Squashed 'third_party/flatbuffers/' content from commit acc9990ab
Change-Id: I48550d40d78fea996ebe74e9723a5d1f910de491
git-subtree-dir: third_party/flatbuffers
git-subtree-split: acc9990abd2206491480291b0f85f925110102ea
diff --git a/tests/test.cpp b/tests/test.cpp
new file mode 100644
index 0000000..461840c
--- /dev/null
+++ b/tests/test.cpp
@@ -0,0 +1,3068 @@
+/*
+ * Copyright 2014 Google Inc. All rights reserved.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+#include <cmath>
+#include "flatbuffers/flatbuffers.h"
+#include "flatbuffers/idl.h"
+#include "flatbuffers/minireflect.h"
+#include "flatbuffers/registry.h"
+#include "flatbuffers/util.h"
+
+// clang-format off
+#ifdef FLATBUFFERS_CPP98_STL
+ #include "flatbuffers/stl_emulation.h"
+ namespace std {
+ using flatbuffers::unique_ptr;
+ }
+#endif
+// clang-format on
+
+#include "monster_test_generated.h"
+#include "namespace_test/namespace_test1_generated.h"
+#include "namespace_test/namespace_test2_generated.h"
+#include "union_vector/union_vector_generated.h"
+#include "monster_extra_generated.h"
+#if !defined(_MSC_VER) || _MSC_VER >= 1700
+#include "arrays_test_generated.h"
+#endif
+
+#include "native_type_test_generated.h"
+#include "test_assert.h"
+
+#include "flatbuffers/flexbuffers.h"
+
+
+// clang-format off
+// Check that char* and uint8_t* are interoperable types.
+// The reinterpret_cast<> between the pointers are used to simplify data loading.
+static_assert(flatbuffers::is_same<uint8_t, char>::value ||
+ flatbuffers::is_same<uint8_t, unsigned char>::value,
+ "unexpected uint8_t type");
+
+#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
+ // Ensure IEEE-754 support if tests of floats with NaN/Inf will run.
+ static_assert(std::numeric_limits<float>::is_iec559 &&
+ std::numeric_limits<double>::is_iec559,
+ "IEC-559 (IEEE-754) standard required");
+#endif
+// clang-format on
+
+// Shortcuts for the infinity.
+static const auto infinityf = std::numeric_limits<float>::infinity();
+static const auto infinityd = std::numeric_limits<double>::infinity();
+
+using namespace MyGame::Example;
+
+void FlatBufferBuilderTest();
+
+// Include simple random number generator to ensure results will be the
+// same cross platform.
+// http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator
+uint32_t lcg_seed = 48271;
+uint32_t lcg_rand() {
+ return lcg_seed = (static_cast<uint64_t>(lcg_seed) * 279470273UL) % 4294967291UL;
+}
+void lcg_reset() { lcg_seed = 48271; }
+
+std::string test_data_path =
+#ifdef BAZEL_TEST_DATA_PATH
+ "../com_github_google_flatbuffers/tests/";
+#else
+ "tests/";
+#endif
+
+// example of how to build up a serialized buffer algorithmically:
+flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) {
+ flatbuffers::FlatBufferBuilder builder;
+
+ auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20));
+
+ auto name = builder.CreateString("MyMonster");
+
+ unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
+ auto inventory = builder.CreateVector(inv_data, 10);
+
+ // Alternatively, create the vector first, and fill in data later:
+ // unsigned char *inv_buf = nullptr;
+ // auto inventory = builder.CreateUninitializedVector<unsigned char>(
+ // 10, &inv_buf);
+ // memcpy(inv_buf, inv_data, 10);
+
+ Test tests[] = { Test(10, 20), Test(30, 40) };
+ auto testv = builder.CreateVectorOfStructs(tests, 2);
+
+ // clang-format off
+ #ifndef FLATBUFFERS_CPP98_STL
+ // Create a vector of structures from a lambda.
+ auto testv2 = builder.CreateVectorOfStructs<Test>(
+ 2, [&](size_t i, Test* s) -> void {
+ *s = tests[i];
+ });
+ #else
+ // Create a vector of structures using a plain old C++ function.
+ auto testv2 = builder.CreateVectorOfStructs<Test>(
+ 2, [](size_t i, Test* s, void *state) -> void {
+ *s = (reinterpret_cast<Test*>(state))[i];
+ }, tests);
+ #endif // FLATBUFFERS_CPP98_STL
+ // clang-format on
+
+ // create monster with very few fields set:
+ // (same functionality as CreateMonster below, but sets fields manually)
+ flatbuffers::Offset<Monster> mlocs[3];
+ auto fred = builder.CreateString("Fred");
+ auto barney = builder.CreateString("Barney");
+ auto wilma = builder.CreateString("Wilma");
+ MonsterBuilder mb1(builder);
+ mb1.add_name(fred);
+ mlocs[0] = mb1.Finish();
+ MonsterBuilder mb2(builder);
+ mb2.add_name(barney);
+ mb2.add_hp(1000);
+ mlocs[1] = mb2.Finish();
+ MonsterBuilder mb3(builder);
+ mb3.add_name(wilma);
+ mlocs[2] = mb3.Finish();
+
+ // Create an array of strings. Also test string pooling, and lambdas.
+ auto vecofstrings =
+ builder.CreateVector<flatbuffers::Offset<flatbuffers::String>>(
+ 4,
+ [](size_t i, flatbuffers::FlatBufferBuilder *b)
+ -> flatbuffers::Offset<flatbuffers::String> {
+ static const char *names[] = { "bob", "fred", "bob", "fred" };
+ return b->CreateSharedString(names[i]);
+ },
+ &builder);
+
+ // Creating vectors of strings in one convenient call.
+ std::vector<std::string> names2;
+ names2.push_back("jane");
+ names2.push_back("mary");
+ auto vecofstrings2 = builder.CreateVectorOfStrings(names2);
+
+ // Create an array of sorted tables, can be used with binary search when read:
+ auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3);
+
+ // Create an array of sorted structs,
+ // can be used with binary search when read:
+ std::vector<Ability> abilities;
+ abilities.push_back(Ability(4, 40));
+ abilities.push_back(Ability(3, 30));
+ abilities.push_back(Ability(2, 20));
+ abilities.push_back(Ability(1, 10));
+ auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities);
+
+ // Create a nested FlatBuffer.
+ // Nested FlatBuffers are stored in a ubyte vector, which can be convenient
+ // since they can be memcpy'd around much easier than other FlatBuffer
+ // values. They have little overhead compared to storing the table directly.
+ // As a test, create a mostly empty Monster buffer:
+ flatbuffers::FlatBufferBuilder nested_builder;
+ auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0,
+ nested_builder.CreateString("NestedMonster"));
+ FinishMonsterBuffer(nested_builder, nmloc);
+ // Now we can store the buffer in the parent. Note that by default, vectors
+ // are only aligned to their elements or size field, so in this case if the
+ // buffer contains 64-bit elements, they may not be correctly aligned. We fix
+ // that with:
+ builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t),
+ nested_builder.GetBufferMinAlignment());
+ // If for whatever reason you don't have the nested_builder available, you
+ // can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or
+ // the largest force_align value in your schema if you're using it.
+ auto nested_flatbuffer_vector = builder.CreateVector(
+ nested_builder.GetBufferPointer(), nested_builder.GetSize());
+
+ // Test a nested FlexBuffer:
+ flexbuffers::Builder flexbuild;
+ flexbuild.Int(1234);
+ flexbuild.Finish();
+ auto flex = builder.CreateVector(flexbuild.GetBuffer());
+
+ // Test vector of enums.
+ Color colors[] = { Color_Blue, Color_Green };
+ // We use this special creation function because we have an array of
+ // pre-C++11 (enum class) enums whose size likely is int, yet its declared
+ // type in the schema is byte.
+ auto vecofcolors = builder.CreateVectorScalarCast<uint8_t, Color>(colors, 2);
+
+ // shortcut for creating monster with all fields set:
+ auto mloc = CreateMonster(builder, &vec, 150, 80, name, inventory, Color_Blue,
+ Any_Monster, mlocs[1].Union(), // Store a union.
+ testv, vecofstrings, vecoftables, 0,
+ nested_flatbuffer_vector, 0, false, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 3.14159f, 3.0f, 0.0f, vecofstrings2,
+ vecofstructs, flex, testv2, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, AnyUniqueAliases_NONE, 0,
+ AnyAmbiguousAliases_NONE, 0, vecofcolors);
+
+ FinishMonsterBuffer(builder, mloc);
+
+ // clang-format off
+ #ifdef FLATBUFFERS_TEST_VERBOSE
+ // print byte data for debugging:
+ auto p = builder.GetBufferPointer();
+ for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++)
+ printf("%d ", p[i]);
+ #endif
+ // clang-format on
+
+ // return the buffer for the caller to use.
+ auto bufferpointer =
+ reinterpret_cast<const char *>(builder.GetBufferPointer());
+ buffer.assign(bufferpointer, bufferpointer + builder.GetSize());
+
+ return builder.Release();
+}
+
+// example of accessing a buffer loaded in memory:
+void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length,
+ bool pooled = true) {
+ // First, verify the buffers integrity (optional)
+ flatbuffers::Verifier verifier(flatbuf, length);
+ TEST_EQ(VerifyMonsterBuffer(verifier), true);
+
+ // clang-format off
+ #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
+ std::vector<uint8_t> test_buff;
+ test_buff.resize(length * 2);
+ std::memcpy(&test_buff[0], flatbuf, length);
+ std::memcpy(&test_buff[length], flatbuf, length);
+
+ flatbuffers::Verifier verifier1(&test_buff[0], length);
+ TEST_EQ(VerifyMonsterBuffer(verifier1), true);
+ TEST_EQ(verifier1.GetComputedSize(), length);
+
+ flatbuffers::Verifier verifier2(&test_buff[length], length);
+ TEST_EQ(VerifyMonsterBuffer(verifier2), true);
+ TEST_EQ(verifier2.GetComputedSize(), length);
+ #endif
+ // clang-format on
+
+ TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0);
+ TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true);
+ TEST_EQ(strcmp(MonsterExtension(), "mon"), 0);
+
+ // Access the buffer from the root.
+ auto monster = GetMonster(flatbuf);
+
+ TEST_EQ(monster->hp(), 80);
+ TEST_EQ(monster->mana(), 150); // default
+ TEST_EQ_STR(monster->name()->c_str(), "MyMonster");
+ // Can't access the following field, it is deprecated in the schema,
+ // which means accessors are not generated:
+ // monster.friendly()
+
+ auto pos = monster->pos();
+ TEST_NOTNULL(pos);
+ TEST_EQ(pos->z(), 3);
+ TEST_EQ(pos->test3().a(), 10);
+ TEST_EQ(pos->test3().b(), 20);
+
+ auto inventory = monster->inventory();
+ TEST_EQ(VectorLength(inventory), 10UL); // Works even if inventory is null.
+ TEST_NOTNULL(inventory);
+ unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
+ // Check compatibilty of iterators with STL.
+ std::vector<unsigned char> inv_vec(inventory->begin(), inventory->end());
+ int n = 0;
+ for (auto it = inventory->begin(); it != inventory->end(); ++it, ++n) {
+ auto indx = it - inventory->begin();
+ TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
+ TEST_EQ(*it, inv_data[indx]);
+ }
+ TEST_EQ(n, inv_vec.size());
+
+ n = 0;
+ for (auto it = inventory->cbegin(); it != inventory->cend(); ++it, ++n) {
+ auto indx = it - inventory->cbegin();
+ TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
+ TEST_EQ(*it, inv_data[indx]);
+ }
+ TEST_EQ(n, inv_vec.size());
+
+ n = 0;
+ for (auto it = inventory->rbegin(); it != inventory->rend(); ++it, ++n) {
+ auto indx = inventory->rend() - it - 1;
+ TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
+ TEST_EQ(*it, inv_data[indx]);
+ }
+ TEST_EQ(n, inv_vec.size());
+
+ n = 0;
+ for (auto it = inventory->crbegin(); it != inventory->crend(); ++it, ++n) {
+ auto indx = inventory->crend() - it - 1;
+ TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
+ TEST_EQ(*it, inv_data[indx]);
+ }
+ TEST_EQ(n, inv_vec.size());
+
+ TEST_EQ(monster->color(), Color_Blue);
+
+ // Example of accessing a union:
+ TEST_EQ(monster->test_type(), Any_Monster); // First make sure which it is.
+ auto monster2 = reinterpret_cast<const Monster *>(monster->test());
+ TEST_NOTNULL(monster2);
+ TEST_EQ_STR(monster2->name()->c_str(), "Fred");
+
+ // Example of accessing a vector of strings:
+ auto vecofstrings = monster->testarrayofstring();
+ TEST_EQ(vecofstrings->size(), 4U);
+ TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob");
+ TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred");
+ if (pooled) {
+ // These should have pointer equality because of string pooling.
+ TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str());
+ TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str());
+ }
+
+ auto vecofstrings2 = monster->testarrayofstring2();
+ if (vecofstrings2) {
+ TEST_EQ(vecofstrings2->size(), 2U);
+ TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane");
+ TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary");
+ }
+
+ // Example of accessing a vector of tables:
+ auto vecoftables = monster->testarrayoftables();
+ TEST_EQ(vecoftables->size(), 3U);
+ for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it)
+ TEST_EQ(strlen(it->name()->c_str()) >= 4, true);
+ TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney");
+ TEST_EQ(vecoftables->Get(0)->hp(), 1000);
+ TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred");
+ TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma");
+ TEST_NOTNULL(vecoftables->LookupByKey("Barney"));
+ TEST_NOTNULL(vecoftables->LookupByKey("Fred"));
+ TEST_NOTNULL(vecoftables->LookupByKey("Wilma"));
+
+ // Test accessing a vector of sorted structs
+ auto vecofstructs = monster->testarrayofsortedstruct();
+ if (vecofstructs) { // not filled in monster_test.bfbs
+ for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size() - 1; i++) {
+ auto left = vecofstructs->Get(i);
+ auto right = vecofstructs->Get(i + 1);
+ TEST_EQ(true, (left->KeyCompareLessThan(right)));
+ }
+ TEST_NOTNULL(vecofstructs->LookupByKey(3));
+ TEST_EQ(static_cast<const Ability *>(nullptr),
+ vecofstructs->LookupByKey(5));
+ }
+
+ // Test nested FlatBuffers if available:
+ auto nested_buffer = monster->testnestedflatbuffer();
+ if (nested_buffer) {
+ // nested_buffer is a vector of bytes you can memcpy. However, if you
+ // actually want to access the nested data, this is a convenient
+ // accessor that directly gives you the root table:
+ auto nested_monster = monster->testnestedflatbuffer_nested_root();
+ TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster");
+ }
+
+ // Test flexbuffer if available:
+ auto flex = monster->flex();
+ // flex is a vector of bytes you can memcpy etc.
