c_str(),
836 false, &jsonfile_utf8),
837 true);
838 TEST_EQ(parser.Parse(jsonfile_utf8.c_str(), include_directories), true);
839 // To ensure it is correct, generate utf-8 text back from the binary.
840 std::string jsongen_utf8;
841 // request natural printing for utf-8 strings
842 parser.opts.natural_utf8 = true;
843 parser.opts.strict_json = true;
844 TEST_EQ(
845 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen_utf8),
846 true);
847 TEST_EQ_STR(jsongen_utf8.c_str(), jsonfile_utf8.c_str());
848}
849
850void ReflectionTest(uint8_t *flatbuf, size_t length) {
851 // Load a binary schema.
852 std::string bfbsfile;
853 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.bfbs").c_str(),
854 true, &bfbsfile),
855 true);
856
857 // Verify it, just in case:
858 flatbuffers::Verifier verifier(
859 reinterpret_cast<const uint8_t *>(bfbsfile.c_str()), bfbsfile.length());
860 TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
861
862 // Make sure the schema is what we expect it to be.
863 auto &schema = *reflection::GetSchema(bfbsfile.c_str());
864 auto root_table = schema.root_table();
865 TEST_EQ_STR(root_table->name()->c_str(), "MyGame.Example.Monster");
866 auto fields = root_table->fields();
867 auto hp_field_ptr = fields->LookupByKey("hp");
868 TEST_NOTNULL(hp_field_ptr);
869 auto &hp_field = *hp_field_ptr;
870 TEST_EQ_STR(hp_field.name()->c_str(), "hp");
871 TEST_EQ(hp_field.id(), 2);
872 TEST_EQ(hp_field.type()->base_type(), reflection::Short);
873 auto friendly_field_ptr = fields->LookupByKey("friendly");
874 TEST_NOTNULL(friendly_field_ptr);
875 TEST_NOTNULL(friendly_field_ptr->attributes());
876 TEST_NOTNULL(friendly_field_ptr->attributes()->LookupByKey("priority"));
877
878 // Make sure the table index is what we expect it to be.
879 auto pos_field_ptr = fields->LookupByKey("pos");
880 TEST_NOTNULL(pos_field_ptr);
881 TEST_EQ(pos_field_ptr->type()->base_type(), reflection::Obj);
882 auto pos_table_ptr = schema.objects()->Get(pos_field_ptr->type()->index());
883 TEST_NOTNULL(pos_table_ptr);
884 TEST_EQ_STR(pos_table_ptr->name()->c_str(), "MyGame.Example.Vec3");
885
886 // Now use it to dynamically access a buffer.
887 auto &root = *flatbuffers::GetAnyRoot(flatbuf);
888
889 // Verify the buffer first using reflection based verification
890 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
891 true);
892
893 auto hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
894 TEST_EQ(hp, 80);
895
896 // Rather than needing to know the type, we can also get the value of
897 // any field as an int64_t/double/string, regardless of what it actually is.
898 auto hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
899 TEST_EQ(hp_int64, 80);
900 auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field);
901 TEST_EQ(hp_double, 80.0);
902 auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema);
903 TEST_EQ_STR(hp_string.c_str(), "80");
904
905 // Get struct field through reflection
906 auto pos_struct = flatbuffers::GetFieldStruct(root, *pos_field_ptr);
907 TEST_NOTNULL(pos_struct);
908 TEST_EQ(flatbuffers::GetAnyFieldF(*pos_struct,
909 *pos_table_ptr->fields()->LookupByKey("z")),
910 3.0f);
911
912 auto test3_field = pos_table_ptr->fields()->LookupByKey("test3");
913 auto test3_struct = flatbuffers::GetFieldStruct(*pos_struct, *test3_field);
914 TEST_NOTNULL(test3_struct);
915 auto test3_object = schema.objects()->Get(test3_field->type()->index());
916
917 TEST_EQ(flatbuffers::GetAnyFieldF(*test3_struct,
918 *test3_object->fields()->LookupByKey("a")),
919 10);
920
921 // We can also modify it.
922 flatbuffers::SetField<uint16_t>(&root, hp_field, 200);
923 hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
924 TEST_EQ(hp, 200);
925
926 // We can also set fields generically:
927 flatbuffers::SetAnyFieldI(&root, hp_field, 300);
928 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
929 TEST_EQ(hp_int64, 300);
930 flatbuffers::SetAnyFieldF(&root, hp_field, 300.5);
931 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
932 TEST_EQ(hp_int64, 300);
933 flatbuffers::SetAnyFieldS(&root, hp_field, "300");
934 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
935 TEST_EQ(hp_int64, 300);
936
937 // Test buffer is valid after the modifications
938 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
939 true);
940
941 // Reset it, for further tests.
942 flatbuffers::SetField<uint16_t>(&root, hp_field, 80);
943
944 // More advanced functionality: changing the size of items in-line!
945 // First we put the FlatBuffer inside an std::vector.
946 std::vector<uint8_t> resizingbuf(flatbuf, flatbuf + length);
947 // Find the field we want to modify.
948 auto &name_field = *fields->LookupByKey("name");
949 // Get the root.
950 // This time we wrap the result from GetAnyRoot in a smartpointer that
951 // will keep rroot valid as resizingbuf resizes.
952 auto rroot = flatbuffers::piv(
953 flatbuffers::GetAnyRoot(flatbuffers::vector_data(resizingbuf)),
954 resizingbuf);
955 SetString(schema, "totally new string", GetFieldS(**rroot, name_field),
956 &resizingbuf);
957 // Here resizingbuf has changed, but rroot is still valid.
958 TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "totally new string");
959 // Now lets extend a vector by 100 elements (10 -> 110).
960 auto &inventory_field = *fields->LookupByKey("inventory");
961 auto rinventory = flatbuffers::piv(
962 flatbuffers::GetFieldV<uint8_t>(**rroot, inventory_field), resizingbuf);
963 flatbuffers::ResizeVector<uint8_t>(schema, 110, 50, *rinventory,
964 &resizingbuf);
965 // rinventory still valid, so lets read from it.
966 TEST_EQ(rinventory->Get(10), 50);
967
968 // For reflection uses not covered already, there is a more powerful way:
969 // we can simply generate whatever object we want to add/modify in a
970 // FlatBuffer of its own, then add that to an existing FlatBuffer:
971 // As an example, let's add a string to an array of strings.
972 // First, find our field:
973 auto &testarrayofstring_field = *fields->LookupByKey("testarrayofstring");
974 // Find the vector value:
975 auto rtestarrayofstring = flatbuffers::piv(
976 flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::String>>(
977 **rroot, testarrayofstring_field),
978 resizingbuf);
979 // It's a vector of 2 strings, to which we add one more, initialized to
980 // offset 0.
981 flatbuffers::ResizeVector<flatbuffers::Offset<flatbuffers::String>>(
982 schema, 3, 0, *rtestarrayofstring, &resizingbuf);
983 // Here we just create a buffer that contans a single string, but this
984 // could also be any complex set of tables and other values.
985 flatbuffers::FlatBufferBuilder stringfbb;
986 stringfbb.Finish(stringfbb.CreateString("hank"));
987 // Add the contents of it to our existing FlatBuffer.
988 // We do this last, so the pointer doesn't get invalidated (since it is
989 // at the end of the buffer):
990 auto string_ptr = flatbuffers::AddFlatBuffer(
991 resizingbuf, stringfbb.GetBufferPointer(), stringfbb.GetSize());
992 // Finally, set the new value in the vector.
993 rtestarrayofstring->MutateOffset(2, string_ptr);
994 TEST_EQ_STR(rtestarrayofstring->Get(0)->c_str(), "bob");
995 TEST_EQ_STR(rtestarrayofstring->Get(2)->c_str(), "hank");
996 // Test integrity of all resize operations above.
997 flatbuffers::Verifier resize_verifier(
998 reinterpret_cast<const uint8_t *>(flatbuffers::vector_data(resizingbuf)),
999 resizingbuf.size());
1000 TEST_EQ(VerifyMonsterBuffer(resize_verifier), true);
1001
1002 // Test buffer is valid using reflection as well
1003 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
1004 flatbuffers::vector_data(resizingbuf),
1005 resizingbuf.size()),
1006 true);
1007
1008 // As an additional test, also set it on the name field.
1009 // Note: unlike the name change above, this just overwrites the offset,
1010 // rather than changing the string in-place.
1011 SetFieldT(*rroot, name_field, string_ptr);
1012 TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "hank");
1013
1014 // Using reflection, rather than mutating binary FlatBuffers, we can also copy
1015 // tables and other things out of other FlatBuffers into a FlatBufferBuilder,
1016 // either part or whole.
1017 flatbuffers::FlatBufferBuilder fbb;
1018 auto root_offset = flatbuffers::CopyTable(
1019 fbb, schema, *root_table, *flatbuffers::GetAnyRoot(flatbuf), true);
1020 fbb.Finish(root_offset, MonsterIdentifier());
1021 // Test that it was copied correctly:
1022 AccessFlatBufferTest(fbb.GetBufferPointer(), fbb.GetSize());
1023
1024 // Test buffer is valid using reflection as well
1025 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
1026 fbb.GetBufferPointer(), fbb.GetSize()),
1027 true);
1028}
1029
1030void MiniReflectFlatBuffersTest(uint8_t *flatbuf) {
1031 auto s = flatbuffers::FlatBufferToString(flatbuf, Monster::MiniReflectTypeTable());
1032 TEST_EQ_STR(
1033 s.c_str(),
1034 "{ "
1035 "pos: { x: 1.0, y: 2.0, z: 3.0, test1: 0.0, test2: Red, test3: "
1036 "{ a: 10, b: 20 } }, "
1037 "hp: 80, "
1038 "name: \"MyMonster\", "
1039 "inventory: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], "
1040 "test_type: Monster, "
1041 "test: { name: \"Fred\" }, "
1042 "test4: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
1043 "testarrayofstring: [ \"bob\", \"fred\", \"bob\", \"fred\" ], "
1044 "testarrayoftables: [ { hp: 1000, name: \"Barney\" }, { name: \"Fred\" "
1045 "}, "
1046 "{ name: \"Wilma\" } ], "
1047 // TODO(wvo): should really print this nested buffer correctly.
1048 "testnestedflatbuffer: [ 20, 0, 0, 0, 77, 79, 78, 83, 12, 0, 12, 0, 0, "
1049 "0, "
1050 "4, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 0, 78, "
1051 "101, 115, 116, 101, 100, 77, 111, 110, 115, 116, 101, 114, 0, 0, 0 ], "
1052 "testarrayofstring2: [ \"jane\", \"mary\" ], "
1053 "testarrayofsortedstruct: [ { id: 1, distance: 10 }, "
1054 "{ id: 2, distance: 20 }, { id: 3, distance: 30 }, "
1055 "{ id: 4, distance: 40 } ], "
1056 "flex: [ 210, 4, 5, 2 ], "
1057 "test5: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
1058 "vector_of_enums: [ Blue, Green ] "
1059 "}");
1060
1061 Test test(16, 32);
1062 Vec3 vec(1,2,3, 1.5, Color_Red, test);
1063 flatbuffers::FlatBufferBuilder vec_builder;
1064 vec_builder.Finish(vec_builder.CreateStruct(vec));
1065 auto vec_buffer = vec_builder.Release();
1066 auto vec_str = flatbuffers::FlatBufferToString(vec_buffer.data(),
1067 Vec3::MiniReflectTypeTable());
1068 TEST_EQ_STR(
1069 vec_str.c_str(),
1070 "{ x: 1.0, y: 2.0, z: 3.0, test1: 1.5, test2: Red, test3: { a: 16, b: 32 } }");
1071}
1072
1073// Parse a .proto schema, output as .fbs
1074void ParseProtoTest() {
1075 // load the .proto and the golden file from disk
1076 std::string protofile;
1077 std::string goldenfile;
1078 std::string goldenunionfile;
1079 TEST_EQ(
1080 flatbuffers::LoadFile((test_data_path + "prototest/test.proto").c_str(),
1081 false, &protofile),
1082 true);
1083 TEST_EQ(
1084 flatbuffers::LoadFile((test_data_path + "prototest/test.golden").c_str(),
1085 false, &goldenfile),
1086 true);
1087 TEST_EQ(
1088 flatbuffers::LoadFile((test_data_path +
1089 "prototest/test_union.golden").c_str(),
1090 false, &goldenunionfile),
1091 true);
1092
1093 flatbuffers::IDLOptions opts;
1094 opts.include_dependence_headers = false;
1095 opts.proto_mode = true;
1096
1097 // Parse proto.
1098 flatbuffers::Parser parser(opts);
1099 auto protopath = test_data_path + "prototest/";
1100 const char *include_directories[] = { protopath.c_str(), nullptr };
1101 TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true);
1102
1103 // Generate fbs.
1104 auto fbs = flatbuffers::GenerateFBS(parser, "test");
1105
1106 // Ensure generated file is parsable.
1107 flatbuffers::Parser parser2;
1108 TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true);
1109 TEST_EQ_STR(fbs.c_str(), goldenfile.c_str());
1110
1111 // Parse proto with --oneof-union option.
1112 opts.proto_oneof_union = true;
1113 flatbuffers::Parser parser3(opts);
1114 TEST_EQ(parser3.Parse(protofile.c_str(), include_directories), true);
1115
1116 // Generate fbs.
1117 auto fbs_union = flatbuffers::GenerateFBS(parser3, "test");
1118
1119 // Ensure generated file is parsable.
1120 flatbuffers::Parser parser4;
1121 TEST_EQ(parser4.Parse(fbs_union.c_str(), nullptr), true);
1122 TEST_EQ_STR(fbs_union.c_str(), goldenunionfile.c_str());
1123}
1124
1125template<typename T>
1126void CompareTableFieldValue(flatbuffers::Table *table,
1127 flatbuffers::voffset_t voffset, T val) {
1128 T read = table->GetField(voffset, static_cast<T>(0));
1129 TEST_EQ(read, val);
1130}
1131
1132// Low level stress/fuzz test: serialize/deserialize a variety of
1133// different kinds of data in different combinations
1134void FuzzTest1() {
1135 // Values we're testing against: chosen to ensure no bits get chopped
1136 // off anywhere, and also be different from eachother.
1137 const uint8_t bool_val = true;
1138 const int8_t char_val = -127; // 0x81
1139 const uint8_t uchar_val = 0xFF;
1140 const int16_t short_val = -32222; // 0x8222;
1141 const uint16_t ushort_val = 0xFEEE;
1142 const int32_t int_val = 0x83333333;
1143 const uint32_t uint_val = 0xFDDDDDDD;
1144 const int64_t long_val = 0x8444444444444444LL;
1145 const uint64_t ulong_val = 0xFCCCCCCCCCCCCCCCULL;
1146 const float float_val = 3.14159f;
1147 const double double_val = 3.14159265359;
1148
1149 const int test_values_max = 11;
1150 const flatbuffers::voffset_t fields_per_object = 4;
1151 const int num_fuzz_objects = 10000; // The higher, the more thorough :)
1152
1153 flatbuffers::FlatBufferBuilder builder;
1154
1155 lcg_reset(); // Keep it deterministic.
1156
1157 flatbuffers::uoffset_t objects[num_fuzz_objects];
1158
1159 // Generate num_fuzz_objects random objects each consisting of
1160 // fields_per_object fields, each of a random type.
1161 for (int i = 0; i < num_fuzz_objects; i++) {
1162 auto start = builder.StartTable();
1163 for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
1164 int choice = lcg_rand() % test_values_max;
1165 auto off = flatbuffers::FieldIndexToOffset(f);
1166 switch (choice) {
1167 case 0: builder.AddElement<uint8_t>(off, bool_val, 0); break;
1168 case 1: builder.AddElement<int8_t>(off, char_val, 0); break;
1169 case 2: builder.AddElement<uint8_t>(off, uchar_val, 0); break;
1170 case 3: builder.AddElement<int16_t>(off, short_val, 0); break;
1171 case 4: builder.AddElement<uint16_t>(off, ushort_val, 0); break;
1172 case 5: builder.AddElement<int32_t>(off, int_val, 0); break;
1173 case 6: builder.AddElement<uint32_t>(off, uint_val, 0); break;
1174 case 7: builder.AddElement<int64_t>(off, long_val, 0); break;
1175 case 8: builder.AddElement<uint64_t>(off, ulong_val, 0); break;
1176 case 9: builder.AddElement<float>(off, float_val, 0); break;
1177 case 10: builder.AddElement<double>(off, double_val, 0); break;
1178 }
1179 }
1180 objects[i] = builder.EndTable(start);
1181 }
1182 builder.PreAlign<flatbuffers::largest_scalar_t>(0); // Align whole buffer.
1183
1184 lcg_reset(); // Reset.
1185
1186 uint8_t *eob = builder.GetCurrentBufferPointer() + builder.GetSize();
1187
1188 // Test that all objects we generated are readable and return the
1189 // expected values. We generate random objects in the same order
1190 // so this is deterministic.
1191 for (int i = 0; i < num_fuzz_objects; i++) {
1192 auto table = reinterpret_cast<flatbuffers::Table *>(eob - objects[i]);
1193 for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
1194 int choice = lcg_rand() % test_values_max;
1195 flatbuffers::voffset_t off = flatbuffers::FieldIndexToOffset(f);
1196 switch (choice) {
1197 case 0: CompareTableFieldValue(table, off, bool_val); break;
1198 case 1: CompareTableFieldValue(table, off, char_val); break;
1199 case 2: CompareTableFieldValue(table, off, uchar_val); break;
1200 case 3: CompareTableFieldValue(table, off, short_val); break;
1201 case 4: CompareTableFieldValue(table, off, ushort_val); break;
1202 case 5: CompareTableFieldValue(table, off, int_val); break;
1203 case 6: CompareTableFieldValue(table, off, uint_val); break;
1204 case 7: CompareTableFieldValue(table, off, long_val); break;
1205 case 8: CompareTableFieldValue(table, off, ulong_val); break;
1206 case 9: CompareTableFieldValue(table, off, float_val); break;
1207 case 10: CompareTableFieldValue(table, off, double_val); break;
1208 }
1209 }
1210 }
1211}
1212
1213// High level stress/fuzz test: generate a big schema and
1214// matching json data in random combinations, then parse both,
1215// generate json back from the binary, and compare with the original.
1216void FuzzTest2() {
1217 lcg_reset(); // Keep it deterministic.
1218
1219 const int num_definitions = 30;
1220 const int num_struct_definitions = 5; // Subset of num_definitions.
1221 const int fields_per_definition = 15;
1222 const int instances_per_definition = 5;
1223 const int deprecation_rate = 10; // 1 in deprecation_rate fields will
1224 // be deprecated.
1225
1226 std::string schema = "namespace test;\n\n";
1227
1228 struct RndDef {
1229 std::string instances[instances_per_definition];
1230
1231 // Since we're generating schema and corresponding data in tandem,
1232 // this convenience function adds strings to both at once.
1233 static void Add(RndDef (&definitions_l)[num_definitions],
1234 std::string &schema_l, const int instances_per_definition_l,
1235 const char *schema_add, const char *instance_add,
1236 int definition) {
1237 schema_l += schema_add;
1238 for (int i = 0; i < instances_per_definition_l; i++)
1239 definitions_l[definition].instances[i] += instance_add;
1240 }
1241 };
1242
1243 // clang-format off
1244 #define AddToSchemaAndInstances(schema_add, instance_add) \
1245 RndDef::Add(definitions, schema, instances_per_definition, \
1246 schema_add, instance_add, definition)
1247
1248 #define Dummy() \
1249 RndDef::Add(definitions, schema, instances_per_definition, \
1250 "byte", "1", definition)
1251 // clang-format on
1252
1253 RndDef definitions[num_definitions];
1254
1255 // We are going to generate num_definitions, the first
1256 // num_struct_definitions will be structs, the rest tables. For each
1257 // generate random fields, some of which may be struct/table types
1258 // referring to previously generated structs/tables.
1259 // Simultanenously, we generate instances_per_definition JSON data
1260 // definitions, which will have identical structure to the schema
1261 // being generated. We generate multiple instances such that when creating
1262 // hierarchy, we get some variety by picking one randomly.
1263 for (int definition = 0; definition < num_definitions; definition++) {
1264 std::string definition_name = "D" + flatbuffers::NumToString(definition);
1265
1266 bool is_struct = definition < num_struct_definitions;
1267
1268 AddToSchemaAndInstances(
1269 ((is_struct ? "struct " : "table ") + definition_name + " {\n").c_str(),
1270 "{\n");
1271
1272 for (int field = 0; field < fields_per_definition; field++) {
1273 const bool is_last_field = field == fields_per_definition - 1;
1274
1275 // Deprecate 1 in deprecation_rate fields. Only table fields can be
1276 // deprecated.
1277 // Don't deprecate the last field to avoid dangling commas in JSON.
1278 const bool deprecated =
1279 !is_struct && !is_last_field && (lcg_rand() % deprecation_rate == 0);
1280
1281 std::string field_name = "f" + flatbuffers::NumToString(field);
1282 AddToSchemaAndInstances((" " + field_name + ":").c_str(),
1283 deprecated ? "" : (field_name + ": ").c_str());
1284 // Pick random type:
1285 auto base_type = static_cast<flatbuffers::BaseType>(
1286 lcg_rand() % (flatbuffers::BASE_TYPE_UNION + 1));
1287 switch (base_type) {
1288 case flatbuffers::BASE_TYPE_STRING:
1289 if (is_struct) {
1290 Dummy(); // No strings in structs.
1291 } else {
1292 AddToSchemaAndInstances("string", deprecated ? "" : "\"hi\"");
1293 }
1294 break;
1295 case flatbuffers::BASE_TYPE_VECTOR:
1296 if (is_struct) {
1297 Dummy(); // No vectors in structs.
1298 } else {
1299 AddToSchemaAndInstances("[ubyte]",
1300 deprecated ? "" : "[\n0,\n1,\n255\n]");
1301 }
1302 break;
1303 case flatbuffers::BASE_TYPE_NONE:
1304 case flatbuffers::BASE_TYPE_UTYPE:
1305 case flatbuffers::BASE_TYPE_STRUCT:
1306 case flatbuffers::BASE_TYPE_UNION:
1307 if (definition) {
1308 // Pick a random previous definition and random data instance of
1309 // that definition.
1310 int defref = lcg_rand() % definition;
1311 int instance = lcg_rand() % instances_per_definition;
1312 AddToSchemaAndInstances(
1313 ("D" + flatbuffers::NumToString(defref)).c_str(),
1314 deprecated ? ""
1315 : definitions[defref].instances[instance].c_str());
1316 } else {
1317 // If this is the first definition, we have no definition we can
1318 // refer to.
1319 Dummy();
1320 }
1321 break;
1322 case flatbuffers::BASE_TYPE_BOOL:
1323 AddToSchemaAndInstances(
1324 "bool", deprecated ? "" : (lcg_rand() % 2 ? "true" : "false"));
1325 break;
1326 case flatbuffers::BASE_TYPE_ARRAY:
1327 if (!is_struct) {
1328 AddToSchemaAndInstances(
1329 "ubyte",
1330 deprecated ? "" : "255"); // No fixed-length arrays in tables.
1331 } else {
1332 AddToSchemaAndInstances("[int:3]", deprecated ? "" : "[\n,\n,\n]");
1333 }
1334 break;
1335 default:
1336 // All the scalar types.
1337 schema += flatbuffers::kTypeNames[base_type];
1338
1339 if (!deprecated) {
1340 // We want each instance to use its own random value.
1341 for (int inst = 0; inst < instances_per_definition; inst++)
1342 definitions[definition].instances[inst] +=
1343 flatbuffers::IsFloat(base_type)
1344 ? flatbuffers::NumToString<double>(lcg_rand() % 128)
1345 .c_str()
1346 : flatbuffers::NumToString<int>(lcg_rand() % 128).c_str();
1347 }
1348 }
1349 AddToSchemaAndInstances(deprecated ? "(deprecated);\n" : ";\n",
1350 deprecated ? "" : is_last_field ? "\n" : ",\n");
1351 }
1352 AddToSchemaAndInstances("}\n\n", "}");
1353 }
1354
1355 schema += "root_type D" + flatbuffers::NumToString(num_definitions - 1);
1356 schema += ";\n";
1357
1358 flatbuffers::Parser parser;
1359
1360 // Will not compare against the original if we don't write defaults
1361 parser.builder_.ForceDefaults(true);
1362
1363 // Parse the schema, parse the generated data, then generate text back
1364 // from the binary and compare against the original.
1365 TEST_EQ(parser.Parse(schema.c_str()), true);
1366
1367 const std::string &json =
1368 definitions[num_definitions - 1].instances[0] + "\n";
1369
1370 TEST_EQ(parser.Parse(json.c_str()), true);
1371
1372 std::string jsongen;
1373 parser.opts.indent_step = 0;
1374 auto result =
1375 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1376 TEST_EQ(result, true);
1377
1378 if (jsongen != json) {
1379 // These strings are larger than a megabyte, so we show the bytes around
1380 // the first bytes that are different rather than the whole string.
1381 size_t len = std::min(json.length(), jsongen.length());
1382 for (size_t i = 0; i < len; i++) {
1383 if (json[i] != jsongen[i]) {
1384 i -= std::min(static_cast<size_t>(10), i); // show some context;
1385 size_t end = std::min(len, i + 20);
1386 for (; i < end; i++)
1387 TEST_OUTPUT_LINE("at %d: found \"%c\", expected \"%c\"\n",
1388 static_cast<int>(i), jsongen[i], json[i]);
1389 break;
1390 }
1391 }
1392 TEST_NOTNULL(NULL);
1393 }
1394
1395 // clang-format off
1396 #ifdef FLATBUFFERS_TEST_VERBOSE
1397 TEST_OUTPUT_LINE("%dk schema tested with %dk of json\n",
1398 static_cast<int>(schema.length() / 1024),
1399 static_cast<int>(json.length() / 1024));
1400 #endif
1401 // clang-format on
1402}
1403
1404// Test that parser errors are actually generated.