+ TEST_EQ(flex->size(), 4); // Encoded FlexBuffer bytes.
+ // However, if you actually want to access the nested data, this is a
+ // convenient accessor that directly gives you the root value:
+ TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234);
+
+ // Test vector of enums:
+ auto colors = monster->vector_of_enums();
+ if (colors) {
+ TEST_EQ(colors->size(), 2);
+ TEST_EQ(colors->Get(0), Color_Blue);
+ TEST_EQ(colors->Get(1), Color_Green);
+ }
+
+ // Since Flatbuffers uses explicit mechanisms to override the default
+ // compiler alignment, double check that the compiler indeed obeys them:
+ // (Test consists of a short and byte):
+ TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL);
+ TEST_EQ(sizeof(Test), 4UL);
+
+ const flatbuffers::Vector<const Test *> *tests_array[] = {
+ monster->test4(),
+ monster->test5(),
+ };
+ for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) {
+ auto tests = tests_array[i];
+ TEST_NOTNULL(tests);
+ auto test_0 = tests->Get(0);
+ auto test_1 = tests->Get(1);
+ TEST_EQ(test_0->a(), 10);
+ TEST_EQ(test_0->b(), 20);
+ TEST_EQ(test_1->a(), 30);
+ TEST_EQ(test_1->b(), 40);
+ for (auto it = tests->begin(); it != tests->end(); ++it) {
+ TEST_EQ(it->a() == 10 || it->a() == 30, true); // Just testing iterators.
+ }
+ }
+
+ // Checking for presence of fields:
+ TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true);
+ TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false);
+
+ // Obtaining a buffer from a root:
+ TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf);
+}
+
+// Change a FlatBuffer in-place, after it has been constructed.
+void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) {
+ // Get non-const pointer to root.
+ auto monster = GetMutableMonster(flatbuf);
+
+ // Each of these tests mutates, then tests, then set back to the original,
+ // so we can test that the buffer in the end still passes our original test.
+ auto hp_ok = monster->mutate_hp(10);
+ TEST_EQ(hp_ok, true); // Field was present.
+ TEST_EQ(monster->hp(), 10);
+ // Mutate to default value
+ auto hp_ok_default = monster->mutate_hp(100);
+ TEST_EQ(hp_ok_default, true); // Field was present.
+ TEST_EQ(monster->hp(), 100);
+ // Test that mutate to default above keeps field valid for further mutations
+ auto hp_ok_2 = monster->mutate_hp(20);
+ TEST_EQ(hp_ok_2, true);
+ TEST_EQ(monster->hp(), 20);
+ monster->mutate_hp(80);
+
+ // Monster originally at 150 mana (default value)
+ auto mana_default_ok = monster->mutate_mana(150); // Mutate to default value.
+ TEST_EQ(mana_default_ok,
+ true); // Mutation should succeed, because default value.
+ TEST_EQ(monster->mana(), 150);
+ auto mana_ok = monster->mutate_mana(10);
+ TEST_EQ(mana_ok, false); // Field was NOT present, because default value.
+ TEST_EQ(monster->mana(), 150);
+
+ // Mutate structs.
+ auto pos = monster->mutable_pos();
+ auto test3 = pos->mutable_test3(); // Struct inside a struct.
+ test3.mutate_a(50); // Struct fields never fail.
+ TEST_EQ(test3.a(), 50);
+ test3.mutate_a(10);
+
+ // Mutate vectors.
+ auto inventory = monster->mutable_inventory();
+ inventory->Mutate(9, 100);
+ TEST_EQ(inventory->Get(9), 100);
+ inventory->Mutate(9, 9);
+
+ auto tables = monster->mutable_testarrayoftables();
+ auto first = tables->GetMutableObject(0);
+ TEST_EQ(first->hp(), 1000);
+ first->mutate_hp(0);
+ TEST_EQ(first->hp(), 0);
+ first->mutate_hp(1000);
+
+ // Run the verifier and the regular test to make sure we didn't trample on
+ // anything.
+ AccessFlatBufferTest(flatbuf, length);
+}
+
+// Unpack a FlatBuffer into objects.
+void ObjectFlatBuffersTest(uint8_t *flatbuf) {
+ // Optional: we can specify resolver and rehasher functions to turn hashed
+ // strings into object pointers and back, to implement remote references
+ // and such.
+ auto resolver = flatbuffers::resolver_function_t(
+ [](void **pointer_adr, flatbuffers::hash_value_t hash) {
+ (void)pointer_adr;
+ (void)hash;
+ // Don't actually do anything, leave variable null.
+ });
+ auto rehasher = flatbuffers::rehasher_function_t(
+ [](void *pointer) -> flatbuffers::hash_value_t {
+ (void)pointer;
+ return 0;
+ });
+
+ // Turn a buffer into C++ objects.
+ auto monster1 = UnPackMonster(flatbuf, &resolver);
+
+ // Re-serialize the data.
+ flatbuffers::FlatBufferBuilder fbb1;
+ fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher),
+ MonsterIdentifier());
+
+ // Unpack again, and re-serialize again.
+ auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver);
+ flatbuffers::FlatBufferBuilder fbb2;
+ fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher),
+ MonsterIdentifier());
+
+ // Now we've gone full round-trip, the two buffers should match.
+ auto len1 = fbb1.GetSize();
+ auto len2 = fbb2.GetSize();
+ TEST_EQ(len1, len2);
+ TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(), len1), 0);
+
+ // Test it with the original buffer test to make sure all data survived.
+ AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false);
+
+ // Test accessing fields, similar to AccessFlatBufferTest above.
+ TEST_EQ(monster2->hp, 80);
+ TEST_EQ(monster2->mana, 150); // default
+ TEST_EQ_STR(monster2->name.c_str(), "MyMonster");
+
+ auto &pos = monster2->pos;
+ TEST_NOTNULL(pos);
+ TEST_EQ(pos->z(), 3);
+ TEST_EQ(pos->test3().a(), 10);
+ TEST_EQ(pos->test3().b(), 20);
+
+ auto &inventory = monster2->inventory;
+ TEST_EQ(inventory.size(), 10UL);
+ unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
+ for (auto it = inventory.begin(); it != inventory.end(); ++it)
+ TEST_EQ(*it, inv_data[it - inventory.begin()]);
+
+ TEST_EQ(monster2->color, Color_Blue);
+
+ auto monster3 = monster2->test.AsMonster();
+ TEST_NOTNULL(monster3);
+ TEST_EQ_STR(monster3->name.c_str(), "Fred");
+
+ auto &vecofstrings = monster2->testarrayofstring;
+ TEST_EQ(vecofstrings.size(), 4U);
+ TEST_EQ_STR(vecofstrings[0].c_str(), "bob");
+ TEST_EQ_STR(vecofstrings[1].c_str(), "fred");
+
+ auto &vecofstrings2 = monster2->testarrayofstring2;
+ TEST_EQ(vecofstrings2.size(), 2U);
+ TEST_EQ_STR(vecofstrings2[0].c_str(), "jane");
+ TEST_EQ_STR(vecofstrings2[1].c_str(), "mary");
+
+ auto &vecoftables = monster2->testarrayoftables;
+ TEST_EQ(vecoftables.size(), 3U);
+ TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney");
+ TEST_EQ(vecoftables[0]->hp, 1000);
+ TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred");
+ TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma");
+
+ auto &tests = monster2->test4;
+ TEST_EQ(tests[0].a(), 10);
+ TEST_EQ(tests[0].b(), 20);
+ TEST_EQ(tests[1].a(), 30);
+ TEST_EQ(tests[1].b(), 40);
+}
+
+// Prefix a FlatBuffer with a size field.
+void SizePrefixedTest() {
+ // Create size prefixed buffer.
+ flatbuffers::FlatBufferBuilder fbb;
+ FinishSizePrefixedMonsterBuffer(
+ fbb,
+ CreateMonster(fbb, 0, 200, 300, fbb.CreateString("bob")));
+
+ // Verify it.
+ flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
+ TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier), true);
+
+ // Access it.
+ auto m = GetSizePrefixedMonster(fbb.GetBufferPointer());
+ TEST_EQ(m->mana(), 200);
+ TEST_EQ(m->hp(), 300);
+ TEST_EQ_STR(m->name()->c_str(), "bob");
+}
+
+void TriviallyCopyableTest() {
+ // clang-format off
+ #if __GNUG__ && __GNUC__ < 5
+ TEST_EQ(__has_trivial_copy(Vec3), true);
+ #else
+ #if __cplusplus >= 201103L
+ TEST_EQ(std::is_trivially_copyable<Vec3>::value, true);
+ #endif
+ #endif
+ // clang-format on
+}
+
+// Check stringify of an default enum value to json
+void JsonDefaultTest() {
+ // load FlatBuffer schema (.fbs) from disk
+ std::string schemafile;
+ TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
+ false, &schemafile), true);
+ // parse schema first, so we can use it to parse the data after
+ flatbuffers::Parser parser;
+ auto include_test_path =
+ flatbuffers::ConCatPathFileName(test_data_path, "include_test");
+ const char *include_directories[] = { test_data_path.c_str(),
+ include_test_path.c_str(), nullptr };
+
+ TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
+ // create incomplete monster and store to json
+ parser.opts.output_default_scalars_in_json = true;
+ parser.opts.output_enum_identifiers = true;
+ flatbuffers::FlatBufferBuilder builder;
+ auto name = builder.CreateString("default_enum");
+ MonsterBuilder color_monster(builder);
+ color_monster.add_name(name);
+ FinishMonsterBuffer(builder, color_monster.Finish());
+ std::string jsongen;
+ auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen);
+ TEST_EQ(result, true);
+ // default value of the "color" field is Blue
+ TEST_EQ(std::string::npos != jsongen.find("color: \"Blue\""), true);
+ // default value of the "testf" field is 3.14159
+ TEST_EQ(std::string::npos != jsongen.find("testf: 3.14159"), true);
+}
+
+void JsonEnumsTest() {
+ // load FlatBuffer schema (.fbs) from disk
+ std::string schemafile;
+ TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
+ false, &schemafile),
+ true);
+ // parse schema first, so we can use it to parse the data after
+ flatbuffers::Parser parser;
+ auto include_test_path =
+ flatbuffers::ConCatPathFileName(test_data_path, "include_test");
+ const char *include_directories[] = { test_data_path.c_str(),
+ include_test_path.c_str(), nullptr };
+ parser.opts.output_enum_identifiers = true;
+ TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
+ flatbuffers::FlatBufferBuilder builder;
+ auto name = builder.CreateString("bitflag_enum");
+ MonsterBuilder color_monster(builder);
+ color_monster.add_name(name);
+ color_monster.add_color(Color(Color_Blue | Color_Red));
+ FinishMonsterBuffer(builder, color_monster.Finish());
+ std::string jsongen;
+ auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen);
+ TEST_EQ(result, true);
+ TEST_EQ(std::string::npos != jsongen.find("color: \"Red Blue\""), true);
+}
+
+#if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
+// The IEEE-754 quiet_NaN is not simple binary constant.
+// All binary NaN bit strings have all the bits of the biased exponent field E
+// set to 1. A quiet NaN bit string should be encoded with the first bit d[1]
+// of the trailing significand field T being 1 (d[0] is implicit bit).
+// It is assumed that endianness of floating-point is same as integer.
+template<typename T, typename U, U qnan_base> bool is_quiet_nan_impl(T v) {
+ static_assert(sizeof(T) == sizeof(U), "unexpected");
+ U b = 0;
+ std::memcpy(&b, &v, sizeof(T));
+ return ((b & qnan_base) == qnan_base);
+}
+static bool is_quiet_nan(float v) {
+ return is_quiet_nan_impl<float, uint32_t, 0x7FC00000u>(v);
+}
+static bool is_quiet_nan(double v) {
+ return is_quiet_nan_impl<double, uint64_t, 0x7FF8000000000000ul>(v);
+}
+
+void TestMonsterExtraFloats() {
+ TEST_EQ(is_quiet_nan(1.0), false);
+ TEST_EQ(is_quiet_nan(infinityd), false);
+ TEST_EQ(is_quiet_nan(-infinityf), false);
+ TEST_EQ(is_quiet_nan(std::numeric_limits<float>::quiet_NaN()), true);
+ TEST_EQ(is_quiet_nan(std::numeric_limits<double>::quiet_NaN()), true);
+
+ using namespace flatbuffers;
+ using namespace MyGame;
+ // Load FlatBuffer schema (.fbs) from disk.
+ std::string schemafile;
+ TEST_EQ(LoadFile((test_data_path + "monster_extra.fbs").c_str(), false,
+ &schemafile),
+ true);
+ // Parse schema first, so we can use it to parse the data after.
+ Parser parser;
+ auto include_test_path = ConCatPathFileName(test_data_path, "include_test");
+ const char *include_directories[] = { test_data_path.c_str(),
+ include_test_path.c_str(), nullptr };
+ TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
+ // Create empty extra and store to json.
+ parser.opts.output_default_scalars_in_json = true;
+ parser.opts.output_enum_identifiers = true;
+ FlatBufferBuilder builder;
+ const auto def_root = MonsterExtraBuilder(builder).Finish();
+ FinishMonsterExtraBuffer(builder, def_root);
+ const auto def_obj = builder.GetBufferPointer();
+ const auto def_extra = GetMonsterExtra(def_obj);
+ TEST_NOTNULL(def_extra);
+ TEST_EQ(is_quiet_nan(def_extra->f0()), true);
+ TEST_EQ(is_quiet_nan(def_extra->f1()), true);
+ TEST_EQ(def_extra->f2(), +infinityf);
+ TEST_EQ(def_extra->f3(), -infinityf);
+ TEST_EQ(is_quiet_nan(def_extra->d0()), true);
+ TEST_EQ(is_quiet_nan(def_extra->d1()), true);
+ TEST_EQ(def_extra->d2(), +infinityd);
+ TEST_EQ(def_extra->d3(), -infinityd);
+ std::string jsongen;
+ auto result = GenerateText(parser, def_obj, &jsongen);
+ TEST_EQ(result, true);
+ // Check expected default values.
+ TEST_EQ(std::string::npos != jsongen.find("f0: nan"), true);
+ TEST_EQ(std::string::npos != jsongen.find("f1: nan"), true);
+ TEST_EQ(std::string::npos != jsongen.find("f2: inf"), true);
+ TEST_EQ(std::string::npos != jsongen.find("f3: -inf"), true);
+ TEST_EQ(std::string::npos != jsongen.find("d0: nan"), true);
+ TEST_EQ(std::string::npos != jsongen.find("d1: nan"), true);
+ TEST_EQ(std::string::npos != jsongen.find("d2: inf"), true);
+ TEST_EQ(std::string::npos != jsongen.find("d3: -inf"), true);
+ // Parse 'mosterdata_extra.json'.