1405void TestError_(const char *src, const char *error_substr, bool strict_json,
1406 const char *file, int line, const char *func) {
1407 flatbuffers::IDLOptions opts;
1408 opts.strict_json = strict_json;
1409 flatbuffers::Parser parser(opts);
1410 if (parser.Parse(src)) {
1411 TestFail("true", "false",
1412 ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
1413 func);
1414 } else if (!strstr(parser.error_.c_str(), error_substr)) {
1415 TestFail(parser.error_.c_str(), error_substr,
1416 ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
1417 func);
1418 }
1419}
1420
1421void TestError_(const char *src, const char *error_substr, const char *file,
1422 int line, const char *func) {
1423 TestError_(src, error_substr, false, file, line, func);
1424}
1425
1426#ifdef _WIN32
1427# define TestError(src, ...) \
1428 TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__)
1429#else
1430# define TestError(src, ...) \
1431 TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__)
1432#endif
1433
1434// Test that parsing errors occur as we'd expect.
1435// Also useful for coverage, making sure these paths are run.
1436void ErrorTest() {
1437 // In order they appear in idl_parser.cpp
1438 TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
1439 TestError("\"\0", "illegal");
1440 TestError("\"\\q", "escape code");
1441 TestError("table ///", "documentation");
1442 TestError("@", "illegal");
1443 TestError("table 1", "expecting");
1444 TestError("table X { Y:[[int]]; }", "nested vector");
1445 TestError("table X { Y:1; }", "illegal type");
1446 TestError("table X { Y:int; Y:int; }", "field already");
1447 TestError("table Y {} table X { Y:int; }", "same as table");
1448 TestError("struct X { Y:string; }", "only scalar");
1449 TestError("table X { Y:string = \"\"; }", "default values");
1450 TestError("struct X { a:uint = 42; }", "default values");
1451 TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum");
1452 TestError("struct X { Y:int (deprecated); }", "deprecate");
1453 TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
1454 "missing type field");
1455 TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
1456 "type id");
1457 TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
1458 TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
1459 TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
1460 true);
1461 TestError(
1462 "struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
1463 "{ V:{ Y:1 } }",
1464 "wrong number");
1465 TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
1466 "unknown enum value");
1467 TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
1468 TestError("enum X:byte { Y } enum X {", "enum already");
1469 TestError("enum X:float {}", "underlying");
1470 TestError("enum X:byte { Y, Y }", "value already");
1471 TestError("enum X:byte { Y=2, Z=1 }", "ascending");
1472 TestError("table X { Y:int; } table X {", "datatype already");
1473 TestError("struct X (force_align: 7) { Y:int; }", "force_align");
1474 TestError("struct X {}", "size 0");
1475 TestError("{}", "no root");
1476 TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file");
1477 TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }",
1478 "end of file");
1479 TestError("root_type X;", "unknown root");
1480 TestError("struct X { Y:int; } root_type X;", "a table");
1481 TestError("union X { Y }", "referenced");
1482 TestError("union Z { X } struct X { Y:int; }", "only tables");
1483 TestError("table X { Y:[int]; YLength:int; }", "clash");
1484 TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
1485 // float to integer conversion is forbidden
1486 TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float");
1487 TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float");
1488 TestError("enum X:bool { Y = true }", "must be integral");
1489}
1490
1491template<typename T>
1492T TestValue(const char *json, const char *type_name,
1493 const char *decls = nullptr) {
1494 flatbuffers::Parser parser;
1495 parser.builder_.ForceDefaults(true); // return defaults
1496 auto check_default = json ? false : true;
1497 if (check_default) { parser.opts.output_default_scalars_in_json = true; }
1498 // Simple schema.
1499 std::string schema = std::string(decls ? decls : "") + "\n" +
1500 "table X { Y:" + std::string(type_name) +
1501 "; } root_type X;";
1502 auto schema_done = parser.Parse(schema.c_str());
1503 TEST_EQ_STR(parser.error_.c_str(), "");
1504 TEST_EQ(schema_done, true);
1505
1506 auto done = parser.Parse(check_default ? "{}" : json);
1507 TEST_EQ_STR(parser.error_.c_str(), "");
1508 TEST_EQ(done, true);
1509
1510 // Check with print.
1511 std::string print_back;
1512 parser.opts.indent_step = -1;
1513 TEST_EQ(GenerateText(parser, parser.builder_.GetBufferPointer(), &print_back),
1514 true);
1515 // restore value from its default
1516 if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); }
1517
1518 auto root = flatbuffers::GetRoot<flatbuffers::Table>(
1519 parser.builder_.GetBufferPointer());
1520 return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
1521}
1522
1523bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
1524
1525// Additional parser testing not covered elsewhere.
1526void ValueTest() {
1527 // Test scientific notation numbers.
1528 TEST_EQ(FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"),
1529 3.14159f),
1530 true);
1531 // number in string
1532 TEST_EQ(FloatCompare(TestValue<float>("{ Y:\"0.0314159e+2\" }", "float"),
1533 3.14159f),
1534 true);
1535
1536 // Test conversion functions.
1537 TEST_EQ(FloatCompare(TestValue<float>("{ Y:cos(rad(180)) }", "float"), -1),
1538 true);
1539
1540 // int embedded to string
1541 TEST_EQ(TestValue<int>("{ Y:\"-876\" }", "int=-123"), -876);
1542 TEST_EQ(TestValue<int>("{ Y:\"876\" }", "int=-123"), 876);
1543
1544 // Test negative hex constant.
1545 TEST_EQ(TestValue<int>("{ Y:-0x8ea0 }", "int=-0x8ea0"), -36512);
1546 TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512);
1547
1548 // positive hex constant
1549 TEST_EQ(TestValue<int>("{ Y:0x1abcdef }", "int=0x1"), 0x1abcdef);
1550 // with optional '+' sign
1551 TEST_EQ(TestValue<int>("{ Y:+0x1abcdef }", "int=+0x1"), 0x1abcdef);
1552 // hex in string
1553 TEST_EQ(TestValue<int>("{ Y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef);
1554
1555 // Make sure we do unsigned 64bit correctly.
1556 TEST_EQ(TestValue<uint64_t>("{ Y:12335089644688340133 }", "ulong"),
1557 12335089644688340133ULL);
1558
1559 // bool in string
1560 TEST_EQ(TestValue<bool>("{ Y:\"false\" }", "bool=true"), false);
1561 TEST_EQ(TestValue<bool>("{ Y:\"true\" }", "bool=\"true\""), true);
1562 TEST_EQ(TestValue<bool>("{ Y:'false' }", "bool=true"), false);
1563 TEST_EQ(TestValue<bool>("{ Y:'true' }", "bool=\"true\""), true);
1564
1565 // check comments before and after json object
1566 TEST_EQ(TestValue<int>("/*before*/ { Y:1 } /*after*/", "int"), 1);
1567 TEST_EQ(TestValue<int>("//before \n { Y:1 } //after", "int"), 1);
1568
1569}
1570
1571void NestedListTest() {
1572 flatbuffers::Parser parser1;
1573 TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
1574 "root_type T;"
1575 "{ F:[ [10,20], [30,40]] }"),
1576 true);
1577}
1578
1579void EnumStringsTest() {
1580 flatbuffers::Parser parser1;
1581 TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
1582 "root_type T;"
1583 "{ F:[ A, B, \"C\", \"A B C\" ] }"),
1584 true);
1585 flatbuffers::Parser parser2;
1586 TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
1587 "root_type T;"
1588 "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"),
1589 true);
1590 // unsigned bit_flags
1591 flatbuffers::Parser parser3;
1592 TEST_EQ(
1593 parser3.Parse("enum E:uint16 (bit_flags) { F0, F07=7, F08, F14=14, F15 }"
1594 " table T { F: E = \"F15 F08\"; }"
1595 "root_type T;"),
1596 true);
1597}
1598
1599void EnumNamesTest() {
1600 TEST_EQ_STR("Red", EnumNameColor(Color_Red));
1601 TEST_EQ_STR("Green", EnumNameColor(Color_Green));
1602 TEST_EQ_STR("Blue", EnumNameColor(Color_Blue));
1603 // Check that Color to string don't crash while decode a mixture of Colors.
1604 // 1) Example::Color enum is enum with unfixed underlying type.
1605 // 2) Valid enum range: [0; 2^(ceil(log2(Color_ANY))) - 1].
1606 // Consequence: A value is out of this range will lead to UB (since C++17).
1607 // For details see C++17 standard or explanation on the SO:
1608 // stackoverflow.com/questions/18195312/what-happens-if-you-static-cast-invalid-value-to-enum-class
1609 TEST_EQ_STR("", EnumNameColor(static_cast<Color>(0)));
1610 TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY-1)));
1611 TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY+1)));
1612}
1613
1614void EnumOutOfRangeTest() {
1615 TestError("enum X:byte { Y = 128 }", "enum value does not fit");
1616 TestError("enum X:byte { Y = -129 }", "enum value does not fit");
1617 TestError("enum X:byte { Y = 126, Z0, Z1 }", "enum value does not fit");
1618 TestError("enum X:ubyte { Y = -1 }", "enum value does not fit");
1619 TestError("enum X:ubyte { Y = 256 }", "enum value does not fit");
1620 TestError("enum X:ubyte { Y = 255, Z }", "enum value does not fit");
1621 // Unions begin with an implicit "NONE = 0".
1622 TestError("table Y{} union X { Y = -1 }",
1623 "enum values must be specified in ascending order");
1624 TestError("table Y{} union X { Y = 256 }", "enum value does not fit");
1625 TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit");
1626 TestError("enum X:int { Y = -2147483649 }", "enum value does not fit");
1627 TestError("enum X:int { Y = 2147483648 }", "enum value does not fit");
1628 TestError("enum X:uint { Y = -1 }", "enum value does not fit");
1629 TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit");
1630 TestError("enum X:long { Y = 9223372036854775808 }", "does not fit");
1631 TestError("enum X:long { Y = 9223372036854775807, Z }", "enum value does not fit");
1632 TestError("enum X:ulong { Y = -1 }", "does not fit");
1633 TestError("enum X:ubyte (bit_flags) { Y=8 }", "bit flag out");
1634 TestError("enum X:byte (bit_flags) { Y=7 }", "must be unsigned"); // -128
1635 // bit_flgs out of range
1636 TestError("enum X:ubyte (bit_flags) { Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8 }", "out of range");
1637}
1638
1639void EnumValueTest() {
1640 // json: "{ Y:0 }", schema: table X { Y : "E"}
1641 // 0 in enum (V=0) E then Y=0 is valid.
1642 TEST_EQ(TestValue<int>("{ Y:0 }", "E", "enum E:int { V }"), 0);
1643 TEST_EQ(TestValue<int>("{ Y:V }", "E", "enum E:int { V }"), 0);
1644 // A default value of Y is 0.
1645 TEST_EQ(TestValue<int>("{ }", "E", "enum E:int { V }"), 0);
1646 TEST_EQ(TestValue<int>("{ Y:5 }", "E=V", "enum E:int { V=5 }"), 5);
1647 // Generate json with defaults and check.
1648 TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { V=5 }"), 5);
1649 // 5 in enum
1650 TEST_EQ(TestValue<int>("{ Y:5 }", "E", "enum E:int { Z, V=5 }"), 5);
1651 TEST_EQ(TestValue<int>("{ Y:5 }", "E=V", "enum E:int { Z, V=5 }"), 5);
1652 // Generate json with defaults and check.
1653 TEST_EQ(TestValue<int>(nullptr, "E", "enum E:int { Z, V=5 }"), 0);
1654 TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { Z, V=5 }"), 5);
1655 // u84 test
1656 TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
1657 "enum E:ulong { V = 13835058055282163712 }"),
1658 13835058055282163712ULL);
1659 TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
1660 "enum E:ulong { V = 18446744073709551615 }"),
1661 18446744073709551615ULL);
1662 // Assign non-enum value to enum field. Is it right?
1663 TEST_EQ(TestValue<int>("{ Y:7 }", "E", "enum E:int { V = 0 }"), 7);
1664}
1665
1666void IntegerOutOfRangeTest() {
1667 TestError("table T { F:byte; } root_type T; { F:128 }",
1668 "constant does not fit");
1669 TestError("table T { F:byte; } root_type T; { F:-129 }",
1670 "constant does not fit");
1671 TestError("table T { F:ubyte; } root_type T; { F:256 }",
1672 "constant does not fit");
1673 TestError("table T { F:ubyte; } root_type T; { F:-1 }",
1674 "constant does not fit");
1675 TestError("table T { F:short; } root_type T; { F:32768 }",
1676 "constant does not fit");
1677 TestError("table T { F:short; } root_type T; { F:-32769 }",
1678 "constant does not fit");
1679 TestError("table T { F:ushort; } root_type T; { F:65536 }",
1680 "constant does not fit");
1681 TestError("table T { F:ushort; } root_type T; { F:-1 }",
1682 "constant does not fit");
1683 TestError("table T { F:int; } root_type T; { F:2147483648 }",
1684 "constant does not fit");
1685 TestError("table T { F:int; } root_type T; { F:-2147483649 }",
1686 "constant does not fit");
1687 TestError("table T { F:uint; } root_type T; { F:4294967296 }",
1688 "constant does not fit");
1689 TestError("table T { F:uint; } root_type T; { F:-1 }",
1690 "constant does not fit");
1691 // Check fixed width aliases
1692 TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit");
1693 TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit");
1694 TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit");
1695 TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit");
1696 TestError("table X { Y:uint32; } root_type X; { Y: -1 }", "");
1697 TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }",
1698 "does not fit");
1699 TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
1700 TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }",
1701 "does not fit");
1702 TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }",
1703 "does not fit");
1704
1705 TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit");
1706 TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit");
1707 TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit");
1708 TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit");
1709 TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", "");
1710 TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }",
1711 "does not fit");
1712 TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }",
1713 "does not fit");
1714 TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }",
1715 "does not fit");
1716 // check out-of-int64 as int8
1717 TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }",
1718 "does not fit");
1719 TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }",
1720 "does not fit");
1721
1722 // Check default values
1723 TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}",
1724 "does not fit");
1725 TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}",
1726 "does not fit");
1727 TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
1728 TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}",
1729 "does not fit");
1730 TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}",
1731 "does not fit");
1732}
1733
1734void IntegerBoundaryTest() {
1735 // Check numerical compatibility with non-C++ languages.