+ const auto extra_base = test_data_path + "monsterdata_extra";
+ jsongen = "";
+ TEST_EQ(LoadFile((extra_base + ".json").c_str(), false, &jsongen), true);
+ TEST_EQ(parser.Parse(jsongen.c_str()), true);
+ const auto test_file = parser.builder_.GetBufferPointer();
+ const auto test_size = parser.builder_.GetSize();
+ Verifier verifier(test_file, test_size);
+ TEST_ASSERT(VerifyMonsterExtraBuffer(verifier));
+ const auto extra = GetMonsterExtra(test_file);
+ TEST_NOTNULL(extra);
+ TEST_EQ(is_quiet_nan(extra->f0()), true);
+ TEST_EQ(is_quiet_nan(extra->f1()), true);
+ TEST_EQ(extra->f2(), +infinityf);
+ TEST_EQ(extra->f3(), -infinityf);
+ TEST_EQ(is_quiet_nan(extra->d0()), true);
+ TEST_EQ(extra->d1(), +infinityd);
+ TEST_EQ(extra->d2(), -infinityd);
+ TEST_EQ(is_quiet_nan(extra->d3()), true);
+ TEST_NOTNULL(extra->fvec());
+ TEST_EQ(extra->fvec()->size(), 4);
+ TEST_EQ(extra->fvec()->Get(0), 1.0f);
+ TEST_EQ(extra->fvec()->Get(1), -infinityf);
+ TEST_EQ(extra->fvec()->Get(2), +infinityf);
+ TEST_EQ(is_quiet_nan(extra->fvec()->Get(3)), true);
+ TEST_NOTNULL(extra->dvec());
+ TEST_EQ(extra->dvec()->size(), 4);
+ TEST_EQ(extra->dvec()->Get(0), 2.0);
+ TEST_EQ(extra->dvec()->Get(1), +infinityd);
+ TEST_EQ(extra->dvec()->Get(2), -infinityd);
+ TEST_EQ(is_quiet_nan(extra->dvec()->Get(3)), true);
+}
+#else
+void TestMonsterExtraFloats() {}
+#endif
+
+// example of parsing text straight into a buffer, and generating
+// text back from it:
+void ParseAndGenerateTextTest(bool binary) {
+ // load FlatBuffer schema (.fbs) and JSON from disk
+ std::string schemafile;
+ std::string jsonfile;
+ TEST_EQ(flatbuffers::LoadFile(
+ (test_data_path + "monster_test." + (binary ? "bfbs" : "fbs"))
+ .c_str(),
+ binary, &schemafile),
+ true);
+ TEST_EQ(flatbuffers::LoadFile(
+ (test_data_path + "monsterdata_test.golden").c_str(), false,
+ &jsonfile),
+ true);
+
+ auto include_test_path =
+ flatbuffers::ConCatPathFileName(test_data_path, "include_test");
+ const char *include_directories[] = { test_data_path.c_str(),
+ include_test_path.c_str(), nullptr };
+
+ // parse schema first, so we can use it to parse the data after
+ flatbuffers::Parser parser;
+ if (binary) {
+ flatbuffers::Verifier verifier(
+ reinterpret_cast<const uint8_t *>(schemafile.c_str()),
+ schemafile.size());
+ TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
+ //auto schema = reflection::GetSchema(schemafile.c_str());
+ TEST_EQ(parser.Deserialize((const uint8_t *)schemafile.c_str(), schemafile.size()), true);
+ } else {
+ TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
+ }
+ TEST_EQ(parser.Parse(jsonfile.c_str(), include_directories), true);
+
+ // here, parser.builder_ contains a binary buffer that is the parsed data.
+
+ // First, verify it, just in case:
+ flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(),
+ parser.builder_.GetSize());
+ TEST_EQ(VerifyMonsterBuffer(verifier), true);
+
+ AccessFlatBufferTest(parser.builder_.GetBufferPointer(),
+ parser.builder_.GetSize(), false);
+
+ // to ensure it is correct, we now generate text back from the binary,
+ // and compare the two:
+ std::string jsongen;
+ auto result =
+ GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
+ TEST_EQ(result, true);
+ TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str());
+
+ // We can also do the above using the convenient Registry that knows about
+ // a set of file_identifiers mapped to schemas.
+ flatbuffers::Registry registry;
+ // Make sure schemas can find their includes.
+ registry.AddIncludeDirectory(test_data_path.c_str());
+ registry.AddIncludeDirectory(include_test_path.c_str());
+ // Call this with many schemas if possible.
+ registry.Register(MonsterIdentifier(),
+ (test_data_path + "monster_test.fbs").c_str());
+ // Now we got this set up, we can parse by just specifying the identifier,
+ // the correct schema will be loaded on the fly:
+ auto buf = registry.TextToFlatBuffer(jsonfile.c_str(), MonsterIdentifier());
+ // If this fails, check registry.lasterror_.
+ TEST_NOTNULL(buf.data());
+ // Test the buffer, to be sure:
+ AccessFlatBufferTest(buf.data(), buf.size(), false);
+ // We can use the registry to turn this back into text, in this case it
+ // will get the file_identifier from the binary:
+ std::string text;
+ auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text);
+ // If this fails, check registry.lasterror_.
+ TEST_EQ(ok, true);
+ TEST_EQ_STR(text.c_str(), jsonfile.c_str());
+
+ // Generate text for UTF-8 strings without escapes.
+ std::string jsonfile_utf8;
+ TEST_EQ(flatbuffers::LoadFile((test_data_path + "unicode_test.json").c_str(),
+ false, &jsonfile_utf8),
+ true);
+ TEST_EQ(parser.Parse(jsonfile_utf8.c_str(), include_directories), true);
+ // To ensure it is correct, generate utf-8 text back from the binary.
+ std::string jsongen_utf8;
+ // request natural printing for utf-8 strings
+ parser.opts.natural_utf8 = true;
+ parser.opts.strict_json = true;
+ TEST_EQ(
+ GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen_utf8),
+ true);
+ TEST_EQ_STR(jsongen_utf8.c_str(), jsonfile_utf8.c_str());
+}
+
+void ReflectionTest(uint8_t *flatbuf, size_t length) {
+ // Load a binary schema.
+ std::string bfbsfile;
+ TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.bfbs").c_str(),
+ true, &bfbsfile),
+ true);
+
+ // Verify it, just in case:
+ flatbuffers::Verifier verifier(
+ reinterpret_cast<const uint8_t *>(bfbsfile.c_str()), bfbsfile.length());
+ TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
+
+ // Make sure the schema is what we expect it to be.
+ auto &schema = *reflection::GetSchema(bfbsfile.c_str());
+ auto root_table = schema.root_table();
+ TEST_EQ_STR(root_table->name()->c_str(), "MyGame.Example.Monster");
+ auto fields = root_table->fields();
+ auto hp_field_ptr = fields->LookupByKey("hp");
+ TEST_NOTNULL(hp_field_ptr);
+ auto &hp_field = *hp_field_ptr;
+ TEST_EQ_STR(hp_field.name()->c_str(), "hp");
+ TEST_EQ(hp_field.id(), 2);
+ TEST_EQ(hp_field.type()->base_type(), reflection::Short);
+ auto friendly_field_ptr = fields->LookupByKey("friendly");
+ TEST_NOTNULL(friendly_field_ptr);
+ TEST_NOTNULL(friendly_field_ptr->attributes());
+ TEST_NOTNULL(friendly_field_ptr->attributes()->LookupByKey("priority"));
+
+ // Make sure the table index is what we expect it to be.
+ auto pos_field_ptr = fields->LookupByKey("pos");
+ TEST_NOTNULL(pos_field_ptr);
+ TEST_EQ(pos_field_ptr->type()->base_type(), reflection::Obj);
+ auto pos_table_ptr = schema.objects()->Get(pos_field_ptr->type()->index());
+ TEST_NOTNULL(pos_table_ptr);
+ TEST_EQ_STR(pos_table_ptr->name()->c_str(), "MyGame.Example.Vec3");
+
+ // Now use it to dynamically access a buffer.
+ auto &root = *flatbuffers::GetAnyRoot(flatbuf);
+
+ // Verify the buffer first using reflection based verification
+ TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
+ true);
+
+ auto hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
+ TEST_EQ(hp, 80);
+
+ // Rather than needing to know the type, we can also get the value of
+ // any field as an int64_t/double/string, regardless of what it actually is.
+ auto hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
+ TEST_EQ(hp_int64, 80);
+ auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field);
+ TEST_EQ(hp_double, 80.0);
+ auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema);
+ TEST_EQ_STR(hp_string.c_str(), "80");
+
+ // Get struct field through reflection
+ auto pos_struct = flatbuffers::GetFieldStruct(root, *pos_field_ptr);
+ TEST_NOTNULL(pos_struct);
+ TEST_EQ(flatbuffers::GetAnyFieldF(*pos_struct,
+ *pos_table_ptr->fields()->LookupByKey("z")),
+ 3.0f);
+
+ auto test3_field = pos_table_ptr->fields()->LookupByKey("test3");
+ auto test3_struct = flatbuffers::GetFieldStruct(*pos_struct, *test3_field);
+ TEST_NOTNULL(test3_struct);
+ auto test3_object = schema.objects()->Get(test3_field->type()->index());
+
+ TEST_EQ(flatbuffers::GetAnyFieldF(*test3_struct,
+ *test3_object->fields()->LookupByKey("a")),
+ 10);
+
+ // We can also modify it.
+ flatbuffers::SetField<uint16_t>(&root, hp_field, 200);
+ hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
+ TEST_EQ(hp, 200);
+
+ // We can also set fields generically:
+ flatbuffers::SetAnyFieldI(&root, hp_field, 300);
+ hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
+ TEST_EQ(hp_int64, 300);
+ flatbuffers::SetAnyFieldF(&root, hp_field, 300.5);
+ hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
+ TEST_EQ(hp_int64, 300);
+ flatbuffers::SetAnyFieldS(&root, hp_field, "300");
+ hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
+ TEST_EQ(hp_int64, 300);
+
+ // Test buffer is valid after the modifications
+ TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
+ true);
+
+ // Reset it, for further tests.
+ flatbuffers::SetField<uint16_t>(&root, hp_field, 80);
+
+ // More advanced functionality: changing the size of items in-line!
+ // First we put the FlatBuffer inside an std::vector.
+ std::vector<uint8_t> resizingbuf(flatbuf, flatbuf + length);
+ // Find the field we want to modify.
+ auto &name_field = *fields->LookupByKey("name");
+ // Get the root.
+ // This time we wrap the result from GetAnyRoot in a smartpointer that
+ // will keep rroot valid as resizingbuf resizes.
+ auto rroot = flatbuffers::piv(
+ flatbuffers::GetAnyRoot(flatbuffers::vector_data(resizingbuf)),
+ resizingbuf);
+ SetString(schema, "totally new string", GetFieldS(**rroot, name_field),
+ &resizingbuf);
+ // Here resizingbuf has changed, but rroot is still valid.
+ TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "totally new string");
+ // Now lets extend a vector by 100 elements (10 -> 110).
+ auto &inventory_field = *fields->LookupByKey("inventory");
+ auto rinventory = flatbuffers::piv(
+ flatbuffers::GetFieldV<uint8_t>(**rroot, inventory_field), resizingbuf);
+ flatbuffers::ResizeVector<uint8_t>(schema, 110, 50, *rinventory,
+ &resizingbuf);
+ // rinventory still valid, so lets read from it.
+ TEST_EQ(rinventory->Get(10), 50);
+
+ // For reflection uses not covered already, there is a more powerful way:
+ // we can simply generate whatever object we want to add/modify in a
+ // FlatBuffer of its own, then add that to an existing FlatBuffer:
+ // As an example, let's add a string to an array of strings.
+ // First, find our field:
+ auto &testarrayofstring_field = *fields->LookupByKey("testarrayofstring");
+ // Find the vector value:
+ auto rtestarrayofstring = flatbuffers::piv(
+ flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::String>>(
+ **rroot, testarrayofstring_field),
+ resizingbuf);
+ // It's a vector of 2 strings, to which we add one more, initialized to
+ // offset 0.
+ flatbuffers::ResizeVector<flatbuffers::Offset<flatbuffers::String>>(
+ schema, 3, 0, *rtestarrayofstring, &resizingbuf);
+ // Here we just create a buffer that contans a single string, but this
+ // could also be any complex set of tables and other values.
+ flatbuffers::FlatBufferBuilder stringfbb;
+ stringfbb.Finish(stringfbb.CreateString("hank"));
+ // Add the contents of it to our existing FlatBuffer.
+ // We do this last, so the pointer doesn't get invalidated (since it is
+ // at the end of the buffer):
+ auto string_ptr = flatbuffers::AddFlatBuffer(
+ resizingbuf, stringfbb.GetBufferPointer(), stringfbb.GetSize());
+ // Finally, set the new value in the vector.
+ rtestarrayofstring->MutateOffset(2, string_ptr);
+ TEST_EQ_STR(rtestarrayofstring->Get(0)->c_str(), "bob");
+ TEST_EQ_STR(rtestarrayofstring->Get(2)->c_str(), "hank");
+ // Test integrity of all resize operations above.
+ flatbuffers::Verifier resize_verifier(
+ reinterpret_cast<const uint8_t *>(flatbuffers::vector_data(resizingbuf)),
+ resizingbuf.size());
+ TEST_EQ(VerifyMonsterBuffer(resize_verifier), true);
+
+ // Test buffer is valid using reflection as well
+ TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
+ flatbuffers::vector_data(resizingbuf),
+ resizingbuf.size()),
+ true);
+
+ // As an additional test, also set it on the name field.
+ // Note: unlike the name change above, this just overwrites the offset,
+ // rather than changing the string in-place.
+ SetFieldT(*rroot, name_field, string_ptr);
+ TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "hank");
+
+ // Using reflection, rather than mutating binary FlatBuffers, we can also copy
+ // tables and other things out of other FlatBuffers into a FlatBufferBuilder,
+ // either part or whole.
+ flatbuffers::FlatBufferBuilder fbb;
+ auto root_offset = flatbuffers::CopyTable(
+ fbb, schema, *root_table, *flatbuffers::GetAnyRoot(flatbuf), true);
+ fbb.Finish(root_offset, MonsterIdentifier());
+ // Test that it was copied correctly:
+ AccessFlatBufferTest(fbb.GetBufferPointer(), fbb.GetSize());
+
+ // Test buffer is valid using reflection as well
+ TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
+ fbb.GetBufferPointer(), fbb.GetSize()),
+ true);
+}
+
+void MiniReflectFlatBuffersTest(uint8_t *flatbuf) {
+ auto s = flatbuffers::FlatBufferToString(flatbuf, Monster::MiniReflectTypeTable());
+ TEST_EQ_STR(
+ s.c_str(),
+ "{ "
+ "pos: { x: 1.0, y: 2.0, z: 3.0, test1: 0.0, test2: Red, test3: "
+ "{ a: 10, b: 20 } }, "
+ "hp: 80, "
+ "name: \"MyMonster\", "
+ "inventory: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], "
+ "test_type: Monster, "
+ "test: { name: \"Fred\" }, "
+ "test4: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
+ "testarrayofstring: [ \"bob\", \"fred\", \"bob\", \"fred\" ], "
+ "testarrayoftables: [ { hp: 1000, name: \"Barney\" }, { name: \"Fred\" "
+ "}, "
+ "{ name: \"Wilma\" } ], "
+ // TODO(wvo): should really print this nested buffer correctly.
+ "testnestedflatbuffer: [ 20, 0, 0, 0, 77, 79, 78, 83, 12, 0, 12, 0, 0, "
+ "0, "
+ "4, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 0, 78, "
+ "101, 115, 116, 101, 100, 77, 111, 110, 115, 116, 101, 114, 0, 0, 0 ], "
+ "testarrayofstring2: [ \"jane\", \"mary\" ], "
+ "testarrayofsortedstruct: [ { id: 1, distance: 10 }, "
+ "{ id: 2, distance: 20 }, { id: 3, distance: 30 }, "
+ "{ id: 4, distance: 40 } ], "
+ "flex: [ 210, 4, 5, 2 ], "
+ "test5: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
+ "vector_of_enums: [ Blue, Green ] "
+ "}");
+
+ Test test(16, 32);
+ Vec3 vec(1,2,3, 1.5, Color_Red, test);
+ flatbuffers::FlatBufferBuilder vec_builder;
+ vec_builder.Finish(vec_builder.CreateStruct(vec));
+ auto vec_buffer = vec_builder.Release();
+ auto vec_str = flatbuffers::FlatBufferToString(vec_buffer.data(),
+ Vec3::MiniReflectTypeTable());
+ TEST_EQ_STR(
+ vec_str.c_str(),
+ "{ x: 1.0, y: 2.0, z: 3.0, test1: 1.5, test2: Red, test3: { a: 16, b: 32 } }");
+}
+
+// Parse a .proto schema, output as .fbs
+void ParseProtoTest() {
+ // load the .proto and the golden file from disk
+ std::string protofile;
+ std::string goldenfile;
+ std::string goldenunionfile;
+ TEST_EQ(
+ flatbuffers::LoadFile((test_data_path + "prototest/test.proto").c_str(),
+ false, &protofile),
+ true);
+ TEST_EQ(
+ flatbuffers::LoadFile((test_data_path + "prototest/test.golden").c_str(),
+ false, &goldenfile),
+ true);
+ TEST_EQ(
+ flatbuffers::LoadFile((test_data_path +
+ "prototest/test_union.golden").c_str(),
+ false, &goldenunionfile),
+ true);
+
+ flatbuffers::IDLOptions opts;
+ opts.include_dependence_headers = false;
+ opts.proto_mode = true;
+
+ // Parse proto.
+ flatbuffers::Parser parser(opts);
+ auto protopath = test_data_path + "prototest/";
+ const char *include_directories[] = { protopath.c_str(), nullptr };
+ TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true);
+
+ // Generate fbs.
+ auto fbs = flatbuffers::GenerateFBS(parser, "test");
+
+ // Ensure generated file is parsable.
+ flatbuffers::Parser parser2;
+ TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true);
+ TEST_EQ_STR(fbs.c_str(), goldenfile.c_str());
+
+ // Parse proto with --oneof-union option.
+ opts.proto_oneof_union = true;
+ flatbuffers::Parser parser3(opts);
+ TEST_EQ(parser3.Parse(protofile.c_str(), include_directories), true);
+
+ // Generate fbs.
+ auto fbs_union = flatbuffers::GenerateFBS(parser3, "test");
+
+ // Ensure generated file is parsable.
+ flatbuffers::Parser parser4;
+ TEST_EQ(parser4.Parse(fbs_union.c_str(), nullptr), true);
+ TEST_EQ_STR(fbs_union.c_str(), goldenunionfile.c_str());
+}
+
+template<typename T>
+void CompareTableFieldValue(flatbuffers::Table *table,
+ flatbuffers::voffset_t voffset, T val) {
+ T read = table->GetField(voffset, static_cast<T>(0));
+ TEST_EQ(read, val);
+}
+
+// Low level stress/fuzz test: serialize/deserialize a variety of
+// different kinds of data in different combinations
+void FuzzTest1() {
+ // Values we're testing against: chosen to ensure no bits get chopped
+ // off anywhere, and also be different from eachother.
+ const uint8_t bool_val = true;
+ const int8_t char_val = -127; // 0x81
+ const uint8_t uchar_val = 0xFF;
+ const int16_t short_val = -32222; // 0x8222;
+ const uint16_t ushort_val = 0xFEEE;
+ const int32_t int_val = 0x83333333;
+ const uint32_t uint_val = 0xFDDDDDDD;
+ const int64_t long_val = 0x8444444444444444LL;
+ const uint64_t ulong_val = 0xFCCCCCCCCCCCCCCCULL;
+ const float float_val = 3.14159f;
+ const double double_val = 3.14159265359;
+
+ const int test_values_max = 11;
+ const flatbuffers::voffset_t fields_per_object = 4;
+ const int num_fuzz_objects = 10000; // The higher, the more thorough :)
+
+ flatbuffers::FlatBufferBuilder builder;
+
+ lcg_reset(); // Keep it deterministic.
+
+ flatbuffers::uoffset_t objects[num_fuzz_objects];
+
+ // Generate num_fuzz_objects random objects each consisting of
+ // fields_per_object fields, each of a random type.
+ for (int i = 0; i < num_fuzz_objects; i++) {
+ auto start = builder.StartTable();
+ for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
+ int choice = lcg_rand() % test_values_max;
+ auto off = flatbuffers::FieldIndexToOffset(f);
+ switch (choice) {
+ case 0: builder.AddElement<uint8_t>(off, bool_val, 0); break;
+ case 1: builder.AddElement<int8_t>(off, char_val, 0); break;
+ case 2: builder.AddElement<uint8_t>(off, uchar_val, 0); break;
+ case 3: builder.AddElement<int16_t>(off, short_val, 0); break;
+ case 4: builder.AddElement<uint16_t>(off, ushort_val, 0); break;
+ case 5: builder.AddElement<int32_t>(off, int_val, 0); break;
+ case 6: builder.AddElement<uint32_t>(off, uint_val, 0); break;
+ case 7: builder.AddElement<int64_t>(off, long_val, 0); break;
+ case 8: builder.AddElement<uint64_t>(off, ulong_val, 0); break;
+ case 9: builder.AddElement<float>(off, float_val, 0); break;
+ case 10: builder.AddElement<double>(off, double_val, 0); break;
+ }
+ }
+ objects[i] = builder.EndTable(start);
+ }
+ builder.PreAlign<flatbuffers::largest_scalar_t>(0); // Align whole buffer.
+
+ lcg_reset(); // Reset.
+
+ uint8_t *eob = builder.GetCurrentBufferPointer() + builder.GetSize();
+
+ // Test that all objects we generated are readable and return the
+ // expected values. We generate random objects in the same order
+ // so this is deterministic.
+ for (int i = 0; i < num_fuzz_objects; i++) {
+ auto table = reinterpret_cast<flatbuffers::Table *>(eob - objects[i]);
+ for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
+ int choice = lcg_rand() % test_values_max;
+ flatbuffers::voffset_t off = flatbuffers::FieldIndexToOffset(f);
+ switch (choice) {
+ case 0: CompareTableFieldValue(table, off, bool_val); break;
+ case 1: CompareTableFieldValue(table, off, char_val); break;
+ case 2: CompareTableFieldValue(table, off, uchar_val); break;
+ case 3: CompareTableFieldValue(table, off, short_val); break;
+ case 4: CompareTableFieldValue(table, off, ushort_val); break;
+ case 5: CompareTableFieldValue(table, off, int_val); break;
+ case 6: CompareTableFieldValue(table, off, uint_val); break;
+ case 7: CompareTableFieldValue(table, off, long_val); break;
+ case 8: CompareTableFieldValue(table, off, ulong_val); break;
+ case 9: CompareTableFieldValue(table, off, float_val); break;
+ case 10: CompareTableFieldValue(table, off, double_val); break;
+ }
+ }
+ }
+}
+
+// High level stress/fuzz test: generate a big schema and
+// matching json data in random combinations, then parse both,
+// generate json back from the binary, and compare with the original.
+void FuzzTest2() {
+ lcg_reset(); // Keep it deterministic.
+
+ const int num_definitions = 30;
+ const int num_struct_definitions = 5; // Subset of num_definitions.
+ const int fields_per_definition = 15;
+ const int instances_per_definition = 5;
+ const int deprecation_rate = 10; // 1 in deprecation_rate fields will
+ // be deprecated.
+
+ std::string schema = "namespace test;\n\n";
+
+ struct RndDef {
+ std::string instances[instances_per_definition];
+
+ // Since we're generating schema and corresponding data in tandem,
+ // this convenience function adds strings to both at once.
+ static void Add(RndDef (&definitions_l)[num_definitions],
+ std::string &schema_l, const int instances_per_definition_l,
+ const char *schema_add, const char *instance_add,
+ int definition) {
+ schema_l += schema_add;
+ for (int i = 0; i < instances_per_definition_l; i++)
+ definitions_l[definition].instances[i] += instance_add;
+ }
+ };
+
+ // clang-format off
+ #define AddToSchemaAndInstances(schema_add, instance_add) \
+ RndDef::Add(definitions, schema, instances_per_definition, \
+ schema_add, instance_add, definition)
+
+ #define Dummy() \
+ RndDef::Add(definitions, schema, instances_per_definition, \
+ "byte", "1", definition)
+ // clang-format on
+
+ RndDef definitions[num_definitions];
+
+ // We are going to generate num_definitions, the first
+ // num_struct_definitions will be structs, the rest tables. For each
+ // generate random fields, some of which may be struct/table types
+ // referring to previously generated structs/tables.
+ // Simultanenously, we generate instances_per_definition JSON data
+ // definitions, which will have identical structure to the schema
+ // being generated. We generate multiple instances such that when creating
+ // hierarchy, we get some variety by picking one randomly.
+ for (int definition = 0; definition < num_definitions; definition++) {
+ std::string definition_name = "D" + flatbuffers::NumToString(definition);
+
+ bool is_struct = definition < num_struct_definitions;
+
+ AddToSchemaAndInstances(
+ ((is_struct ? "struct " : "table ") + definition_name + " {\n").c_str(),
+ "{\n");
+
+ for (int field = 0; field < fields_per_definition; field++) {
+ const bool is_last_field = field == fields_per_definition - 1;
+
+ // Deprecate 1 in deprecation_rate fields. Only table fields can be
+ // deprecated.
+ // Don't deprecate the last field to avoid dangling commas in JSON.
+ const bool deprecated =
+ !is_struct && !is_last_field && (lcg_rand() % deprecation_rate == 0);
+
+ std::string field_name = "f" + flatbuffers::NumToString(field);
+ AddToSchemaAndInstances((" " + field_name + ":").c_str(),
+ deprecated ? "" : (field_name + ": ").c_str());
+ // Pick random type:
+ auto base_type = static_cast<flatbuffers::BaseType>(
+ lcg_rand() % (flatbuffers::BASE_TYPE_UNION + 1));
+ switch (base_type) {
+ case flatbuffers::BASE_TYPE_STRING:
+ if (is_struct) {
+ Dummy(); // No strings in structs.
+ } else {
+ AddToSchemaAndInstances("string", deprecated ? "" : "\"hi\"");
+ }
+ break;
+ case flatbuffers::BASE_TYPE_VECTOR:
+ if (is_struct) {
+ Dummy(); // No vectors in structs.
+ } else {
+ AddToSchemaAndInstances("[ubyte]",
+ deprecated ? "" : "[\n0,\n1,\n255\n]");
+ }
+ break;
+ case flatbuffers::BASE_TYPE_NONE:
+ case flatbuffers::BASE_TYPE_UTYPE:
+ case flatbuffers::BASE_TYPE_STRUCT:
+ case flatbuffers::BASE_TYPE_UNION:
+ if (definition) {
+ // Pick a random previous definition and random data instance of
+ // that definition.
+ int defref = lcg_rand() % definition;
+ int instance = lcg_rand() % instances_per_definition;
+ AddToSchemaAndInstances(
+ ("D" + flatbuffers::NumToString(defref)).c_str(),
+ deprecated ? ""
+ : definitions[defref].instances[instance].c_str());
+ } else {
+ // If this is the first definition, we have no definition we can
+ // refer to.
+ Dummy();
+ }
+ break;
+ case flatbuffers::BASE_TYPE_BOOL:
+ AddToSchemaAndInstances(
+ "bool", deprecated ? "" : (lcg_rand() % 2 ? "true" : "false"));
+ break;
+ case flatbuffers::BASE_TYPE_ARRAY:
+ if (!is_struct) {
+ AddToSchemaAndInstances(
+ "ubyte",
+ deprecated ? "" : "255"); // No fixed-length arrays in tables.
+ } else {
+ AddToSchemaAndInstances("[int:3]", deprecated ? "" : "[\n,\n,\n]");
+ }
+ break;
+ default:
+ // All the scalar types.
+ schema += flatbuffers::kTypeNames[base_type];
+
+ if (!deprecated) {
+ // We want each instance to use its own random value.
+ for (int inst = 0; inst < instances_per_definition; inst++)
+ definitions[definition].instances[inst] +=
+ flatbuffers::IsFloat(base_type)
+ ? flatbuffers::NumToString<double>(lcg_rand() % 128)
+ .c_str()
+ : flatbuffers::NumToString<int>(lcg_rand() % 128).c_str();
+ }
+ }
+ AddToSchemaAndInstances(deprecated ? "(deprecated);\n" : ";\n",
+ deprecated ? "" : is_last_field ? "\n" : ",\n");
+ }
+ AddToSchemaAndInstances("}\n\n", "}");
+ }
+
+ schema += "root_type D" + flatbuffers::NumToString(num_definitions - 1);
+ schema += ";\n";
+
+ flatbuffers::Parser parser;
+
+ // Will not compare against the original if we don't write defaults
+ parser.builder_.ForceDefaults(true);
+
+ // Parse the schema, parse the generated data, then generate text back
+ // from the binary and compare against the original.
+ TEST_EQ(parser.Parse(schema.c_str()), true);
+
+ const std::string &json =
+ definitions[num_definitions - 1].instances[0] + "\n";
+
+ TEST_EQ(parser.Parse(json.c_str()), true);
+
+ std::string jsongen;
+ parser.opts.indent_step = 0;
+ auto result =
+ GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
+ TEST_EQ(result, true);
+
+ if (jsongen != json) {
+ // These strings are larger than a megabyte, so we show the bytes around
+ // the first bytes that are different rather than the whole string.