1736 // By the C++ standard, std::numerical_limits<int64_t>::min() == -9223372036854775807 (-2^63+1) or less*
1737 // The Flatbuffers grammar and most of the languages (C#, Java, Rust) expect
1738 // that minimum values are: -128, -32768,.., -9223372036854775808.
1739 // Since C++20, static_cast<int64>(0x8000000000000000ULL) is well-defined two's complement cast.
1740 // Therefore -9223372036854775808 should be valid negative value.
1741 TEST_EQ(flatbuffers::numeric_limits<int8_t>::min(), -128);
1742 TEST_EQ(flatbuffers::numeric_limits<int8_t>::max(), 127);
1743 TEST_EQ(flatbuffers::numeric_limits<int16_t>::min(), -32768);
1744 TEST_EQ(flatbuffers::numeric_limits<int16_t>::max(), 32767);
1745 TEST_EQ(flatbuffers::numeric_limits<int32_t>::min() + 1, -2147483647);
1746 TEST_EQ(flatbuffers::numeric_limits<int32_t>::max(), 2147483647ULL);
1747 TEST_EQ(flatbuffers::numeric_limits<int64_t>::min() + 1LL,
1748 -9223372036854775807LL);
1749 TEST_EQ(flatbuffers::numeric_limits<int64_t>::max(), 9223372036854775807ULL);
1750 TEST_EQ(flatbuffers::numeric_limits<uint8_t>::max(), 255);
1751 TEST_EQ(flatbuffers::numeric_limits<uint16_t>::max(), 65535);
1752 TEST_EQ(flatbuffers::numeric_limits<uint32_t>::max(), 4294967295ULL);
1753 TEST_EQ(flatbuffers::numeric_limits<uint64_t>::max(),
1754 18446744073709551615ULL);
1755
1756 TEST_EQ(TestValue<int8_t>("{ Y:127 }", "byte"), 127);
1757 TEST_EQ(TestValue<int8_t>("{ Y:-128 }", "byte"), -128);
1758 TEST_EQ(TestValue<uint8_t>("{ Y:255 }", "ubyte"), 255);
1759 TEST_EQ(TestValue<uint8_t>("{ Y:0 }", "ubyte"), 0);
1760 TEST_EQ(TestValue<int16_t>("{ Y:32767 }", "short"), 32767);
1761 TEST_EQ(TestValue<int16_t>("{ Y:-32768 }", "short"), -32768);
1762 TEST_EQ(TestValue<uint16_t>("{ Y:65535 }", "ushort"), 65535);
1763 TEST_EQ(TestValue<uint16_t>("{ Y:0 }", "ushort"), 0);
1764 TEST_EQ(TestValue<int32_t>("{ Y:2147483647 }", "int"), 2147483647);
1765 TEST_EQ(TestValue<int32_t>("{ Y:-2147483648 }", "int") + 1, -2147483647);
1766 TEST_EQ(TestValue<uint32_t>("{ Y:4294967295 }", "uint"), 4294967295);
1767 TEST_EQ(TestValue<uint32_t>("{ Y:0 }", "uint"), 0);
1768 TEST_EQ(TestValue<int64_t>("{ Y:9223372036854775807 }", "long"),
1769 9223372036854775807LL);
1770 TEST_EQ(TestValue<int64_t>("{ Y:-9223372036854775808 }", "long") + 1LL,
1771 -9223372036854775807LL);
1772 TEST_EQ(TestValue<uint64_t>("{ Y:18446744073709551615 }", "ulong"),
1773 18446744073709551615ULL);
1774 TEST_EQ(TestValue<uint64_t>("{ Y:0 }", "ulong"), 0);
1775 TEST_EQ(TestValue<uint64_t>("{ Y: 18446744073709551615 }", "uint64"),
1776 18446744073709551615ULL);
1777 // check that the default works
1778 TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"),
1779 18446744073709551615ULL);
1780}
1781
1782void ValidFloatTest() {
1783 // check rounding to infinity
1784 TEST_EQ(TestValue<float>("{ Y:+3.4029e+38 }", "float"), +infinityf);
1785 TEST_EQ(TestValue<float>("{ Y:-3.4029e+38 }", "float"), -infinityf);
1786 TEST_EQ(TestValue<double>("{ Y:+1.7977e+308 }", "double"), +infinityd);
1787 TEST_EQ(TestValue<double>("{ Y:-1.7977e+308 }", "double"), -infinityd);
1788
1789 TEST_EQ(
1790 FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"), 3.14159f),
1791 true);
1792 // float in string
1793 TEST_EQ(FloatCompare(TestValue<float>("{ Y:\" 0.0314159e+2 \" }", "float"),
1794 3.14159f),
1795 true);
1796
1797 TEST_EQ(TestValue<float>("{ Y:1 }", "float"), 1.0f);
1798 TEST_EQ(TestValue<float>("{ Y:1.0 }", "float"), 1.0f);
1799 TEST_EQ(TestValue<float>("{ Y:1. }", "float"), 1.0f);
1800 TEST_EQ(TestValue<float>("{ Y:+1. }", "float"), 1.0f);
1801 TEST_EQ(TestValue<float>("{ Y:-1. }", "float"), -1.0f);
1802 TEST_EQ(TestValue<float>("{ Y:1.e0 }", "float"), 1.0f);
1803 TEST_EQ(TestValue<float>("{ Y:1.e+0 }", "float"), 1.0f);
1804 TEST_EQ(TestValue<float>("{ Y:1.e-0 }", "float"), 1.0f);
1805 TEST_EQ(TestValue<float>("{ Y:0.125 }", "float"), 0.125f);
1806 TEST_EQ(TestValue<float>("{ Y:.125 }", "float"), 0.125f);
1807 TEST_EQ(TestValue<float>("{ Y:-.125 }", "float"), -0.125f);
1808 TEST_EQ(TestValue<float>("{ Y:+.125 }", "float"), +0.125f);
1809 TEST_EQ(TestValue<float>("{ Y:5 }", "float"), 5.0f);
1810 TEST_EQ(TestValue<float>("{ Y:\"5\" }", "float"), 5.0f);
1811
1812 #if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
1813 // Old MSVC versions may have problem with this check.
1814 // https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/
1815 TEST_EQ(TestValue<double>("{ Y:6.9294956446009195e15 }", "double"),
1816 6929495644600920.0);
1817 // check nan's
1818 TEST_EQ(std::isnan(TestValue<double>("{ Y:nan }", "double")), true);
1819 TEST_EQ(std::isnan(TestValue<float>("{ Y:nan }", "float")), true);
1820 TEST_EQ(std::isnan(TestValue<float>("{ Y:\"nan\" }", "float")), true);
1821 TEST_EQ(std::isnan(TestValue<float>("{ Y:+nan }", "float")), true);
1822 TEST_EQ(std::isnan(TestValue<float>("{ Y:-nan }", "float")), true);
1823 TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true);
1824 TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true);
1825 // check inf
1826 TEST_EQ(TestValue<float>("{ Y:inf }", "float"), infinityf);
1827 TEST_EQ(TestValue<float>("{ Y:\"inf\" }", "float"), infinityf);
1828 TEST_EQ(TestValue<float>("{ Y:+inf }", "float"), infinityf);
1829 TEST_EQ(TestValue<float>("{ Y:-inf }", "float"), -infinityf);
1830 TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinityf);
1831 TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinityf);
1832 TestValue<double>(
1833 "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
1834 "3.0e2] }",
1835 "[double]");
1836 TestValue<float>(
1837 "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
1838 "3.0e2] }",
1839 "[float]");
1840
1841 // Test binary format of float point.
1842 // https://en.cppreference.com/w/cpp/language/floating_literal
1843 // 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 =
1844 TEST_EQ(TestValue<double>("{ Y:0x12.34p-1 }", "double"), 9.1015625);
1845 // hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0
1846 TEST_EQ(TestValue<float>("{ Y:-0x0.2p0 }", "float"), -0.125f);
1847 TEST_EQ(TestValue<float>("{ Y:-0x.2p1 }", "float"), -0.25f);
1848 TEST_EQ(TestValue<float>("{ Y:0x1.2p3 }", "float"), 9.0f);
1849 TEST_EQ(TestValue<float>("{ Y:0x10.1p0 }", "float"), 16.0625f);
1850 TEST_EQ(TestValue<double>("{ Y:0x1.2p3 }", "double"), 9.0);
1851 TEST_EQ(TestValue<double>("{ Y:0x10.1p0 }", "double"), 16.0625);
1852 TEST_EQ(TestValue<double>("{ Y:0xC.68p+2 }", "double"), 49.625);
1853 TestValue<double>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]");
1854 TestValue<float>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]");
1855
1856#else // FLATBUFFERS_HAS_NEW_STRTOD
1857 TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped");
1858#endif // !FLATBUFFERS_HAS_NEW_STRTOD
1859}
1860
1861void InvalidFloatTest() {
1862 auto invalid_msg = "invalid number";
1863 auto comma_msg = "expecting: ,";
1864 TestError("table T { F:float; } root_type T; { F:1,0 }", "");
1865 TestError("table T { F:float; } root_type T; { F:. }", "");
1866 TestError("table T { F:float; } root_type T; { F:- }", invalid_msg);
1867 TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg);
1868 TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg);
1869 TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg);
1870 TestError("table T { F:float; } root_type T; { F:.e }", "");
1871 TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg);
1872 TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg);
1873 TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg);
1874 TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg);
1875 TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg);
1876 TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg);
1877 TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg);
1878 TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg);
1879 // exponent pP is mandatory for hex-float
1880 TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg);
1881 TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg);
1882 TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg);
1883 // eE not exponent in hex-float!
1884 TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
1885 TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
1886 TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg);
1887 TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg);
1888 TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg);
1889 TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg);
1890 TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
1891 TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
1892 TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg);
1893 TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg);
1894 TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg);
1895 TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg);
1896 TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg);
1897 TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg);
1898 TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg);
1899 TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg);
1900 TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg);
1901 TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg);
1902 TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg);
1903 TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg);
1904 TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg);
1905 TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg);
1906 TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg);
1907 TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg);
1908 // floats in string
1909 TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg);
1910 TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg);
1911 TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg);
1912 TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg);
1913 TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg);
1914 TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg);
1915 // disable escapes for "number-in-string"
1916 TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid");
1917 TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid");
1918 TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid");
1919 TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid");
1920 TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid");
1921 TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg);
1922 // null is not a number constant!