+ size_t len = std::min(json.length(), jsongen.length());
+ for (size_t i = 0; i < len; i++) {
+ if (json[i] != jsongen[i]) {
+ i -= std::min(static_cast<size_t>(10), i); // show some context;
+ size_t end = std::min(len, i + 20);
+ for (; i < end; i++)
+ TEST_OUTPUT_LINE("at %d: found \"%c\", expected \"%c\"\n",
+ static_cast<int>(i), jsongen[i], json[i]);
+ break;
+ }
+ }
+ TEST_NOTNULL(NULL);
+ }
+
+ // clang-format off
+ #ifdef FLATBUFFERS_TEST_VERBOSE
+ TEST_OUTPUT_LINE("%dk schema tested with %dk of json\n",
+ static_cast<int>(schema.length() / 1024),
+ static_cast<int>(json.length() / 1024));
+ #endif
+ // clang-format on
+}
+
+// Test that parser errors are actually generated.
+void TestError_(const char *src, const char *error_substr, bool strict_json,
+ const char *file, int line, const char *func) {
+ flatbuffers::IDLOptions opts;
+ opts.strict_json = strict_json;
+ flatbuffers::Parser parser(opts);
+ if (parser.Parse(src)) {
+ TestFail("true", "false",
+ ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
+ func);
+ } else if (!strstr(parser.error_.c_str(), error_substr)) {
+ TestFail(parser.error_.c_str(), error_substr,
+ ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
+ func);
+ }
+}
+
+void TestError_(const char *src, const char *error_substr, const char *file,
+ int line, const char *func) {
+ TestError_(src, error_substr, false, file, line, func);
+}
+
+#ifdef _WIN32
+# define TestError(src, ...) \
+ TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__)
+#else
+# define TestError(src, ...) \
+ TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__)
+#endif
+
+// Test that parsing errors occur as we'd expect.
+// Also useful for coverage, making sure these paths are run.
+void ErrorTest() {
+ // In order they appear in idl_parser.cpp
+ TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
+ TestError("\"\0", "illegal");
+ TestError("\"\\q", "escape code");
+ TestError("table ///", "documentation");
+ TestError("@", "illegal");
+ TestError("table 1", "expecting");
+ TestError("table X { Y:[[int]]; }", "nested vector");
+ TestError("table X { Y:1; }", "illegal type");
+ TestError("table X { Y:int; Y:int; }", "field already");
+ TestError("table Y {} table X { Y:int; }", "same as table");
+ TestError("struct X { Y:string; }", "only scalar");
+ TestError("table X { Y:string = \"\"; }", "default values");
+ TestError("struct X { a:uint = 42; }", "default values");
+ TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum");
+ TestError("struct X { Y:int (deprecated); }", "deprecate");
+ TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
+ "missing type field");
+ TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
+ "type id");
+ TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
+ TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
+ TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
+ true);
+ TestError(
+ "struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
+ "{ V:{ Y:1 } }",
+ "wrong number");
+ TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
+ "unknown enum value");
+ TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
+ TestError("enum X:byte { Y } enum X {", "enum already");
+ TestError("enum X:float {}", "underlying");
+ TestError("enum X:byte { Y, Y }", "value already");
+ TestError("enum X:byte { Y=2, Z=1 }", "ascending");
+ TestError("table X { Y:int; } table X {", "datatype already");
+ TestError("struct X (force_align: 7) { Y:int; }", "force_align");
+ TestError("struct X {}", "size 0");
+ TestError("{}", "no root");
+ TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file");
+ TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }",
+ "end of file");
+ TestError("root_type X;", "unknown root");
+ TestError("struct X { Y:int; } root_type X;", "a table");
+ TestError("union X { Y }", "referenced");
+ TestError("union Z { X } struct X { Y:int; }", "only tables");
+ TestError("table X { Y:[int]; YLength:int; }", "clash");
+ TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
+ // float to integer conversion is forbidden
+ TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float");
+ TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float");
+ TestError("enum X:bool { Y = true }", "must be integral");
+}
+
+template<typename T>
+T TestValue(const char *json, const char *type_name,
+ const char *decls = nullptr) {
+ flatbuffers::Parser parser;
+ parser.builder_.ForceDefaults(true); // return defaults
+ auto check_default = json ? false : true;
+ if (check_default) { parser.opts.output_default_scalars_in_json = true; }
+ // Simple schema.
+ std::string schema = std::string(decls ? decls : "") + "\n" +
+ "table X { Y:" + std::string(type_name) +
+ "; } root_type X;";
+ auto schema_done = parser.Parse(schema.c_str());
+ TEST_EQ_STR(parser.error_.c_str(), "");
+ TEST_EQ(schema_done, true);
+
+ auto done = parser.Parse(check_default ? "{}" : json);
+ TEST_EQ_STR(parser.error_.c_str(), "");
+ TEST_EQ(done, true);
+
+ // Check with print.
+ std::string print_back;
+ parser.opts.indent_step = -1;
+ TEST_EQ(GenerateText(parser, parser.builder_.GetBufferPointer(), &print_back),
+ true);
+ // restore value from its default
+ if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); }
+
+ auto root = flatbuffers::GetRoot<flatbuffers::Table>(
+ parser.builder_.GetBufferPointer());
+ return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
+}
+
+bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
+
+// Additional parser testing not covered elsewhere.
+void ValueTest() {
+ // Test scientific notation numbers.
+ TEST_EQ(FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"),
+ 3.14159f),
+ true);
+ // number in string
+ TEST_EQ(FloatCompare(TestValue<float>("{ Y:\"0.0314159e+2\" }", "float"),
+ 3.14159f),
+ true);
+
+ // Test conversion functions.
+ TEST_EQ(FloatCompare(TestValue<float>("{ Y:cos(rad(180)) }", "float"), -1),
+ true);
+
+ // int embedded to string
+ TEST_EQ(TestValue<int>("{ Y:\"-876\" }", "int=-123"), -876);
+ TEST_EQ(TestValue<int>("{ Y:\"876\" }", "int=-123"), 876);
+
+ // Test negative hex constant.
+ TEST_EQ(TestValue<int>("{ Y:-0x8ea0 }", "int=-0x8ea0"), -36512);
+ TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512);
+
+ // positive hex constant
+ TEST_EQ(TestValue<int>("{ Y:0x1abcdef }", "int=0x1"), 0x1abcdef);
+ // with optional '+' sign
+ TEST_EQ(TestValue<int>("{ Y:+0x1abcdef }", "int=+0x1"), 0x1abcdef);
+ // hex in string
+ TEST_EQ(TestValue<int>("{ Y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef);
+
+ // Make sure we do unsigned 64bit correctly.
+ TEST_EQ(TestValue<uint64_t>("{ Y:12335089644688340133 }", "ulong"),
+ 12335089644688340133ULL);
+
+ // bool in string
+ TEST_EQ(TestValue<bool>("{ Y:\"false\" }", "bool=true"), false);
+ TEST_EQ(TestValue<bool>("{ Y:\"true\" }", "bool=\"true\""), true);
+ TEST_EQ(TestValue<bool>("{ Y:'false' }", "bool=true"), false);
+ TEST_EQ(TestValue<bool>("{ Y:'true' }", "bool=\"true\""), true);
+
+ // check comments before and after json object
+ TEST_EQ(TestValue<int>("/*before*/ { Y:1 } /*after*/", "int"), 1);
+ TEST_EQ(TestValue<int>("//before \n { Y:1 } //after", "int"), 1);
+
+}
+
+void NestedListTest() {
+ flatbuffers::Parser parser1;
+ TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
+ "root_type T;"
+ "{ F:[ [10,20], [30,40]] }"),
+ true);
+}
+
+void EnumStringsTest() {
+ flatbuffers::Parser parser1;
+ TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
+ "root_type T;"
+ "{ F:[ A, B, \"C\", \"A B C\" ] }"),
+ true);
+ flatbuffers::Parser parser2;
+ TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
+ "root_type T;"
+ "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"),
+ true);
+ // unsigned bit_flags
+ flatbuffers::Parser parser3;
+ TEST_EQ(
+ parser3.Parse("enum E:uint16 (bit_flags) { F0, F07=7, F08, F14=14, F15 }"
+ " table T { F: E = \"F15 F08\"; }"
+ "root_type T;"),
+ true);
+}
+
+void EnumNamesTest() {
+ TEST_EQ_STR("Red", EnumNameColor(Color_Red));
+ TEST_EQ_STR("Green", EnumNameColor(Color_Green));
+ TEST_EQ_STR("Blue", EnumNameColor(Color_Blue));
+ // Check that Color to string don't crash while decode a mixture of Colors.
+ // 1) Example::Color enum is enum with unfixed underlying type.
+ // 2) Valid enum range: [0; 2^(ceil(log2(Color_ANY))) - 1].
+ // Consequence: A value is out of this range will lead to UB (since C++17).
+ // For details see C++17 standard or explanation on the SO:
+ // stackoverflow.com/questions/18195312/what-happens-if-you-static-cast-invalid-value-to-enum-class
+ TEST_EQ_STR("", EnumNameColor(static_cast<Color>(0)));
+ TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY-1)));
+ TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY+1)));
+}
+
+void EnumOutOfRangeTest() {
+ TestError("enum X:byte { Y = 128 }", "enum value does not fit");
+ TestError("enum X:byte { Y = -129 }", "enum value does not fit");
+ TestError("enum X:byte { Y = 126, Z0, Z1 }", "enum value does not fit");
+ TestError("enum X:ubyte { Y = -1 }", "enum value does not fit");
+ TestError("enum X:ubyte { Y = 256 }", "enum value does not fit");
+ TestError("enum X:ubyte { Y = 255, Z }", "enum value does not fit");
+ // Unions begin with an implicit "NONE = 0".
+ TestError("table Y{} union X { Y = -1 }",
+ "enum values must be specified in ascending order");
+ TestError("table Y{} union X { Y = 256 }", "enum value does not fit");
+ TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit");
+ TestError("enum X:int { Y = -2147483649 }", "enum value does not fit");
+ TestError("enum X:int { Y = 2147483648 }", "enum value does not fit");
+ TestError("enum X:uint { Y = -1 }", "enum value does not fit");
+ TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit");
+ TestError("enum X:long { Y = 9223372036854775808 }", "does not fit");
+ TestError("enum X:long { Y = 9223372036854775807, Z }", "enum value does not fit");
+ TestError("enum X:ulong { Y = -1 }", "does not fit");
+ TestError("enum X:ubyte (bit_flags) { Y=8 }", "bit flag out");
+ TestError("enum X:byte (bit_flags) { Y=7 }", "must be unsigned"); // -128
+ // bit_flgs out of range
+ TestError("enum X:ubyte (bit_flags) { Y0,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8 }", "out of range");
+}
+
+void EnumValueTest() {
+ // json: "{ Y:0 }", schema: table X { Y : "E"}
+ // 0 in enum (V=0) E then Y=0 is valid.
+ TEST_EQ(TestValue<int>("{ Y:0 }", "E", "enum E:int { V }"), 0);
+ TEST_EQ(TestValue<int>("{ Y:V }", "E", "enum E:int { V }"), 0);
+ // A default value of Y is 0.
+ TEST_EQ(TestValue<int>("{ }", "E", "enum E:int { V }"), 0);
+ TEST_EQ(TestValue<int>("{ Y:5 }", "E=V", "enum E:int { V=5 }"), 5);
+ // Generate json with defaults and check.
+ TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { V=5 }"), 5);
+ // 5 in enum
+ TEST_EQ(TestValue<int>("{ Y:5 }", "E", "enum E:int { Z, V=5 }"), 5);
+ TEST_EQ(TestValue<int>("{ Y:5 }", "E=V", "enum E:int { Z, V=5 }"), 5);
+ // Generate json with defaults and check.
+ TEST_EQ(TestValue<int>(nullptr, "E", "enum E:int { Z, V=5 }"), 0);
+ TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { Z, V=5 }"), 5);
+ // u84 test
+ TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
+ "enum E:ulong { V = 13835058055282163712 }"),
+ 13835058055282163712ULL);
+ TEST_EQ(TestValue<uint64_t>(nullptr, "E=V",
+ "enum E:ulong { V = 18446744073709551615 }"),
+ 18446744073709551615ULL);
+ // Assign non-enum value to enum field. Is it right?
+ TEST_EQ(TestValue<int>("{ Y:7 }", "E", "enum E:int { V = 0 }"), 7);
+}
+
+void IntegerOutOfRangeTest() {
+ TestError("table T { F:byte; } root_type T; { F:128 }",
+ "constant does not fit");
+ TestError("table T { F:byte; } root_type T; { F:-129 }",
+ "constant does not fit");
+ TestError("table T { F:ubyte; } root_type T; { F:256 }",
+ "constant does not fit");
+ TestError("table T { F:ubyte; } root_type T; { F:-1 }",
+ "constant does not fit");
+ TestError("table T { F:short; } root_type T; { F:32768 }",
+ "constant does not fit");
+ TestError("table T { F:short; } root_type T; { F:-32769 }",
+ "constant does not fit");
+ TestError("table T { F:ushort; } root_type T; { F:65536 }",
+ "constant does not fit");
+ TestError("table T { F:ushort; } root_type T; { F:-1 }",
+ "constant does not fit");
+ TestError("table T { F:int; } root_type T; { F:2147483648 }",
+ "constant does not fit");
+ TestError("table T { F:int; } root_type T; { F:-2147483649 }",
+ "constant does not fit");
+ TestError("table T { F:uint; } root_type T; { F:4294967296 }",
+ "constant does not fit");
+ TestError("table T { F:uint; } root_type T; { F:-1 }",
+ "constant does not fit");
+ // Check fixed width aliases
+ TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit");
+ TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit");
+ TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit");
+ TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit");
+ TestError("table X { Y:uint32; } root_type X; { Y: -1 }", "");
+ TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }",
+ "does not fit");
+ TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
+ TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }",
+ "does not fit");
+ TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }",
+ "does not fit");
+
+ TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit");
+ TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit");
+ TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit");
+ TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit");
+ TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", "");
+ TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }",
+ "does not fit");
+ TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }",
+ "does not fit");
+ TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }",
+ "does not fit");
+ // check out-of-int64 as int8
+ TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }",
+ "does not fit");
+ TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }",
+ "does not fit");
+
+ // Check default values
+ TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}",
+ "does not fit");
+ TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}",
+ "does not fit");
+ TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
+ TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}",
+ "does not fit");
+ TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}",
+ "does not fit");
+}
+
+void IntegerBoundaryTest() {
+ // Check numerical compatibility with non-C++ languages.
+ // By the C++ standard, std::numerical_limits<int64_t>::min() == -9223372036854775807 (-2^63+1) or less*
+ // The Flatbuffers grammar and most of the languages (C#, Java, Rust) expect
+ // that minimum values are: -128, -32768,.., -9223372036854775808.