1923 TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg);
1924 TestError("table T { F:float; } root_type T; { F:null }", invalid_msg);
1925}
1926
1927void GenerateTableTextTest() {
1928 std::string schemafile;
1929 std::string jsonfile;
1930 bool ok =
1931 flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
1932 false, &schemafile) &&
1933 flatbuffers::LoadFile((test_data_path + "monsterdata_test.json").c_str(),
1934 false, &jsonfile);
1935 TEST_EQ(ok, true);
1936 auto include_test_path =
1937 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
1938 const char *include_directories[] = {test_data_path.c_str(),
1939 include_test_path.c_str(), nullptr};
1940 flatbuffers::IDLOptions opt;
1941 opt.indent_step = -1;
1942 flatbuffers::Parser parser(opt);
1943 ok = parser.Parse(schemafile.c_str(), include_directories) &&
1944 parser.Parse(jsonfile.c_str(), include_directories);
1945 TEST_EQ(ok, true);
1946 // Test root table
1947 const Monster *monster = GetMonster(parser.builder_.GetBufferPointer());
1948 std::string jsongen;
1949 auto result = GenerateTextFromTable(parser, monster, "MyGame.Example.Monster",
1950 &jsongen);
1951 TEST_EQ(result, true);
1952 // Test sub table
1953 const Vec3 *pos = monster->pos();
1954 jsongen.clear();
1955 result = GenerateTextFromTable(parser, pos, "MyGame.Example.Vec3", &jsongen);
1956 TEST_EQ(result, true);
1957 TEST_EQ_STR(
1958 jsongen.c_str(),
1959 "{x: 1.0,y: 2.0,z: 3.0,test1: 3.0,test2: \"Green\",test3: {a: 5,b: 6}}");
1960 const Test &test3 = pos->test3();
1961 jsongen.clear();
1962 result =
1963 GenerateTextFromTable(parser, &test3, "MyGame.Example.Test", &jsongen);
1964 TEST_EQ(result, true);
1965 TEST_EQ_STR(jsongen.c_str(), "{a: 5,b: 6}");
1966 const Test *test4 = monster->test4()->Get(0);
1967 jsongen.clear();
1968 result =
1969 GenerateTextFromTable(parser, test4, "MyGame.Example.Test", &jsongen);
1970 TEST_EQ(result, true);
1971 TEST_EQ_STR(jsongen.c_str(), "{a: 10,b: 20}");
1972}
1973
1974template<typename T>
1975void NumericUtilsTestInteger(const char *lower, const char *upper) {
1976 T x;
1977 TEST_EQ(flatbuffers::StringToNumber("1q", &x), false);
1978 TEST_EQ(x, 0);
1979 TEST_EQ(flatbuffers::StringToNumber(upper, &x), false);
1980 TEST_EQ(x, flatbuffers::numeric_limits<T>::max());
1981 TEST_EQ(flatbuffers::StringToNumber(lower, &x), false);
1982 auto expval = flatbuffers::is_unsigned<T>::value
1983 ? flatbuffers::numeric_limits<T>::max()
1984 : flatbuffers::numeric_limits<T>::lowest();
1985 TEST_EQ(x, expval);
1986}
1987
1988template<typename T>
1989void NumericUtilsTestFloat(const char *lower, const char *upper) {
1990 T f;
1991 TEST_EQ(flatbuffers::StringToNumber("", &f), false);
1992 TEST_EQ(flatbuffers::StringToNumber("1q", &f), false);
1993 TEST_EQ(f, 0);
1994 TEST_EQ(flatbuffers::StringToNumber(upper, &f), true);
1995 TEST_EQ(f, +flatbuffers::numeric_limits<T>::infinity());
1996 TEST_EQ(flatbuffers::StringToNumber(lower, &f), true);
1997 TEST_EQ(f, -flatbuffers::numeric_limits<T>::infinity());
1998}
1999
2000void NumericUtilsTest() {
2001 NumericUtilsTestInteger<uint64_t>("-1", "18446744073709551616");
2002 NumericUtilsTestInteger<uint8_t>("-1", "256");
2003 NumericUtilsTestInteger<int64_t>("-9223372036854775809",
2004 "9223372036854775808");
2005 NumericUtilsTestInteger<int8_t>("-129", "128");
2006 NumericUtilsTestFloat<float>("-3.4029e+38", "+3.4029e+38");
2007 NumericUtilsTestFloat<float>("-1.7977e+308", "+1.7977e+308");
2008}
2009
2010void IsAsciiUtilsTest() {
2011 char c = -128;
2012 for (int cnt = 0; cnt < 256; cnt++) {
2013 auto alpha = (('a' <= c) && (c <= 'z')) || (('A' <= c) && (c <= 'Z'));
2014 auto dec = (('0' <= c) && (c <= '9'));
2015 auto hex = (('a' <= c) && (c <= 'f')) || (('A' <= c) && (c <= 'F'));
2016 TEST_EQ(flatbuffers::is_alpha(c), alpha);
2017 TEST_EQ(flatbuffers::is_alnum(c), alpha || dec);
2018 TEST_EQ(flatbuffers::is_digit(c), dec);
2019 TEST_EQ(flatbuffers::is_xdigit(c), dec || hex);
2020 c += 1;
2021 }
2022}
2023
2024void UnicodeTest() {
2025 flatbuffers::Parser parser;
2026 // Without setting allow_non_utf8 = true, we treat \x sequences as byte
2027 // sequences which are then validated as UTF-8.
2028 TEST_EQ(parser.Parse("table T { F:string; }"
2029 "root_type T;"
2030 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
2031 "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8"
2032 "3D\\uDE0E\" }"),
2033 true);
2034 std::string jsongen;
2035 parser.opts.indent_step = -1;
2036 auto result =
2037 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
2038 TEST_EQ(result, true);
2039 TEST_EQ_STR(jsongen.c_str(),
2040 "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
2041 "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
2042}
2043
2044void UnicodeTestAllowNonUTF8() {
2045 flatbuffers::Parser parser;
2046 parser.opts.allow_non_utf8 = true;
2047 TEST_EQ(
2048 parser.Parse(
2049 "table T { F:string; }"
2050 "root_type T;"
2051 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
2052 "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
2053 true);
2054 std::string jsongen;
2055 parser.opts.indent_step = -1;
2056 auto result =
2057 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
2058 TEST_EQ(result, true);
2059 TEST_EQ_STR(
2060 jsongen.c_str(),
2061 "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
2062 "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
2063}
2064
2065void UnicodeTestGenerateTextFailsOnNonUTF8() {
2066 flatbuffers::Parser parser;
2067 // Allow non-UTF-8 initially to model what happens when we load a binary
2068 // flatbuffer from disk which contains non-UTF-8 strings.
2069 parser.opts.allow_non_utf8 = true;
2070 TEST_EQ(
2071 parser.Parse(
2072 "table T { F:string; }"
2073 "root_type T;"
2074 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
2075 "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
2076 true);
2077 std::string jsongen;
2078 parser.opts.indent_step = -1;
2079 // Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates
2080 // failure.
2081 parser.opts.allow_non_utf8 = false;
2082 auto result =
2083 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
2084 TEST_EQ(result, false);
2085}
2086
2087void UnicodeSurrogatesTest() {
2088 flatbuffers::Parser parser;
2089
2090 TEST_EQ(parser.Parse("table T { F:string (id: 0); }"
2091 "root_type T;"
2092 "{ F:\"\\uD83D\\uDCA9\"}"),
2093 true);
2094 auto root = flatbuffers::GetRoot<flatbuffers::Table>(
2095 parser.builder_.GetBufferPointer());
2096 auto string = root->GetPointer<flatbuffers::String *>(
2097 flatbuffers::FieldIndexToOffset(0));
2098 TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
2099}
2100
2101void UnicodeInvalidSurrogatesTest() {
2102 TestError(
2103 "table T { F:string; }"
2104 "root_type T;"
2105 "{ F:\"\\uD800\"}",
2106 "unpaired high surrogate");
2107 TestError(
2108 "table T { F:string; }"
2109 "root_type T;"
2110 "{ F:\"\\uD800abcd\"}",
2111 "unpaired high surrogate");
2112 TestError(
2113 "table T { F:string; }"
2114 "root_type T;"
2115 "{ F:\"\\uD800\\n\"}",
2116 "unpaired high surrogate");
2117 TestError(
2118 "table T { F:string; }"
2119 "root_type T;"
2120 "{ F:\"\\uD800\\uD800\"}",
2121 "multiple high surrogates");
2122 TestError(
2123 "table T { F:string; }"
2124 "root_type T;"
2125 "{ F:\"\\uDC00\"}",
2126 "unpaired low surrogate");
2127}
2128
2129void InvalidUTF8Test() {
2130 // "1 byte" pattern, under min length of 2 bytes
2131 TestError(
2132 "table T { F:string; }"
2133 "root_type T;"
2134 "{ F:\"\x80\"}",
2135 "illegal UTF-8 sequence");
2136 // 2 byte pattern, string too short
2137 TestError(
2138 "table T { F:string; }"
2139 "root_type T;"
2140 "{ F:\"\xDF\"}",
2141 "illegal UTF-8 sequence");
2142 // 3 byte pattern, string too short
2143 TestError(
2144 "table T { F:string; }"
2145 "root_type T;"
2146 "{ F:\"\xEF\xBF\"}",
2147 "illegal UTF-8 sequence");
2148 // 4 byte pattern, string too short
2149 TestError(
2150 "table T { F:string; }"
2151 "root_type T;"
2152 "{ F:\"\xF7\xBF\xBF\"}",
2153 "illegal UTF-8 sequence");
2154 // "5 byte" pattern, string too short
2155 TestError(
2156 "table T { F:string; }"
2157 "root_type T;"
2158 "{ F:\"\xFB\xBF\xBF\xBF\"}",
2159 "illegal UTF-8 sequence");
2160 // "6 byte" pattern, string too short
2161 TestError(
2162 "table T { F:string; }"
2163 "root_type T;"
2164 "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}",
2165 "illegal UTF-8 sequence");
2166 // "7 byte" pattern, string too short
2167 TestError(
2168 "table T { F:string; }"
2169 "root_type T;"
2170 "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}",
2171 "illegal UTF-8 sequence");
2172 // "5 byte" pattern, over max length of 4 bytes
2173 TestError(
2174 "table T { F:string; }"
2175 "root_type T;"
2176 "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}",
2177 "illegal UTF-8 sequence");
2178 // "6 byte" pattern, over max length of 4 bytes
2179 TestError(
2180 "table T { F:string; }"
2181 "root_type T;"
2182 "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}",
2183 "illegal UTF-8 sequence");
2184 // "7 byte" pattern, over max length of 4 bytes
2185 TestError(
2186 "table T { F:string; }"
2187 "root_type T;"
2188 "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}",
2189 "illegal UTF-8 sequence");
2190
2191 // Three invalid encodings for U+000A (\n, aka NEWLINE)
2192 TestError(
2193 "table T { F:string; }"
2194 "root_type T;"
2195 "{ F:\"\xC0\x8A\"}",
2196 "illegal UTF-8 sequence");
2197 TestError(
2198 "table T { F:string; }"
2199 "root_type T;"
2200 "{ F:\"\xE0\x80\x8A\"}",
2201 "illegal UTF-8 sequence");
2202 TestError(
2203 "table T { F:string; }"
2204 "root_type T;"
2205 "{ F:\"\xF0\x80\x80\x8A\"}",
2206 "illegal UTF-8 sequence");
2207
2208 // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
2209 TestError(
2210 "table T { F:string; }"
2211 "root_type T;"
2212 "{ F:\"\xE0\x81\xA9\"}",
2213 "illegal UTF-8 sequence");
2214 TestError(
2215 "table T { F:string; }"
2216 "root_type T;"
2217 "{ F:\"\xF0\x80\x81\xA9\"}",
2218 "illegal UTF-8 sequence");
2219
2220 // Invalid encoding for U+20AC (EURO SYMBOL)
2221 TestError(
2222 "table T { F:string; }"
2223 "root_type T;"
2224 "{ F:\"\xF0\x82\x82\xAC\"}",
2225 "illegal UTF-8 sequence");
2226
2227 // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in
2228 // UTF-8
2229 TestError(
2230 "table T { F:string; }"
2231 "root_type T;"
2232 // U+10400 "encoded" as U+D801 U+DC00
2233 "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}",
2234 "illegal UTF-8 sequence");
2235
2236 // Check independence of identifier from locale.
2237 std::string locale_ident;
2238 locale_ident += "table T { F";
2239 locale_ident += static_cast<char>(-32); // unsigned 0xE0
2240 locale_ident += " :string; }";
2241 locale_ident += "root_type T;";
2242 locale_ident += "{}";
2243 TestError(locale_ident.c_str(), "");
2244}
2245
2246void UnknownFieldsTest() {
2247 flatbuffers::IDLOptions opts;
2248 opts.skip_unexpected_fields_in_json = true;
2249 flatbuffers::Parser parser(opts);
2250
2251 TEST_EQ(parser.Parse("table T { str:string; i:int;}"
2252 "root_type T;"
2253 "{ str:\"test\","
2254 "unknown_string:\"test\","
2255 "\"unknown_string\":\"test\","
2256 "unknown_int:10,"
2257 "unknown_float:1.0,"
2258 "unknown_array: [ 1, 2, 3, 4],"
2259 "unknown_object: { i: 10 },"
2260 "\"unknown_object\": { \"i\": 10 },"
2261 "i:10}"),
2262 true);
2263
2264 std::string jsongen;
2265 parser.opts.indent_step = -1;
2266 auto result =
2267 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
2268 TEST_EQ(result, true);
2269 TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
2270}
2271
2272void ParseUnionTest() {
2273 // Unions must be parseable with the type field following the object.
2274 flatbuffers::Parser parser;
2275 TEST_EQ(parser.Parse("table T { A:int; }"
2276 "union U { T }"
2277 "table V { X:U; }"
2278 "root_type V;"
2279 "{ X:{ A:1 }, X_type: T }"),
2280 true);
2281 // Unions must be parsable with prefixed namespace.
2282 flatbuffers::Parser parser2;
2283 TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
2284 "table B { e:U; } root_type B;"
2285 "{ e_type: N_A, e: {} }"),
2286 true);
2287}
2288
2289void InvalidNestedFlatbufferTest() {
2290 // First, load and parse FlatBuffer schema (.fbs)
2291 std::string schemafile;
2292 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
2293 false, &schemafile),
2294 true);
2295 auto include_test_path =
2296 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
2297 const char *include_directories[] = { test_data_path.c_str(),
2298 include_test_path.c_str(), nullptr };
2299 flatbuffers::Parser parser1;
2300 TEST_EQ(parser1.Parse(schemafile.c_str(), include_directories), true);
2301
2302 // "color" inside nested flatbuffer contains invalid enum value
2303 TEST_EQ(parser1.Parse("{ name: \"Bender\", testnestedflatbuffer: { name: "
2304 "\"Leela\", color: \"nonexistent\"}}"),
2305 false);
2306 // Check that Parser is destroyed correctly after parsing invalid json
2307}
2308
2309void UnionVectorTest() {
2310 // load FlatBuffer fbs schema and json.
2311 std::string schemafile, jsonfile;
2312 TEST_EQ(flatbuffers::LoadFile(
2313 (test_data_path + "union_vector/union_vector.fbs").c_str(),
2314 false, &schemafile),
2315 true);
2316 TEST_EQ(flatbuffers::LoadFile(
2317 (test_data_path + "union_vector/union_vector.json").c_str(),
2318 false, &jsonfile),
2319 true);
2320
2321 // parse schema.
2322 flatbuffers::IDLOptions idl_opts;
2323 idl_opts.lang_to_generate |= flatbuffers::IDLOptions::kBinary;
2324 flatbuffers::Parser parser(idl_opts);
2325 TEST_EQ(parser.Parse(schemafile.c_str()), true);
2326
2327 flatbuffers::FlatBufferBuilder fbb;
2328
2329 // union types.
2330 std::vector<uint8_t> types;
2331 types.push_back(static_cast<uint8_t>(Character_Belle));
2332 types.push_back(static_cast<uint8_t>(Character_MuLan));
2333 types.push_back(static_cast<uint8_t>(Character_BookFan));
2334 types.push_back(static_cast<uint8_t>(Character_Other));
2335 types.push_back(static_cast<uint8_t>(Character_Unused));
2336
2337 // union values.
2338 std::vector<flatbuffers::Offset<void>> characters;
2339 characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/7)).Union());
2340 characters.push_back(CreateAttacker(fbb, /*sword_attack_damage=*/5).Union());
2341 characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/2)).Union());
2342 characters.push_back(fbb.CreateString("Other").Union());
2343 characters.push_back(fbb.CreateString("Unused").Union());
2344
2345 // create Movie.
2346 const auto movie_offset =
2347 CreateMovie(fbb, Character_Rapunzel,
2348 fbb.CreateStruct(Rapunzel(/*hair_length=*/6)).Union(),
2349 fbb.CreateVector(types), fbb.CreateVector(characters));
2350 FinishMovieBuffer(fbb, movie_offset);
2351 auto buf = fbb.GetBufferPointer();
2352
2353 flatbuffers::Verifier verifier(buf, fbb.GetSize());
2354 TEST_EQ(VerifyMovieBuffer(verifier), true);
2355
2356 auto flat_movie = GetMovie(buf);
2357
2358 auto TestMovie = [](const Movie *movie) {
2359 TEST_EQ(movie->main_character_type() == Character_Rapunzel, true);
2360
2361 auto cts = movie->characters_type();
2362 TEST_EQ(movie->characters_type()->size(), 5);
2363 TEST_EQ(cts->GetEnum<Character>(0) == Character_Belle, true);
2364 TEST_EQ(cts->GetEnum<Character>(1) == Character_MuLan, true);
2365 TEST_EQ(cts->GetEnum<Character>(2) == Character_BookFan, true);
2366 TEST_EQ(cts->GetEnum<Character>(3) == Character_Other, true);
2367 TEST_EQ(cts->GetEnum<Character>(4) == Character_Unused, true);
2368
2369 auto rapunzel = movie->main_character_as_Rapunzel();
2370 TEST_NOTNULL(rapunzel);
2371 TEST_EQ(rapunzel->hair_length(), 6);
2372
2373 auto cs = movie->characters();
2374 TEST_EQ(cs->size(), 5);
2375 auto belle = cs->GetAs<BookReader>(0);
2376 TEST_EQ(belle->books_read(), 7);
2377 auto mu_lan = cs->GetAs<Attacker>(1);
2378 TEST_EQ(mu_lan->sword_attack_damage(), 5);
2379 auto book_fan = cs->GetAs<BookReader>(2);
2380 TEST_EQ(book_fan->books_read(), 2);
2381 auto other = cs->GetAsString(3);
2382 TEST_EQ_STR(other->c_str(), "Other");
2383 auto unused = cs->GetAsString(4);
2384 TEST_EQ_STR(unused->c_str(), "Unused");
2385 };
2386
2387 TestMovie(flat_movie);
2388
2389 // Also test the JSON we loaded above.
2390 TEST_EQ(parser.Parse(jsonfile.c_str()), true);
2391 auto jbuf = parser.builder_.GetBufferPointer();
2392 flatbuffers::Verifier jverifier(jbuf, parser.builder_.GetSize());
2393 TEST_EQ(VerifyMovieBuffer(jverifier), true);
2394 TestMovie(GetMovie(jbuf));
2395
2396 auto movie_object = flat_movie->UnPack();
2397 TEST_EQ(movie_object->main_character.AsRapunzel()->hair_length(), 6);
2398 TEST_EQ(movie_object->characters[0].AsBelle()->books_read(), 7);
2399 TEST_EQ(movie_object->characters[1].AsMuLan()->sword_attack_damage, 5);
2400 TEST_EQ(movie_object->characters[2].AsBookFan()->books_read(), 2);
2401 TEST_EQ_STR(movie_object->characters[3].AsOther()->c_str(), "Other");
2402 TEST_EQ_STR(movie_object->characters[4].AsUnused()->c_str(), "Unused");
2403
2404 fbb.Clear();
2405 fbb.Finish(Movie::Pack(fbb, movie_object));
2406
2407 delete movie_object;
2408
2409 auto repacked_movie = GetMovie(fbb.GetBufferPointer());
2410
2411 TestMovie(repacked_movie);
2412
2413 auto s =
2414 flatbuffers::FlatBufferToString(fbb.GetBufferPointer(), MovieTypeTable());
2415 TEST_EQ_STR(
2416 s.c_str(),
2417 "{ main_character_type: Rapunzel, main_character: { hair_length: 6 }, "
2418 "characters_type: [ Belle, MuLan, BookFan, Other, Unused ], "
2419 "characters: [ { books_read: 7 }, { sword_attack_damage: 5 }, "
2420 "{ books_read: 2 }, \"Other\", \"Unused\" ] }");
2421
2422
2423 flatbuffers::ToStringVisitor visitor("\n", true, " ");
2424 IterateFlatBuffer(fbb.GetBufferPointer(), MovieTypeTable(), &visitor);
2425 TEST_EQ_STR(
2426 visitor.s.c_str(),
2427 "{\n"
2428 " \"main_character_type\": \"Rapunzel\",\n"
2429 " \"main_character\": {\n"
2430 " \"hair_length\": 6\n"
2431 " },\n"
2432 " \"characters_type\": [\n"
2433 " \"Belle\",\n"
2434 " \"MuLan\",\n"
2435 " \"BookFan\",\n"
2436 " \"Other\",\n"
2437 " \"Unused\"\n"
2438 " ],\n"
2439 " \"characters\": [\n"
2440 " {\n"
2441 " \"books_read\": 7\n"
2442 " },\n"
2443 " {\n"
2444 " \"sword_attack_damage\": 5\n"
2445 " },\n"
2446 " {\n"
2447 " \"books_read\": 2\n"
2448 " },\n"
2449 " \"Other\",\n"
2450 " \"Unused\"\n"
2451 " ]\n"
2452 "}");
2453
2454 flatbuffers::Parser parser2(idl_opts);
2455 TEST_EQ(parser2.Parse("struct Bool { b:bool; }"
2456 "union Any { Bool }"
2457 "table Root { a:Any; }"
2458 "root_type Root;"), true);
2459 TEST_EQ(parser2.Parse("{a_type:Bool,a:{b:true}}"), true);
2460}
2461
2462void ConformTest() {
2463 flatbuffers::Parser parser;
2464 TEST_EQ(parser.Parse("table T { A:int; } enum E:byte { A }"), true);
2465
2466 auto test_conform = [](flatbuffers::Parser &parser1, const char *test,
2467 const char *expected_err) {
2468 flatbuffers::Parser parser2;
2469 TEST_EQ(parser2.Parse(test), true);
2470 auto err = parser2.ConformTo(parser1);
2471 TEST_NOTNULL(strstr(err.c_str(), expected_err));
2472 };
2473
2474 test_conform(parser, "table T { A:byte; }", "types differ for field");
2475 test_conform(parser, "table T { B:int; A:int; }", "offsets differ for field");
2476 test_conform(parser, "table T { A:int = 1; }", "defaults differ for field");
2477 test_conform(parser, "table T { B:float; }",
2478 "field renamed to different type");
2479 test_conform(parser, "enum E:byte { B, A }", "values differ for enum");
2480}
2481
2482void ParseProtoBufAsciiTest() {
2483 // We can put the parser in a mode where it will accept JSON that looks more
2484 // like Protobuf ASCII, for users that have data in that format.
2485 // This uses no "" for field names (which we already support by default,
2486 // omits `,`, `:` before `{` and a couple of other features.
2487 flatbuffers::Parser parser;
2488 parser.opts.protobuf_ascii_alike = true;
2489 TEST_EQ(
2490 parser.Parse("table S { B:int; } table T { A:[int]; C:S; } root_type T;"),
2491 true);
2492 TEST_EQ(parser.Parse("{ A [1 2] C { B:2 }}"), true);
2493 // Similarly, in text output, it should omit these.
2494 std::string text;
2495 auto ok = flatbuffers::GenerateText(
2496 parser, parser.builder_.GetBufferPointer(), &text);
2497 TEST_EQ(ok, true);
2498 TEST_EQ_STR(text.c_str(),
2499 "{\n A [\n 1\n 2\n ]\n C {\n B: 2\n }\n}\n");
2500}
2501
2502void FlexBuffersTest() {
2503 flexbuffers::Builder slb(512,
2504 flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS);
2505
2506 // Write the equivalent of:
2507 // { vec: [ -100, "Fred", 4.0, false ], bar: [ 1, 2, 3 ], bar3: [ 1, 2, 3 ],
2508 // foo: 100, bool: true, mymap: { foo: "Fred" } }
2509 // clang-format off
2510 #ifndef FLATBUFFERS_CPP98_STL
2511 // It's possible to do this without std::function support as well.
2512 slb.Map([&]() {
2513 slb.Vector("vec", [&]() {
2514 slb += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
2515 slb += "Fred";
2516 slb.IndirectFloat(4.0f);
2517 uint8_t blob[] = { 77 };
2518 slb.Blob(blob, 1);
2519 slb += false;
2520 });
2521 int ints[] = { 1, 2, 3 };
2522 slb.Vector("bar", ints, 3);
2523 slb.FixedTypedVector("bar3", ints, 3);
2524 bool bools[] = {true, false, true, false};
2525 slb.Vector("bools", bools, 4);
2526 slb.Bool("bool", true);
2527 slb.Double("foo", 100);
2528 slb.Map("mymap", [&]() {
2529 slb.String("foo", "Fred"); // Testing key and string reuse.
2530 });
2531 });
2532 slb.Finish();
2533 #else
2534 // It's possible to do this without std::function support as well.
2535 slb.Map([](flexbuffers::Builder& slb2) {
2536 slb2.Vector("vec", [](flexbuffers::Builder& slb3) {
2537 slb3 += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
2538 slb3 += "Fred";
2539 slb3.IndirectFloat(4.0f);
2540 uint8_t blob[] = { 77 };
2541 slb3.Blob(blob, 1);
2542 slb3 += false;
2543 }, slb2);
2544 int ints[] = { 1, 2, 3 };
2545 slb2.Vector("bar", ints, 3);
2546 slb2.FixedTypedVector("bar3", ints, 3);
2547 slb2.Bool("bool", true);
2548 slb2.Double("foo", 100);
2549 slb2.Map("mymap", [](flexbuffers::Builder& slb3) {
2550 slb3.String("foo", "Fred"); // Testing key and string reuse.
2551 }, slb2);
2552 }, slb);
2553 slb.Finish();
2554 #endif // FLATBUFFERS_CPP98_STL
2555
2556 #ifdef FLATBUFFERS_TEST_VERBOSE
2557 for (size_t i = 0; i < slb.GetBuffer().size(); i++)
2558 printf("%d ", flatbuffers::vector_data(slb.GetBuffer())[i]);
2559 printf("\n");
2560 #endif
2561 // clang-format on
2562
2563 auto map = flexbuffers::GetRoot(slb.GetBuffer()).AsMap();
2564 TEST_EQ(map.size(), 7);
2565 auto vec = map["vec"].AsVector();
2566 TEST_EQ(vec.size(), 5);
2567 TEST_EQ(vec[0].AsInt64(), -100);
2568 TEST_EQ_STR(vec[1].AsString().c_str(), "Fred");
2569 TEST_EQ(vec[1].AsInt64(), 0); // Number parsing failed.
2570 TEST_EQ(vec[2].AsDouble(), 4.0);
2571 TEST_EQ(vec[2].AsString().IsTheEmptyString(), true); // Wrong Type.
2572 TEST_EQ_STR(vec[2].AsString().c_str(), ""); // This still works though.
2573 TEST_EQ_STR(vec[2].ToString().c_str(), "4.0"); // Or have it converted.
2574
2575 // Few tests for templated version of As.