+ // Since C++20, static_cast<int64>(0x8000000000000000ULL) is well-defined two's complement cast.
+ // Therefore -9223372036854775808 should be valid negative value.
+ TEST_EQ(flatbuffers::numeric_limits<int8_t>::min(), -128);
+ TEST_EQ(flatbuffers::numeric_limits<int8_t>::max(), 127);
+ TEST_EQ(flatbuffers::numeric_limits<int16_t>::min(), -32768);
+ TEST_EQ(flatbuffers::numeric_limits<int16_t>::max(), 32767);
+ TEST_EQ(flatbuffers::numeric_limits<int32_t>::min() + 1, -2147483647);
+ TEST_EQ(flatbuffers::numeric_limits<int32_t>::max(), 2147483647ULL);
+ TEST_EQ(flatbuffers::numeric_limits<int64_t>::min() + 1LL,
+ -9223372036854775807LL);
+ TEST_EQ(flatbuffers::numeric_limits<int64_t>::max(), 9223372036854775807ULL);
+ TEST_EQ(flatbuffers::numeric_limits<uint8_t>::max(), 255);
+ TEST_EQ(flatbuffers::numeric_limits<uint16_t>::max(), 65535);
+ TEST_EQ(flatbuffers::numeric_limits<uint32_t>::max(), 4294967295ULL);
+ TEST_EQ(flatbuffers::numeric_limits<uint64_t>::max(),
+ 18446744073709551615ULL);
+
+ TEST_EQ(TestValue<int8_t>("{ Y:127 }", "byte"), 127);
+ TEST_EQ(TestValue<int8_t>("{ Y:-128 }", "byte"), -128);
+ TEST_EQ(TestValue<uint8_t>("{ Y:255 }", "ubyte"), 255);
+ TEST_EQ(TestValue<uint8_t>("{ Y:0 }", "ubyte"), 0);
+ TEST_EQ(TestValue<int16_t>("{ Y:32767 }", "short"), 32767);
+ TEST_EQ(TestValue<int16_t>("{ Y:-32768 }", "short"), -32768);
+ TEST_EQ(TestValue<uint16_t>("{ Y:65535 }", "ushort"), 65535);
+ TEST_EQ(TestValue<uint16_t>("{ Y:0 }", "ushort"), 0);
+ TEST_EQ(TestValue<int32_t>("{ Y:2147483647 }", "int"), 2147483647);
+ TEST_EQ(TestValue<int32_t>("{ Y:-2147483648 }", "int") + 1, -2147483647);
+ TEST_EQ(TestValue<uint32_t>("{ Y:4294967295 }", "uint"), 4294967295);
+ TEST_EQ(TestValue<uint32_t>("{ Y:0 }", "uint"), 0);
+ TEST_EQ(TestValue<int64_t>("{ Y:9223372036854775807 }", "long"),
+ 9223372036854775807LL);
+ TEST_EQ(TestValue<int64_t>("{ Y:-9223372036854775808 }", "long") + 1LL,
+ -9223372036854775807LL);
+ TEST_EQ(TestValue<uint64_t>("{ Y:18446744073709551615 }", "ulong"),
+ 18446744073709551615ULL);
+ TEST_EQ(TestValue<uint64_t>("{ Y:0 }", "ulong"), 0);
+ TEST_EQ(TestValue<uint64_t>("{ Y: 18446744073709551615 }", "uint64"),
+ 18446744073709551615ULL);
+ // check that the default works
+ TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"),
+ 18446744073709551615ULL);
+}
+
+void ValidFloatTest() {
+ // check rounding to infinity
+ TEST_EQ(TestValue<float>("{ Y:+3.4029e+38 }", "float"), +infinityf);
+ TEST_EQ(TestValue<float>("{ Y:-3.4029e+38 }", "float"), -infinityf);
+ TEST_EQ(TestValue<double>("{ Y:+1.7977e+308 }", "double"), +infinityd);
+ TEST_EQ(TestValue<double>("{ Y:-1.7977e+308 }", "double"), -infinityd);
+
+ TEST_EQ(
+ FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"), 3.14159f),
+ true);
+ // float in string
+ TEST_EQ(FloatCompare(TestValue<float>("{ Y:\" 0.0314159e+2 \" }", "float"),
+ 3.14159f),
+ true);
+
+ TEST_EQ(TestValue<float>("{ Y:1 }", "float"), 1.0f);
+ TEST_EQ(TestValue<float>("{ Y:1.0 }", "float"), 1.0f);
+ TEST_EQ(TestValue<float>("{ Y:1. }", "float"), 1.0f);
+ TEST_EQ(TestValue<float>("{ Y:+1. }", "float"), 1.0f);
+ TEST_EQ(TestValue<float>("{ Y:-1. }", "float"), -1.0f);
+ TEST_EQ(TestValue<float>("{ Y:1.e0 }", "float"), 1.0f);
+ TEST_EQ(TestValue<float>("{ Y:1.e+0 }", "float"), 1.0f);
+ TEST_EQ(TestValue<float>("{ Y:1.e-0 }", "float"), 1.0f);
+ TEST_EQ(TestValue<float>("{ Y:0.125 }", "float"), 0.125f);
+ TEST_EQ(TestValue<float>("{ Y:.125 }", "float"), 0.125f);
+ TEST_EQ(TestValue<float>("{ Y:-.125 }", "float"), -0.125f);
+ TEST_EQ(TestValue<float>("{ Y:+.125 }", "float"), +0.125f);
+ TEST_EQ(TestValue<float>("{ Y:5 }", "float"), 5.0f);
+ TEST_EQ(TestValue<float>("{ Y:\"5\" }", "float"), 5.0f);
+
+ #if defined(FLATBUFFERS_HAS_NEW_STRTOD) && (FLATBUFFERS_HAS_NEW_STRTOD > 0)
+ // Old MSVC versions may have problem with this check.
+ // https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/
+ TEST_EQ(TestValue<double>("{ Y:6.9294956446009195e15 }", "double"),
+ 6929495644600920.0);
+ // check nan's
+ TEST_EQ(std::isnan(TestValue<double>("{ Y:nan }", "double")), true);
+ TEST_EQ(std::isnan(TestValue<float>("{ Y:nan }", "float")), true);
+ TEST_EQ(std::isnan(TestValue<float>("{ Y:\"nan\" }", "float")), true);
+ TEST_EQ(std::isnan(TestValue<float>("{ Y:+nan }", "float")), true);
+ TEST_EQ(std::isnan(TestValue<float>("{ Y:-nan }", "float")), true);
+ TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true);
+ TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true);
+ // check inf
+ TEST_EQ(TestValue<float>("{ Y:inf }", "float"), infinityf);
+ TEST_EQ(TestValue<float>("{ Y:\"inf\" }", "float"), infinityf);
+ TEST_EQ(TestValue<float>("{ Y:+inf }", "float"), infinityf);
+ TEST_EQ(TestValue<float>("{ Y:-inf }", "float"), -infinityf);
+ TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinityf);
+ TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinityf);
+ TestValue<double>(
+ "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
+ "3.0e2] }",
+ "[double]");
+ TestValue<float>(
+ "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
+ "3.0e2] }",
+ "[float]");
+
+ // Test binary format of float point.
+ // https://en.cppreference.com/w/cpp/language/floating_literal
+ // 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 =
+ TEST_EQ(TestValue<double>("{ Y:0x12.34p-1 }", "double"), 9.1015625);
+ // hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0
+ TEST_EQ(TestValue<float>("{ Y:-0x0.2p0 }", "float"), -0.125f);
+ TEST_EQ(TestValue<float>("{ Y:-0x.2p1 }", "float"), -0.25f);
+ TEST_EQ(TestValue<float>("{ Y:0x1.2p3 }", "float"), 9.0f);
+ TEST_EQ(TestValue<float>("{ Y:0x10.1p0 }", "float"), 16.0625f);
+ TEST_EQ(TestValue<double>("{ Y:0x1.2p3 }", "double"), 9.0);
+ TEST_EQ(TestValue<double>("{ Y:0x10.1p0 }", "double"), 16.0625);
+ TEST_EQ(TestValue<double>("{ Y:0xC.68p+2 }", "double"), 49.625);
+ TestValue<double>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]");
+ TestValue<float>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]");
+
+#else // FLATBUFFERS_HAS_NEW_STRTOD
+ TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped");
+#endif // !FLATBUFFERS_HAS_NEW_STRTOD
+}
+
+void InvalidFloatTest() {
+ auto invalid_msg = "invalid number";
+ auto comma_msg = "expecting: ,";
+ TestError("table T { F:float; } root_type T; { F:1,0 }", "");
+ TestError("table T { F:float; } root_type T; { F:. }", "");
+ TestError("table T { F:float; } root_type T; { F:- }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:.e }", "");
+ TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg);
+ // exponent pP is mandatory for hex-float
+ TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg);
+ // eE not exponent in hex-float!
+ TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg);
+ TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg);
+ TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg);
+ // floats in string
+ TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg);
+ // disable escapes for "number-in-string"
+ TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid");
+ TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid");
+ TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid");
+ TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid");
+ TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid");
+ TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg);
+ // null is not a number constant!
+ TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg);
+ TestError("table T { F:float; } root_type T; { F:null }", invalid_msg);
+}
+
+void GenerateTableTextTest() {
+ std::string schemafile;
+ std::string jsonfile;
+ bool ok =
+ flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
+ false, &schemafile) &&
+ flatbuffers::LoadFile((test_data_path + "monsterdata_test.json").c_str(),
+ false, &jsonfile);
+ TEST_EQ(ok, true);
+ auto include_test_path =
+ flatbuffers::ConCatPathFileName(test_data_path, "include_test");
+ const char *include_directories[] = {test_data_path.c_str(),
+ include_test_path.c_str(), nullptr};
+ flatbuffers::IDLOptions opt;
+ opt.indent_step = -1;
+ flatbuffers::Parser parser(opt);
+ ok = parser.Parse(schemafile.c_str(), include_directories) &&
+ parser.Parse(jsonfile.c_str(), include_directories);
+ TEST_EQ(ok, true);
+ // Test root table
+ const Monster *monster = GetMonster(parser.builder_.GetBufferPointer());
+ std::string jsongen;
+ auto result = GenerateTextFromTable(parser, monster, "MyGame.Example.Monster",
+ &jsongen);
+ TEST_EQ(result, true);
+ // Test sub table
+ const Vec3 *pos = monster->pos();
+ jsongen.clear();
+ result = GenerateTextFromTable(parser, pos, "MyGame.Example.Vec3", &jsongen);
+ TEST_EQ(result, true);
+ TEST_EQ_STR(
+ jsongen.c_str(),
+ "{x: 1.0,y: 2.0,z: 3.0,test1: 3.0,test2: \"Green\",test3: {a: 5,b: 6}}");
+ const Test &test3 = pos->test3();
+ jsongen.clear();
+ result =
+ GenerateTextFromTable(parser, &test3, "MyGame.Example.Test", &jsongen);
+ TEST_EQ(result, true);
+ TEST_EQ_STR(jsongen.c_str(), "{a: 5,b: 6}");
+ const Test *test4 = monster->test4()->Get(0);
+ jsongen.clear();
+ result =
+ GenerateTextFromTable(parser, test4, "MyGame.Example.Test", &jsongen);
+ TEST_EQ(result, true);
+ TEST_EQ_STR(jsongen.c_str(), "{a: 10,b: 20}");
+}
+
+template<typename T>
+void NumericUtilsTestInteger(const char *lower, const char *upper) {
+ T x;
+ TEST_EQ(flatbuffers::StringToNumber("1q", &x), false);
+ TEST_EQ(x, 0);
+ TEST_EQ(flatbuffers::StringToNumber(upper, &x), false);
+ TEST_EQ(x, flatbuffers::numeric_limits<T>::max());
+ TEST_EQ(flatbuffers::StringToNumber(lower, &x), false);
+ auto expval = flatbuffers::is_unsigned<T>::value
+ ? flatbuffers::numeric_limits<T>::max()
+ : flatbuffers::numeric_limits<T>::lowest();
+ TEST_EQ(x, expval);
+}
+
+template<typename T>
+void NumericUtilsTestFloat(const char *lower, const char *upper) {
+ T f;
+ TEST_EQ(flatbuffers::StringToNumber("", &f), false);
+ TEST_EQ(flatbuffers::StringToNumber("1q", &f), false);
+ TEST_EQ(f, 0);
+ TEST_EQ(flatbuffers::StringToNumber(upper, &f), true);
+ TEST_EQ(f, +flatbuffers::numeric_limits<T>::infinity());
+ TEST_EQ(flatbuffers::StringToNumber(lower, &f), true);
+ TEST_EQ(f, -flatbuffers::numeric_limits<T>::infinity());
+}
+
+void NumericUtilsTest() {
+ NumericUtilsTestInteger<uint64_t>("-1", "18446744073709551616");
+ NumericUtilsTestInteger<uint8_t>("-1", "256");
+ NumericUtilsTestInteger<int64_t>("-9223372036854775809",
+ "9223372036854775808");
+ NumericUtilsTestInteger<int8_t>("-129", "128");
+ NumericUtilsTestFloat<float>("-3.4029e+38", "+3.4029e+38");
+ NumericUtilsTestFloat<float>("-1.7977e+308", "+1.7977e+308");
+}
+
+void IsAsciiUtilsTest() {
+ char c = -128;
+ for (int cnt = 0; cnt < 256; cnt++) {
+ auto alpha = (('a' <= c) && (c <= 'z')) || (('A' <= c) && (c <= 'Z'));
+ auto dec = (('0' <= c) && (c <= '9'));
+ auto hex = (('a' <= c) && (c <= 'f')) || (('A' <= c) && (c <= 'F'));
+ TEST_EQ(flatbuffers::is_alpha(c), alpha);
+ TEST_EQ(flatbuffers::is_alnum(c), alpha || dec);
+ TEST_EQ(flatbuffers::is_digit(c), dec);
+ TEST_EQ(flatbuffers::is_xdigit(c), dec || hex);
+ c += 1;
+ }
+}
+
+void UnicodeTest() {
+ flatbuffers::Parser parser;
+ // Without setting allow_non_utf8 = true, we treat \x sequences as byte
+ // sequences which are then validated as UTF-8.
+ TEST_EQ(parser.Parse("table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
+ "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8"
+ "3D\\uDE0E\" }"),
+ true);
+ std::string jsongen;
+ parser.opts.indent_step = -1;
+ auto result =
+ GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
+ TEST_EQ(result, true);
+ TEST_EQ_STR(jsongen.c_str(),
+ "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
+ "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
+}
+
+void UnicodeTestAllowNonUTF8() {
+ flatbuffers::Parser parser;
+ parser.opts.allow_non_utf8 = true;
+ TEST_EQ(
+ parser.Parse(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
+ "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
+ true);
+ std::string jsongen;
+ parser.opts.indent_step = -1;
+ auto result =
+ GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
+ TEST_EQ(result, true);
+ TEST_EQ_STR(
+ jsongen.c_str(),
+ "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
+ "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
+}
+
+void UnicodeTestGenerateTextFailsOnNonUTF8() {
+ flatbuffers::Parser parser;
+ // Allow non-UTF-8 initially to model what happens when we load a binary
+ // flatbuffer from disk which contains non-UTF-8 strings.