2576 TEST_EQ(vec[0].As<int64_t>(), -100);
2577 TEST_EQ_STR(vec[1].As<std::string>().c_str(), "Fred");
2578 TEST_EQ(vec[1].As<int64_t>(), 0); // Number parsing failed.
2579 TEST_EQ(vec[2].As<double>(), 4.0);
2580
2581 // Test that the blob can be accessed.
2582 TEST_EQ(vec[3].IsBlob(), true);
2583 auto blob = vec[3].AsBlob();
2584 TEST_EQ(blob.size(), 1);
2585 TEST_EQ(blob.data()[0], 77);
2586 TEST_EQ(vec[4].IsBool(), true); // Check if type is a bool
2587 TEST_EQ(vec[4].AsBool(), false); // Check if value is false
2588 auto tvec = map["bar"].AsTypedVector();
2589 TEST_EQ(tvec.size(), 3);
2590 TEST_EQ(tvec[2].AsInt8(), 3);
2591 auto tvec3 = map["bar3"].AsFixedTypedVector();
2592 TEST_EQ(tvec3.size(), 3);
2593 TEST_EQ(tvec3[2].AsInt8(), 3);
2594 TEST_EQ(map["bool"].AsBool(), true);
2595 auto tvecb = map["bools"].AsTypedVector();
2596 TEST_EQ(tvecb.ElementType(), flexbuffers::FBT_BOOL);
2597 TEST_EQ(map["foo"].AsUInt8(), 100);
2598 TEST_EQ(map["unknown"].IsNull(), true);
2599 auto mymap = map["mymap"].AsMap();
2600 // These should be equal by pointer equality, since key and value are shared.
2601 TEST_EQ(mymap.Keys()[0].AsKey(), map.Keys()[4].AsKey());
2602 TEST_EQ(mymap.Values()[0].AsString().c_str(), vec[1].AsString().c_str());
2603 // We can mutate values in the buffer.
2604 TEST_EQ(vec[0].MutateInt(-99), true);
2605 TEST_EQ(vec[0].AsInt64(), -99);
2606 TEST_EQ(vec[1].MutateString("John"), true); // Size must match.
2607 TEST_EQ_STR(vec[1].AsString().c_str(), "John");
2608 TEST_EQ(vec[1].MutateString("Alfred"), false); // Too long.
2609 TEST_EQ(vec[2].MutateFloat(2.0f), true);
2610 TEST_EQ(vec[2].AsFloat(), 2.0f);
2611 TEST_EQ(vec[2].MutateFloat(3.14159), false); // Double does not fit in float.
2612 TEST_EQ(vec[4].AsBool(), false); // Is false before change
2613 TEST_EQ(vec[4].MutateBool(true), true); // Can change a bool
2614 TEST_EQ(vec[4].AsBool(), true); // Changed bool is now true
2615
2616 // Parse from JSON:
2617 flatbuffers::Parser parser;
2618 slb.Clear();
2619 auto jsontest = "{ a: [ 123, 456.0 ], b: \"hello\", c: true, d: false }";
2620 TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb), true);
2621 auto jroot = flexbuffers::GetRoot(slb.GetBuffer());
2622 auto jmap = jroot.AsMap();
2623 auto jvec = jmap["a"].AsVector();
2624 TEST_EQ(jvec[0].AsInt64(), 123);
2625 TEST_EQ(jvec[1].AsDouble(), 456.0);
2626 TEST_EQ_STR(jmap["b"].AsString().c_str(), "hello");
2627 TEST_EQ(jmap["c"].IsBool(), true); // Parsed correctly to a bool
2628 TEST_EQ(jmap["c"].AsBool(), true); // Parsed correctly to true
2629 TEST_EQ(jmap["d"].IsBool(), true); // Parsed correctly to a bool
2630 TEST_EQ(jmap["d"].AsBool(), false); // Parsed correctly to false
2631 // And from FlexBuffer back to JSON:
2632 auto jsonback = jroot.ToString();
2633 TEST_EQ_STR(jsontest, jsonback.c_str());
2634}
2635
2636void TypeAliasesTest() {
2637 flatbuffers::FlatBufferBuilder builder;
2638
2639 builder.Finish(CreateTypeAliases(
2640 builder, flatbuffers::numeric_limits<int8_t>::min(),
2641 flatbuffers::numeric_limits<uint8_t>::max(),
2642 flatbuffers::numeric_limits<int16_t>::min(),
2643 flatbuffers::numeric_limits<uint16_t>::max(),
2644 flatbuffers::numeric_limits<int32_t>::min(),
2645 flatbuffers::numeric_limits<uint32_t>::max(),
2646 flatbuffers::numeric_limits<int64_t>::min(),
2647 flatbuffers::numeric_limits<uint64_t>::max(), 2.3f, 2.3));
2648
2649 auto p = builder.GetBufferPointer();
2650 auto ta = flatbuffers::GetRoot<TypeAliases>(p);
2651
2652 TEST_EQ(ta->i8(), flatbuffers::numeric_limits<int8_t>::min());
2653 TEST_EQ(ta->u8(), flatbuffers::numeric_limits<uint8_t>::max());
2654 TEST_EQ(ta->i16(), flatbuffers::numeric_limits<int16_t>::min());
2655 TEST_EQ(ta->u16(), flatbuffers::numeric_limits<uint16_t>::max());
2656 TEST_EQ(ta->i32(), flatbuffers::numeric_limits<int32_t>::min());
2657 TEST_EQ(ta->u32(), flatbuffers::numeric_limits<uint32_t>::max());
2658 TEST_EQ(ta->i64(), flatbuffers::numeric_limits<int64_t>::min());
2659 TEST_EQ(ta->u64(), flatbuffers::numeric_limits<uint64_t>::max());
2660 TEST_EQ(ta->f32(), 2.3f);
2661 TEST_EQ(ta->f64(), 2.3);
2662 using namespace flatbuffers; // is_same
2663 static_assert(is_same<decltype(ta->i8()), int8_t>::value, "invalid type");
2664 static_assert(is_same<decltype(ta->i16()), int16_t>::value, "invalid type");
2665 static_assert(is_same<decltype(ta->i32()), int32_t>::value, "invalid type");
2666 static_assert(is_same<decltype(ta->i64()), int64_t>::value, "invalid type");
2667 static_assert(is_same<decltype(ta->u8()), uint8_t>::value, "invalid type");
2668 static_assert(is_same<decltype(ta->u16()), uint16_t>::value, "invalid type");
2669 static_assert(is_same<decltype(ta->u32()), uint32_t>::value, "invalid type");
2670 static_assert(is_same<decltype(ta->u64()), uint64_t>::value, "invalid type");
2671 static_assert(is_same<decltype(ta->f32()), float>::value, "invalid type");
2672 static_assert(is_same<decltype(ta->f64()), double>::value, "invalid type");
2673}
2674
2675void EndianSwapTest() {
2676 TEST_EQ(flatbuffers::EndianSwap(static_cast<int16_t>(0x1234)), 0x3412);
2677 TEST_EQ(flatbuffers::EndianSwap(static_cast<int32_t>(0x12345678)),
2678 0x78563412);
2679 TEST_EQ(flatbuffers::EndianSwap(static_cast<int64_t>(0x1234567890ABCDEF)),
2680 0xEFCDAB9078563412);
2681 TEST_EQ(flatbuffers::EndianSwap(flatbuffers::EndianSwap(3.14f)), 3.14f);
2682}
2683
2684void UninitializedVectorTest() {
2685 flatbuffers::FlatBufferBuilder builder;
2686
2687 Test *buf = nullptr;
2688 auto vector_offset = builder.CreateUninitializedVectorOfStructs<Test>(2, &buf);
2689 TEST_NOTNULL(buf);
2690 buf[0] = Test(10, 20);
2691 buf[1] = Test(30, 40);
2692
2693 auto required_name = builder.CreateString("myMonster");
2694 auto monster_builder = MonsterBuilder(builder);
2695 monster_builder.add_name(required_name); // required field mandated for monster.
2696 monster_builder.add_test4(vector_offset);
2697 builder.Finish(monster_builder.Finish());
2698
2699 auto p = builder.GetBufferPointer();
2700 auto uvt = flatbuffers::GetRoot<Monster>(p);
2701 TEST_NOTNULL(uvt);
2702 auto vec = uvt->test4();
2703 TEST_NOTNULL(vec);
2704 auto test_0 = vec->Get(0);
2705 auto test_1 = vec->Get(1);
2706 TEST_EQ(test_0->a(), 10);
2707 TEST_EQ(test_0->b(), 20);
2708 TEST_EQ(test_1->a(), 30);
2709 TEST_EQ(test_1->b(), 40);
2710}
2711
2712void EqualOperatorTest() {
2713 MonsterT a;
2714 MonsterT b;
2715 TEST_EQ(b == a, true);
2716 TEST_EQ(b != a, false);
2717
2718 b.mana = 33;
2719 TEST_EQ(b == a, false);
2720 TEST_EQ(b != a, true);
2721 b.mana = 150;
2722 TEST_EQ(b == a, true);
2723 TEST_EQ(b != a, false);
2724
2725 b.inventory.push_back(3);
2726 TEST_EQ(b == a, false);
2727 TEST_EQ(b != a, true);
2728 b.inventory.clear();
2729 TEST_EQ(b == a, true);
2730 TEST_EQ(b != a, false);
2731
2732 b.test.type = Any_Monster;
2733 TEST_EQ(b == a, false);
2734 TEST_EQ(b != a, true);
2735}
2736
2737// For testing any binaries, e.g. from fuzzing.
2738void LoadVerifyBinaryTest() {
2739 std::string binary;
2740 if (flatbuffers::LoadFile((test_data_path +
2741 "fuzzer/your-filename-here").c_str(),
2742 true, &binary)) {
2743 flatbuffers::Verifier verifier(
2744 reinterpret_cast<const uint8_t *>(binary.data()), binary.size());
2745 TEST_EQ(VerifyMonsterBuffer(verifier), true);
2746 }
2747}
2748
2749void CreateSharedStringTest() {
2750 flatbuffers::FlatBufferBuilder builder;
2751 const auto one1 = builder.CreateSharedString("one");
2752 const auto two = builder.CreateSharedString("two");
2753 const auto one2 = builder.CreateSharedString("one");
2754 TEST_EQ(one1.o, one2.o);
2755 const auto onetwo = builder.CreateSharedString("onetwo");
2756 TEST_EQ(onetwo.o != one1.o, true);
2757 TEST_EQ(onetwo.o != two.o, true);
2758
2759 // Support for embedded nulls
2760 const char chars_b[] = {'a', '\0', 'b'};
2761 const char chars_c[] = {'a', '\0', 'c'};
2762 const auto null_b1 = builder.CreateSharedString(chars_b, sizeof(chars_b));
2763 const auto null_c = builder.CreateSharedString(chars_c, sizeof(chars_c));
2764 const auto null_b2 = builder.CreateSharedString(chars_b, sizeof(chars_b));
2765 TEST_EQ(null_b1.o != null_c.o, true); // Issue#5058 repro
2766 TEST_EQ(null_b1.o, null_b2.o);
2767
2768 // Put the strings into an array for round trip verification.
2769 const flatbuffers::Offset<flatbuffers::String> array[7] = { one1, two, one2, onetwo, null_b1, null_c, null_b2 };
2770 const auto vector_offset = builder.CreateVector(array, flatbuffers::uoffset_t(7));
2771 MonsterBuilder monster_builder(builder);
2772 monster_builder.add_name(two);
2773 monster_builder.add_testarrayofstring(vector_offset);
2774 builder.Finish(monster_builder.Finish());
2775
2776 // Read the Monster back.
2777 const auto *monster = flatbuffers::GetRoot<Monster>(builder.GetBufferPointer());
2778 TEST_EQ_STR(monster->name()->c_str(), "two");
2779 const auto *testarrayofstring = monster->testarrayofstring();
2780 TEST_EQ(testarrayofstring->size(), flatbuffers::uoffset_t(7));
2781 const auto &a = *testarrayofstring;
2782 TEST_EQ_STR(a[0]->c_str(), "one");
2783 TEST_EQ_STR(a[1]->c_str(), "two");
2784 TEST_EQ_STR(a[2]->c_str(), "one");
2785 TEST_EQ_STR(a[3]->c_str(), "onetwo");
2786 TEST_EQ(a[4]->str(), (std::string(chars_b, sizeof(chars_b))));
2787 TEST_EQ(a[5]->str(), (std::string(chars_c, sizeof(chars_c))));
2788 TEST_EQ(a[6]->str(), (std::string(chars_b, sizeof(chars_b))));
2789
2790 // Make sure String::operator< works, too, since it is related to StringOffsetCompare.
2791 TEST_EQ((*a[0]) < (*a[1]), true);
2792 TEST_EQ((*a[1]) < (*a[0]), false);
2793 TEST_EQ((*a[1]) < (*a[2]), false);
2794 TEST_EQ((*a[2]) < (*a[1]), true);
2795 TEST_EQ((*a[4]) < (*a[3]), true);
2796 TEST_EQ((*a[5]) < (*a[4]), false);
2797 TEST_EQ((*a[5]) < (*a[4]), false);
2798 TEST_EQ((*a[6]) < (*a[5]), true);
2799}
2800
2801void FixedLengthArrayTest() {
2802 // VS10 does not support typed enums, exclude from tests
2803#if !defined(_MSC_VER) || _MSC_VER >= 1700
2804 // Generate an ArrayTable containing one ArrayStruct.
2805 flatbuffers::FlatBufferBuilder fbb;
2806 MyGame::Example::NestedStruct nStruct0(MyGame::Example::TestEnum::B);
2807 TEST_NOTNULL(nStruct0.mutable_a());
2808 nStruct0.mutable_a()->Mutate(0, 1);
2809 nStruct0.mutable_a()->Mutate(1, 2);
2810 TEST_NOTNULL(nStruct0.mutable_c());
2811 nStruct0.mutable_c()->Mutate(0, MyGame::Example::TestEnum::C);
2812 nStruct0.mutable_c()->Mutate(1, MyGame::Example::TestEnum::A);
2813 MyGame::Example::NestedStruct nStruct1(MyGame::Example::TestEnum::C);
2814 TEST_NOTNULL(nStruct1.mutable_a());
2815 nStruct1.mutable_a()->Mutate(0, 3);
2816 nStruct1.mutable_a()->Mutate(1, 4);
2817 TEST_NOTNULL(nStruct1.mutable_c());
2818 nStruct1.mutable_c()->Mutate(0, MyGame::Example::TestEnum::C);
2819 nStruct1.mutable_c()->Mutate(1, MyGame::Example::TestEnum::A);
2820 MyGame::Example::ArrayStruct aStruct(2, 12);
2821 TEST_NOTNULL(aStruct.b());
2822 TEST_NOTNULL(aStruct.mutable_b());
2823 TEST_NOTNULL(aStruct.mutable_d());
2824 for (int i = 0; i < aStruct.b()->size(); i++)
2825 aStruct.mutable_b()->Mutate(i, i + 1);
2826 aStruct.mutable_d()->Mutate(0, nStruct0);
2827 aStruct.mutable_d()->Mutate(1, nStruct1);
2828 auto aTable = MyGame::Example::CreateArrayTable(fbb, &aStruct);
2829 fbb.Finish(aTable);
2830
2831 // Verify correctness of the ArrayTable.
2832 flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
2833 MyGame::Example::VerifyArrayTableBuffer(verifier);
2834 auto p = MyGame::Example::GetMutableArrayTable(fbb.GetBufferPointer());
2835 auto mArStruct = p->mutable_a();
2836 TEST_NOTNULL(mArStruct);
2837 TEST_NOTNULL(mArStruct->b());
2838 TEST_NOTNULL(mArStruct->d());
2839 TEST_NOTNULL(mArStruct->mutable_b());
2840 TEST_NOTNULL(mArStruct->mutable_d());
2841 mArStruct->mutable_b()->Mutate(14, -14);
2842 TEST_EQ(mArStruct->a(), 2);
2843 TEST_EQ(mArStruct->b()->size(), 15);
2844 TEST_EQ(mArStruct->b()->Get(aStruct.b()->size() - 1), -14);
2845 TEST_EQ(mArStruct->c(), 12);
2846 TEST_NOTNULL(mArStruct->d()->Get(0).a());
2847 TEST_EQ(mArStruct->d()->Get(0).a()->Get(0), 1);
2848 TEST_EQ(mArStruct->d()->Get(0).a()->Get(1), 2);
2849 TEST_NOTNULL(mArStruct->d()->Get(1).a());
2850 TEST_EQ(mArStruct->d()->Get(1).a()->Get(0), 3);
2851 TEST_EQ(mArStruct->d()->Get(1).a()->Get(1), 4);
2852 TEST_NOTNULL(mArStruct->mutable_d()->GetMutablePointer(1));
2853 TEST_NOTNULL(mArStruct->mutable_d()->GetMutablePointer(1)->mutable_a());
2854 mArStruct->mutable_d()->GetMutablePointer(1)->mutable_a()->Mutate(1, 5);
2855 TEST_EQ(mArStruct->d()->Get(1).a()->Get(1), 5);
2856 TEST_EQ(mArStruct->d()->Get(0).b() == MyGame::Example::TestEnum::B, true);
2857 TEST_NOTNULL(mArStruct->d()->Get(0).c());
2858 TEST_EQ(mArStruct->d()->Get(0).c()->Get(0) == MyGame::Example::TestEnum::C,
2859 true);
2860 TEST_EQ(mArStruct->d()->Get(0).c()->Get(1) == MyGame::Example::TestEnum::A,
2861 true);
2862 TEST_EQ(mArStruct->d()->Get(1).b() == MyGame::Example::TestEnum::C, true);
2863 TEST_NOTNULL(mArStruct->d()->Get(1).c());
2864 TEST_EQ(mArStruct->d()->Get(1).c()->Get(0) == MyGame::Example::TestEnum::C,
2865 true);
2866 TEST_EQ(mArStruct->d()->Get(1).c()->Get(1) == MyGame::Example::TestEnum::A,
2867 true);
2868 for (int i = 0; i < mArStruct->b()->size() - 1; i++)
2869 TEST_EQ(mArStruct->b()->Get(i), i + 1);
2870#endif
2871}
2872
2873void NativeTypeTest() {
2874 const int N = 3;
2875
2876 Geometry::ApplicationDataT src_data;
2877 src_data.vectors.reserve(N);
2878
2879 for (int i = 0; i < N; ++i) {
2880 src_data.vectors.push_back (Native::Vector3D(10 * i + 0.1f, 10 * i + 0.2f, 10 * i + 0.3f));
2881 }
2882
2883 flatbuffers::FlatBufferBuilder fbb;
2884 fbb.Finish(Geometry::ApplicationData::Pack(fbb, &src_data));
2885
2886 auto dstDataT = Geometry::UnPackApplicationData(fbb.GetBufferPointer());
2887
2888 for (int i = 0; i < N; ++i) {
2889 Native::Vector3D& v = dstDataT->vectors[i];
2890 TEST_EQ(v.x, 10 * i + 0.1f);
2891 TEST_EQ(v.y, 10 * i + 0.2f);
2892 TEST_EQ(v.z, 10 * i + 0.3f);
2893 }
2894}
2895
2896void FixedLengthArrayJsonTest(bool binary) {
2897 // VS10 does not support typed enums, exclude from tests
2898#if !defined(_MSC_VER) || _MSC_VER >= 1700
2899 // load FlatBuffer schema (.fbs) and JSON from disk
2900 std::string schemafile;
2901 std::string jsonfile;
2902 TEST_EQ(
2903 flatbuffers::LoadFile(
2904 (test_data_path + "arrays_test." + (binary ? "bfbs" : "fbs")).c_str(),
2905 binary, &schemafile),
2906 true);
2907 TEST_EQ(flatbuffers::LoadFile((test_data_path + "arrays_test.golden").c_str(),
2908 false, &jsonfile),
2909 true);
2910
2911 // parse schema first, so we can use it to parse the data after
2912 flatbuffers::Parser parserOrg, parserGen;
2913 if (binary) {
2914 flatbuffers::Verifier verifier(
2915 reinterpret_cast<const uint8_t *>(schemafile.c_str()),
2916 schemafile.size());
2917 TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
2918 TEST_EQ(parserOrg.Deserialize((const uint8_t *)schemafile.c_str(),
2919 schemafile.size()),
2920 true);
2921 TEST_EQ(parserGen.Deserialize((const uint8_t *)schemafile.c_str(),
2922 schemafile.size()),
2923 true);
2924 } else {
2925 TEST_EQ(parserOrg.Parse(schemafile.c_str()), true);
2926 TEST_EQ(parserGen.Parse(schemafile.c_str()), true);
2927 }
2928 TEST_EQ(parserOrg.Parse(jsonfile.c_str()), true);
2929
2930 // First, verify it, just in case:
2931 flatbuffers::Verifier verifierOrg(parserOrg.builder_.GetBufferPointer(),
2932 parserOrg.builder_.GetSize());
2933 TEST_EQ(VerifyArrayTableBuffer(verifierOrg), true);
2934
2935 // Export to JSON
2936 std::string jsonGen;
2937 TEST_EQ(
2938 GenerateText(parserOrg, parserOrg.builder_.GetBufferPointer(), &jsonGen),
2939 true);
2940
2941 // Import from JSON
2942 TEST_EQ(parserGen.Parse(jsonGen.c_str()), true);
2943
2944 // Verify buffer from generated JSON
2945 flatbuffers::Verifier verifierGen(parserGen.builder_.GetBufferPointer(),
2946 parserGen.builder_.GetSize());
2947 TEST_EQ(VerifyArrayTableBuffer(verifierGen), true);
2948
2949 // Compare generated buffer to original
2950 TEST_EQ(parserOrg.builder_.GetSize(), parserGen.builder_.GetSize());
2951 TEST_EQ(std::memcmp(parserOrg.builder_.GetBufferPointer(),
2952 parserGen.builder_.GetBufferPointer(),
2953 parserOrg.builder_.GetSize()),
2954 0);
2955#else
2956 (void)binary;
2957#endif
2958}
2959
2960int FlatBufferTests() {
2961 // clang-format off
2962
2963 // Run our various test suites:
2964
2965 std::string rawbuf;
2966 auto flatbuf1 = CreateFlatBufferTest(rawbuf);
2967 #if !defined(FLATBUFFERS_CPP98_STL)
2968 auto flatbuf = std::move(flatbuf1); // Test move assignment.
2969 #else
2970 auto &flatbuf = flatbuf1;
2971 #endif // !defined(FLATBUFFERS_CPP98_STL)
2972
2973 TriviallyCopyableTest();
2974
2975 AccessFlatBufferTest(reinterpret_cast<const uint8_t *>(rawbuf.c_str()),
2976 rawbuf.length());
2977 AccessFlatBufferTest(flatbuf.data(), flatbuf.size());
2978
2979 MutateFlatBuffersTest(flatbuf.data(), flatbuf.size());
2980
2981 ObjectFlatBuffersTest(flatbuf.data());
2982
2983 MiniReflectFlatBuffersTest(flatbuf.data());
2984
2985 SizePrefixedTest();
2986
2987 #ifndef FLATBUFFERS_NO_FILE_TESTS
2988 #ifdef FLATBUFFERS_TEST_PATH_PREFIX
2989 test_data_path = FLATBUFFERS_STRING(FLATBUFFERS_TEST_PATH_PREFIX) +
2990 test_data_path;
2991 #endif
2992 ParseAndGenerateTextTest(false);
2993 ParseAndGenerateTextTest(true);
2994 FixedLengthArrayJsonTest(false);
2995 FixedLengthArrayJsonTest(true);
2996 ReflectionTest(flatbuf.data(), flatbuf.size());
2997 ParseProtoTest();
2998 UnionVectorTest();
2999 LoadVerifyBinaryTest();
3000 GenerateTableTextTest();
3001 #endif
3002 // clang-format on
3003
3004 FuzzTest1();
3005 FuzzTest2();
3006
3007 ErrorTest();
3008 ValueTest();
3009 EnumValueTest();
3010 EnumStringsTest();
3011 EnumNamesTest();
3012 EnumOutOfRangeTest();
3013 IntegerOutOfRangeTest();
3014 IntegerBoundaryTest();
3015 UnicodeTest();
3016 UnicodeTestAllowNonUTF8();
3017 UnicodeTestGenerateTextFailsOnNonUTF8();
3018 UnicodeSurrogatesTest();
3019 UnicodeInvalidSurrogatesTest();
3020 InvalidUTF8Test();
3021 UnknownFieldsTest();
3022 ParseUnionTest();
3023 InvalidNestedFlatbufferTest();
3024 ConformTest();
3025 ParseProtoBufAsciiTest();
3026 TypeAliasesTest();
3027 EndianSwapTest();
3028 CreateSharedStringTest();
3029 JsonDefaultTest();
3030 JsonEnumsTest();
3031 FlexBuffersTest();
3032 UninitializedVectorTest();
3033 EqualOperatorTest();
3034 NumericUtilsTest();
3035 IsAsciiUtilsTest();
3036 ValidFloatTest();
3037 InvalidFloatTest();
3038 TestMonsterExtraFloats();
3039 FixedLengthArrayTest();
3040 NativeTypeTest();
3041 return 0;
3042}
3043
3044int main(int /*argc*/, const char * /*argv*/ []) {
3045 InitTestEngine();
3046
3047 std::string req_locale;
3048 if (flatbuffers::ReadEnvironmentVariable("FLATBUFFERS_TEST_LOCALE",
3049 &req_locale)) {
3050 TEST_OUTPUT_LINE("The environment variable FLATBUFFERS_TEST_LOCALE=%s",
3051 req_locale.c_str());
3052 req_locale = flatbuffers::RemoveStringQuotes(req_locale);
3053 std::string the_locale;
3054 TEST_ASSERT_FUNC(
3055 flatbuffers::SetGlobalTestLocale(req_locale.c_str(), &the_locale));
3056 TEST_OUTPUT_LINE("The global C-locale changed: %s", the_locale.c_str());
3057 }
3058
3059 FlatBufferTests();
3060 FlatBufferBuilderTest();
3061
3062 if (!testing_fails) {
3063 TEST_OUTPUT_LINE("ALL TESTS PASSED");
3064 } else {
3065 TEST_OUTPUT_LINE("%d FAILED TESTS", testing_fails);
3066 }
3067 return CloseTestEngine();
3068}