+ parser.opts.allow_non_utf8 = true;
+ TEST_EQ(
+ parser.Parse(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
+ "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
+ true);
+ std::string jsongen;
+ parser.opts.indent_step = -1;
+ // Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates
+ // failure.
+ parser.opts.allow_non_utf8 = false;
+ auto result =
+ GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
+ TEST_EQ(result, false);
+}
+
+void UnicodeSurrogatesTest() {
+ flatbuffers::Parser parser;
+
+ TEST_EQ(parser.Parse("table T { F:string (id: 0); }"
+ "root_type T;"
+ "{ F:\"\\uD83D\\uDCA9\"}"),
+ true);
+ auto root = flatbuffers::GetRoot<flatbuffers::Table>(
+ parser.builder_.GetBufferPointer());
+ auto string = root->GetPointer<flatbuffers::String *>(
+ flatbuffers::FieldIndexToOffset(0));
+ TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
+}
+
+void UnicodeInvalidSurrogatesTest() {
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\\uD800\"}",
+ "unpaired high surrogate");
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\\uD800abcd\"}",
+ "unpaired high surrogate");
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\\uD800\\n\"}",
+ "unpaired high surrogate");
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\\uD800\\uD800\"}",
+ "multiple high surrogates");
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\\uDC00\"}",
+ "unpaired low surrogate");
+}
+
+void InvalidUTF8Test() {
+ // "1 byte" pattern, under min length of 2 bytes
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\x80\"}",
+ "illegal UTF-8 sequence");
+ // 2 byte pattern, string too short
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xDF\"}",
+ "illegal UTF-8 sequence");
+ // 3 byte pattern, string too short
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xEF\xBF\"}",
+ "illegal UTF-8 sequence");
+ // 4 byte pattern, string too short
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xF7\xBF\xBF\"}",
+ "illegal UTF-8 sequence");
+ // "5 byte" pattern, string too short
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xFB\xBF\xBF\xBF\"}",
+ "illegal UTF-8 sequence");
+ // "6 byte" pattern, string too short
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}",
+ "illegal UTF-8 sequence");
+ // "7 byte" pattern, string too short
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}",
+ "illegal UTF-8 sequence");
+ // "5 byte" pattern, over max length of 4 bytes
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}",
+ "illegal UTF-8 sequence");
+ // "6 byte" pattern, over max length of 4 bytes
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}",
+ "illegal UTF-8 sequence");
+ // "7 byte" pattern, over max length of 4 bytes
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}",
+ "illegal UTF-8 sequence");
+
+ // Three invalid encodings for U+000A (\n, aka NEWLINE)
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xC0\x8A\"}",
+ "illegal UTF-8 sequence");
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xE0\x80\x8A\"}",
+ "illegal UTF-8 sequence");
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xF0\x80\x80\x8A\"}",
+ "illegal UTF-8 sequence");
+
+ // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xE0\x81\xA9\"}",
+ "illegal UTF-8 sequence");
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xF0\x80\x81\xA9\"}",
+ "illegal UTF-8 sequence");
+
+ // Invalid encoding for U+20AC (EURO SYMBOL)
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ "{ F:\"\xF0\x82\x82\xAC\"}",
+ "illegal UTF-8 sequence");
+
+ // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in
+ // UTF-8
+ TestError(
+ "table T { F:string; }"
+ "root_type T;"
+ // U+10400 "encoded" as U+D801 U+DC00
+ "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}",
+ "illegal UTF-8 sequence");
+
+ // Check independence of identifier from locale.
+ std::string locale_ident;
+ locale_ident += "table T { F";
+ locale_ident += static_cast<char>(-32); // unsigned 0xE0
+ locale_ident += " :string; }";
+ locale_ident += "root_type T;";
+ locale_ident += "{}";
+ TestError(locale_ident.c_str(), "");
+}
+
+void UnknownFieldsTest() {
+ flatbuffers::IDLOptions opts;
+ opts.skip_unexpected_fields_in_json = true;
+ flatbuffers::Parser parser(opts);
+
+ TEST_EQ(parser.Parse("table T { str:string; i:int;}"
+ "root_type T;"
+ "{ str:\"test\","
+ "unknown_string:\"test\","
+ "\"unknown_string\":\"test\","
+ "unknown_int:10,"
+ "unknown_float:1.0,"
+ "unknown_array: [ 1, 2, 3, 4],"
+ "unknown_object: { i: 10 },"
+ "\"unknown_object\": { \"i\": 10 },"
+ "i:10}"),
+ true);
+
+ std::string jsongen;
+ parser.opts.indent_step = -1;
+ auto result =
+ GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
+ TEST_EQ(result, true);
+ TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
+}
+
+void ParseUnionTest() {
+ // Unions must be parseable with the type field following the object.
+ flatbuffers::Parser parser;
+ TEST_EQ(parser.Parse("table T { A:int; }"
+ "union U { T }"
+ "table V { X:U; }"
+ "root_type V;"
+ "{ X:{ A:1 }, X_type: T }"),
+ true);
+ // Unions must be parsable with prefixed namespace.
+ flatbuffers::Parser parser2;
+ TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
+ "table B { e:U; } root_type B;"
+ "{ e_type: N_A, e: {} }"),
+ true);
+}
+
+void InvalidNestedFlatbufferTest() {
+ // First, load and parse FlatBuffer schema (.fbs)
+ std::string schemafile;
+ TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
+ false, &schemafile),
+ true);
+ auto include_test_path =
+ flatbuffers::ConCatPathFileName(test_data_path, "include_test");
+ const char *include_directories[] = { test_data_path.c_str(),
+ include_test_path.c_str(), nullptr };
+ flatbuffers::Parser parser1;
+ TEST_EQ(parser1.Parse(schemafile.c_str(), include_directories), true);
+
+ // "color" inside nested flatbuffer contains invalid enum value
+ TEST_EQ(parser1.Parse("{ name: \"Bender\", testnestedflatbuffer: { name: "
+ "\"Leela\", color: \"nonexistent\"}}"),
+ false);
+ // Check that Parser is destroyed correctly after parsing invalid json
+}
+
+void UnionVectorTest() {
+ // load FlatBuffer fbs schema and json.
+ std::string schemafile, jsonfile;
+ TEST_EQ(flatbuffers::LoadFile(
+ (test_data_path + "union_vector/union_vector.fbs").c_str(),
+ false, &schemafile),
+ true);
+ TEST_EQ(flatbuffers::LoadFile(
+ (test_data_path + "union_vector/union_vector.json").c_str(),
+ false, &jsonfile),
+ true);
+
+ // parse schema.
+ flatbuffers::IDLOptions idl_opts;
+ idl_opts.lang_to_generate |= flatbuffers::IDLOptions::kBinary;
+ flatbuffers::Parser parser(idl_opts);
+ TEST_EQ(parser.Parse(schemafile.c_str()), true);
+
+ flatbuffers::FlatBufferBuilder fbb;
+
+ // union types.
+ std::vector<uint8_t> types;
+ types.push_back(static_cast<uint8_t>(Character_Belle));
+ types.push_back(static_cast<uint8_t>(Character_MuLan));
+ types.push_back(static_cast<uint8_t>(Character_BookFan));
+ types.push_back(static_cast<uint8_t>(Character_Other));
+ types.push_back(static_cast<uint8_t>(Character_Unused));
+
+ // union values.
+ std::vector<flatbuffers::Offset<void>> characters;
+ characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/7)).Union());
+ characters.push_back(CreateAttacker(fbb, /*sword_attack_damage=*/5).Union());
+ characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/2)).Union());
+ characters.push_back(fbb.CreateString("Other").Union());
+ characters.push_back(fbb.CreateString("Unused").Union());
+
+ // create Movie.
+ const auto movie_offset =
+ CreateMovie(fbb, Character_Rapunzel,
+ fbb.CreateStruct(Rapunzel(/*hair_length=*/6)).Union(),
+ fbb.CreateVector(types), fbb.CreateVector(characters));
+ FinishMovieBuffer(fbb, movie_offset);
+ auto buf = fbb.GetBufferPointer();
+
+ flatbuffers::Verifier verifier(buf, fbb.GetSize());
+ TEST_EQ(VerifyMovieBuffer(verifier), true);
+
+ auto flat_movie = GetMovie(buf);
+
+ auto TestMovie = [](const Movie *movie) {
+ TEST_EQ(movie->main_character_type() == Character_Rapunzel, true);
+
+ auto cts = movie->characters_type();
+ TEST_EQ(movie->characters_type()->size(), 5);
+ TEST_EQ(cts->GetEnum<Character>(0) == Character_Belle, true);
+ TEST_EQ(cts->GetEnum<Character>(1) == Character_MuLan, true);
+ TEST_EQ(cts->GetEnum<Character>(2) == Character_BookFan, true);
+ TEST_EQ(cts->GetEnum<Character>(3) == Character_Other, true);
+ TEST_EQ(cts->GetEnum<Character>(4) == Character_Unused, true);
+
+ auto rapunzel = movie->main_character_as_Rapunzel();
+ TEST_NOTNULL(rapunzel);
+ TEST_EQ(rapunzel->hair_length(), 6);
+
+ auto cs = movie->characters();
+ TEST_EQ(cs->size(), 5);
+ auto belle = cs->GetAs<BookReader>(0);
+ TEST_EQ(belle->books_read(), 7);
+ auto mu_lan = cs->GetAs<Attacker>(1);
+ TEST_EQ(mu_lan->sword_attack_damage(), 5);
+ auto book_fan = cs->GetAs<BookReader>(2);
+ TEST_EQ(book_fan->books_read(), 2);
+ auto other = cs->GetAsString(3);
+ TEST_EQ_STR(other->c_str(), "Other");
+ auto unused = cs->GetAsString(4);
+ TEST_EQ_STR(unused->c_str(), "Unused");
+ };
+
+ TestMovie(flat_movie);
+
+ // Also test the JSON we loaded above.
+ TEST_EQ(parser.Parse(jsonfile.c_str()), true);
+ auto jbuf = parser.builder_.GetBufferPointer();
+ flatbuffers::Verifier jverifier(jbuf, parser.builder_.GetSize());
+ TEST_EQ(VerifyMovieBuffer(jverifier), true);
+ TestMovie(GetMovie(jbuf));
+
+ auto movie_object = flat_movie->UnPack();
+ TEST_EQ(movie_object->main_character.AsRapunzel()->hair_length(), 6);
+ TEST_EQ(movie_object->characters[0].AsBelle()->books_read(), 7);
+ TEST_EQ(movie_object->characters[1].AsMuLan()->sword_attack_damage, 5);
+ TEST_EQ(movie_object->characters[2].AsBookFan()->books_read(), 2);
+ TEST_EQ_STR(movie_object->characters[3].AsOther()->c_str(), "Other");
+ TEST_EQ_STR(movie_object->characters[4].AsUnused()->c_str(), "Unused");
+
+ fbb.Clear();
+ fbb.Finish(Movie::Pack(fbb, movie_object));
+
+ delete movie_object;
+
+ auto repacked_movie = GetMovie(fbb.GetBufferPointer());
+
+ TestMovie(repacked_movie);
+
+ auto s =
+ flatbuffers::FlatBufferToString(fbb.GetBufferPointer(), MovieTypeTable());
+ TEST_EQ_STR(
+ s.c_str(),
+ "{ main_character_type: Rapunzel, main_character: { hair_length: 6 }, "
+ "characters_type: [ Belle, MuLan, BookFan, Other, Unused ], "
+ "characters: [ { books_read: 7 }, { sword_attack_damage: 5 }, "
+ "{ books_read: 2 }, \"Other\", \"Unused\" ] }");
+
+
+ flatbuffers::ToStringVisitor visitor("\n", true, " ");
+ IterateFlatBuffer(fbb.GetBufferPointer(), MovieTypeTable(), &visitor);
+ TEST_EQ_STR(
+ visitor.s.c_str(),
+ "{\n"
+ " \"main_character_type\": \"Rapunzel\",\n"
+ " \"main_character\": {\n"
+ " \"hair_length\": 6\n"
+ " },\n"
+ " \"characters_type\": [\n"
+ " \"Belle\",\n"
+ " \"MuLan\",\n"
+ " \"BookFan\",\n"
+ " \"Other\",\n"
+ " \"Unused\"\n"
+ " ],\n"
+ " \"characters\": [\n"
+ " {\n"
+ " \"books_read\": 7\n"
+ " },\n"
+ " {\n"
+ " \"sword_attack_damage\": 5\n"
+ " },\n"
+ " {\n"
+ " \"books_read\": 2\n"
+ " },\n"
+ " \"Other\",\n"
+ " \"Unused\"\n"
+ " ]\n"
+ "}");
+
+ flatbuffers::Parser parser2(idl_opts);
+ TEST_EQ(parser2.Parse("struct Bool { b:bool; }"
+ "union Any { Bool }"
+ "table Root { a:Any; }"
+ "root_type Root;"), true);
+ TEST_EQ(parser2.Parse("{a_type:Bool,a:{b:true}}"), true);
+}
+
+void ConformTest() {
+ flatbuffers::Parser parser;
+ TEST_EQ(parser.Parse("table T { A:int; } enum E:byte { A }"), true);
+
+ auto test_conform = [](flatbuffers::Parser &parser1, const char *test,
+ const char *expected_err) {
+ flatbuffers::Parser parser2;
+ TEST_EQ(parser2.Parse(test), true);
+ auto err = parser2.ConformTo(parser1);
+ TEST_NOTNULL(strstr(err.c_str(), expected_err));
+ };
+
+ test_conform(parser, "table T { A:byte; }", "types differ for field");
+ test_conform(parser, "table T { B:int; A:int; }", "offsets differ for field");
+ test_conform(parser, "table T { A:int = 1; }", "defaults differ for field");
+ test_conform(parser, "table T { B:float; }",
+ "field renamed to different type");
+ test_conform(parser, "enum E:byte { B, A }", "values differ for enum");
+}
+
+void ParseProtoBufAsciiTest() {
+ // We can put the parser in a mode where it will accept JSON that looks more
+ // like Protobuf ASCII, for users that have data in that format.
+ // This uses no "" for field names (which we already support by default,
+ // omits `,`, `:` before `{` and a couple of other features.
+ flatbuffers::Parser parser;
+ parser.opts.protobuf_ascii_alike = true;
+ TEST_EQ(
+ parser.Parse("table S { B:int; } table T { A:[int]; C:S; } root_type T;"),
+ true);
+ TEST_EQ(parser.Parse("{ A [1 2] C { B:2 }}"), true);
+ // Similarly, in text output, it should omit these.
+ std::string text;
+ auto ok = flatbuffers::GenerateText(
+ parser, parser.builder_.GetBufferPointer(), &text);
+ TEST_EQ(ok, true);
+ TEST_EQ_STR(text.c_str(),
+ "{\n A [\n 1\n 2\n ]\n C {\n B: 2\n }\n}\n");
+}
+
+void FlexBuffersTest() {
+ flexbuffers::Builder slb(512,
+ flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS);
+
+ // Write the equivalent of:
+ // { vec: [ -100, "Fred", 4.0, false ], bar: [ 1, 2, 3 ], bar3: [ 1, 2, 3 ],
+ // foo: 100, bool: true, mymap: { foo: "Fred" } }
+ // clang-format off
+ #ifndef FLATBUFFERS_CPP98_STL
+ // It's possible to do this without std::function support as well.
+ slb.Map([&]() {
+ slb.Vector("vec", [&]() {
+ slb += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
+ slb += "Fred";
+ slb.IndirectFloat(4.0f);
+ uint8_t blob[] = { 77 };
+ slb.Blob(blob, 1);
+ slb += false;
+ });
+ int ints[] = { 1, 2, 3 };
+ slb.Vector("bar", ints, 3);
+ slb.FixedTypedVector("bar3", ints, 3);
+ bool bools[] = {true, false, true, false};
+ slb.Vector("bools", bools, 4);
+ slb.Bool("bool", true);
+ slb.Double("foo", 100);
+ slb.Map("mymap", [&]() {
+ slb.String("foo", "Fred"); // Testing key and string reuse.
+ });
+ });
+ slb.Finish();
+ #else
+ // It's possible to do this without std::function support as well.
+ slb.Map([](flexbuffers::Builder& slb2) {
+ slb2.Vector("vec", [](flexbuffers::Builder& slb3) {
+ slb3 += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
+ slb3 += "Fred";
+ slb3.IndirectFloat(4.0f);
+ uint8_t blob[] = { 77 };
+ slb3.Blob(blob, 1);
+ slb3 += false;
+ }, slb2);
+ int ints[] = { 1, 2, 3 };
+ slb2.Vector("bar", ints, 3);
+ slb2.FixedTypedVector("bar3", ints, 3);
+ slb2.Bool("bool", true);
+ slb2.Double("foo", 100);
+ slb2.Map("mymap", [](flexbuffers::Builder& slb3) {
+ slb3.String("foo", "Fred"); // Testing key and string reuse.
+ }, slb2);
+ }, slb);
+ slb.Finish();
+ #endif // FLATBUFFERS_CPP98_STL
+
+ #ifdef FLATBUFFERS_TEST_VERBOSE
+ for (size_t i = 0; i < slb.GetBuffer().size(); i++)
+ printf("%d ", flatbuffers::vector_data(slb.GetBuffer())[i]);
+ printf("\n");
+ #endif
+ // clang-format on
+
+ auto map = flexbuffers::GetRoot(slb.GetBuffer()).AsMap();
+ TEST_EQ(map.size(), 7);
+ auto vec = map["vec"].AsVector();
+ TEST_EQ(vec.size(), 5);
+ TEST_EQ(vec[0].AsInt64(), -100);
+ TEST_EQ_STR(vec[1].AsString().c_str(), "Fred");
+ TEST_EQ(vec[1].AsInt64(), 0); // Number parsing failed.
+ TEST_EQ(vec[2].AsDouble(), 4.0);
+ TEST_EQ(vec[2].AsString().IsTheEmptyString(), true); // Wrong Type.
+ TEST_EQ_STR(vec[2].AsString().c_str(), ""); // This still works though.
+ TEST_EQ_STR(vec[2].ToString().c_str(), "4.0"); // Or have it converted.
+
+ // Few tests for templated version of As.
+ TEST_EQ(vec[0].As<int64_t>(), -100);
+ TEST_EQ_STR(vec[1].As<std::string>().c_str(), "Fred");
+ TEST_EQ(vec[1].As<int64_t>(), 0); // Number parsing failed.
+ TEST_EQ(vec[2].As<double>(), 4.0);
+
+ // Test that the blob can be accessed.
+ TEST_EQ(vec[3].IsBlob(), true);
+ auto blob = vec[3].AsBlob();
+ TEST_EQ(blob.size(), 1);
+ TEST_EQ(blob.data()[0], 77);
+ TEST_EQ(vec[4].IsBool(), true); // Check if type is a bool
+ TEST_EQ(vec[4].AsBool(), false); // Check if value is false
+ auto tvec = map["bar"].AsTypedVector();
+ TEST_EQ(tvec.size(), 3);
+ TEST_EQ(tvec[2].AsInt8(), 3);
+ auto tvec3 = map["bar3"].AsFixedTypedVector();
+ TEST_EQ(tvec3.size(), 3);
+ TEST_EQ(tvec3[2].AsInt8(), 3);
+ TEST_EQ(map["bool"].AsBool(), true);
+ auto tvecb = map["bools"].AsTypedVector();
+ TEST_EQ(tvecb.ElementType(), flexbuffers::FBT_BOOL);
+ TEST_EQ(map["foo"].AsUInt8(), 100);
+ TEST_EQ(map["unknown"].IsNull(), true);
+ auto mymap = map["mymap"].AsMap();
+ // These should be equal by pointer equality, since key and value are shared.
+ TEST_EQ(mymap.Keys()[0].AsKey(), map.Keys()[4].AsKey());
+ TEST_EQ(mymap.Values()[0].AsString().c_str(), vec[1].AsString().c_str());
+ // We can mutate values in the buffer.
+ TEST_EQ(vec[0].MutateInt(-99), true);
+ TEST_EQ(vec[0].AsInt64(), -99);
+ TEST_EQ(vec[1].MutateString("John"), true); // Size must match.
+ TEST_EQ_STR(vec[1].AsString().c_str(), "John");
+ TEST_EQ(vec[1].MutateString("Alfred"), false); // Too long.
+ TEST_EQ(vec[2].MutateFloat(2.0f), true);
+ TEST_EQ(vec[2].AsFloat(), 2.0f);
+ TEST_EQ(vec[2].MutateFloat(3.14159), false); // Double does not fit in float.
+ TEST_EQ(vec[4].AsBool(), false); // Is false before change
+ TEST_EQ(vec[4].MutateBool(true), true); // Can change a bool
+ TEST_EQ(vec[4].AsBool(), true); // Changed bool is now true
+
+ // Parse from JSON:
+ flatbuffers::Parser parser;
+ slb.Clear();
+ auto jsontest = "{ a: [ 123, 456.0 ], b: \"hello\", c: true, d: false }";
+ TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb), true);
+ auto jroot = flexbuffers::GetRoot(slb.GetBuffer());
+ auto jmap = jroot.AsMap();
+ auto jvec = jmap["a"].AsVector();
+ TEST_EQ(jvec[0].AsInt64(), 123);
+ TEST_EQ(jvec[1].AsDouble(), 456.0);
+ TEST_EQ_STR(jmap["b"].AsString().c_str(), "hello");
+ TEST_EQ(jmap["c"].IsBool(), true); // Parsed correctly to a bool
+ TEST_EQ(jmap["c"].AsBool(), true); // Parsed correctly to true
+ TEST_EQ(jmap["d"].IsBool(), true); // Parsed correctly to a bool
+ TEST_EQ(jmap["d"].AsBool(), false); // Parsed correctly to false
+ // And from FlexBuffer back to JSON:
+ auto jsonback = jroot.ToString();
+ TEST_EQ_STR(jsontest, jsonback.c_str());
+}
+
+void TypeAliasesTest() {
+ flatbuffers::FlatBufferBuilder builder;
+
+ builder.Finish(CreateTypeAliases(
+ builder, flatbuffers::numeric_limits<int8_t>::min(),
+ flatbuffers::numeric_limits<uint8_t>::max(),
+ flatbuffers::numeric_limits<int16_t>::min(),
+ flatbuffers::numeric_limits<uint16_t>::max(),
+ flatbuffers::numeric_limits<int32_t>::min(),
+ flatbuffers::numeric_limits<uint32_t>::max(),
+ flatbuffers::numeric_limits<int64_t>::min(),
+ flatbuffers::numeric_limits<uint64_t>::max(), 2.3f, 2.3));
+
+ auto p = builder.GetBufferPointer();
+ auto ta = flatbuffers::GetRoot<TypeAliases>(p);
+
+ TEST_EQ(ta->i8(), flatbuffers::numeric_limits<int8_t>::min());
+ TEST_EQ(ta->u8(), flatbuffers::numeric_limits<uint8_t>::max());
+ TEST_EQ(ta->i16(), flatbuffers::numeric_limits<int16_t>::min());
+ TEST_EQ(ta->u16(), flatbuffers::numeric_limits<uint16_t>::max());
+ TEST_EQ(ta->i32(), flatbuffers::numeric_limits<int32_t>::min());
+ TEST_EQ(ta->u32(), flatbuffers::numeric_limits<uint32_t>::max());
+ TEST_EQ(ta->i64(), flatbuffers::numeric_limits<int64_t>::min());
+ TEST_EQ(ta->u64(), flatbuffers::numeric_limits<uint64_t>::max());
+ TEST_EQ(ta->f32(), 2.3f);
+ TEST_EQ(ta->f64(), 2.3);
+ using namespace flatbuffers; // is_same
+ static_assert(is_same<decltype(ta->i8()), int8_t>::value, "invalid type");
+ static_assert(is_same<decltype(ta->i16()), int16_t>::value, "invalid type");
+ static_assert(is_same<decltype(ta->i32()), int32_t>::value, "invalid type");
+ static_assert(is_same<decltype(ta->i64()), int64_t>::value, "invalid type");
+ static_assert(is_same<decltype(ta->u8()), uint8_t>::value, "invalid type");
+ static_assert(is_same<decltype(ta->u16()), uint16_t>::value, "invalid type");
+ static_assert(is_same<decltype(ta->u32()), uint32_t>::value, "invalid type");
+ static_assert(is_same<decltype(ta->u64()), uint64_t>::value, "invalid type");
+ static_assert(is_same<decltype(ta->f32()), float>::value, "invalid type");
+ static_assert(is_same<decltype(ta->f64()), double>::value, "invalid type");
+}
+
+void EndianSwapTest() {
+ TEST_EQ(flatbuffers::EndianSwap(static_cast<int16_t>(0x1234)), 0x3412);
+ TEST_EQ(flatbuffers::EndianSwap(static_cast<int32_t>(0x12345678)),
+ 0x78563412);
+ TEST_EQ(flatbuffers::EndianSwap(static_cast<int64_t>(0x1234567890ABCDEF)),
+ 0xEFCDAB9078563412);
+ TEST_EQ(flatbuffers::EndianSwap(flatbuffers::EndianSwap(3.14f)), 3.14f);
+}
+
+void UninitializedVectorTest() {
+ flatbuffers::FlatBufferBuilder builder;
+
+ Test *buf = nullptr;
+ auto vector_offset = builder.CreateUninitializedVectorOfStructs<Test>(2, &buf);
+ TEST_NOTNULL(buf);
+ buf[0] = Test(10, 20);
+ buf[1] = Test(30, 40);
+
+ auto required_name = builder.CreateString("myMonster");
+ auto monster_builder = MonsterBuilder(builder);
+ monster_builder.add_name(required_name); // required field mandated for monster.
+ monster_builder.add_test4(vector_offset);
+ builder.Finish(monster_builder.Finish());
+
+ auto p = builder.GetBufferPointer();
+ auto uvt = flatbuffers::GetRoot<Monster>(p);
+ TEST_NOTNULL(uvt);
+ auto vec = uvt->test4();
+ TEST_NOTNULL(vec);
+ auto test_0 = vec->Get(0);
+ auto test_1 = vec->Get(1);
+ TEST_EQ(test_0->a(), 10);
+ TEST_EQ(test_0->b(), 20);
+ TEST_EQ(test_1->a(), 30);
+ TEST_EQ(test_1->b(), 40);
+}
+
+void EqualOperatorTest() {
+ MonsterT a;
+ MonsterT b;
+ TEST_EQ(b == a, true);
+ TEST_EQ(b != a, false);
+
+ b.mana = 33;
+ TEST_EQ(b == a, false);
+ TEST_EQ(b != a, true);
+ b.mana = 150;
+ TEST_EQ(b == a, true);
+ TEST_EQ(b != a, false);
+
+ b.inventory.push_back(3);
+ TEST_EQ(b == a, false);
+ TEST_EQ(b != a, true);
+ b.inventory.clear();
+ TEST_EQ(b == a, true);
+ TEST_EQ(b != a, false);
+
+ b.test.type = Any_Monster;
+ TEST_EQ(b == a, false);
+ TEST_EQ(b != a, true);
+}
+
+// For testing any binaries, e.g. from fuzzing.
+void LoadVerifyBinaryTest() {
+ std::string binary;
+ if (flatbuffers::LoadFile((test_data_path +
+ "fuzzer/your-filename-here").c_str(),
+ true, &binary)) {
+ flatbuffers::Verifier verifier(
+ reinterpret_cast<const uint8_t *>(binary.data()), binary.size());
+ TEST_EQ(VerifyMonsterBuffer(verifier), true);
+ }
+}
+
+void CreateSharedStringTest() {
+ flatbuffers::FlatBufferBuilder builder;
+ const auto one1 = builder.CreateSharedString("one");
+ const auto two = builder.CreateSharedString("two");
+ const auto one2 = builder.CreateSharedString("one");
+ TEST_EQ(one1.o, one2.o);
+ const auto onetwo = builder.CreateSharedString("onetwo");
+ TEST_EQ(onetwo.o != one1.o, true);
+ TEST_EQ(onetwo.o != two.o, true);
+
+ // Support for embedded nulls
+ const char chars_b[] = {'a', '\0', 'b'};
+ const char chars_c[] = {'a', '\0', 'c'};
+ const auto null_b1 = builder.CreateSharedString(chars_b, sizeof(chars_b));
+ const auto null_c = builder.CreateSharedString(chars_c, sizeof(chars_c));
+ const auto null_b2 = builder.CreateSharedString(chars_b, sizeof(chars_b));
+ TEST_EQ(null_b1.o != null_c.o, true); // Issue#5058 repro
+ TEST_EQ(null_b1.o, null_b2.o);
+
+ // Put the strings into an array for round trip verification.
+ const flatbuffers::Offset<flatbuffers::String> array[7] = { one1, two, one2, onetwo, null_b1, null_c, null_b2 };
+ const auto vector_offset = builder.CreateVector(array, flatbuffers::uoffset_t(7));
+ MonsterBuilder monster_builder(builder);
+ monster_builder.add_name(two);
+ monster_builder.add_testarrayofstring(vector_offset);
+ builder.Finish(monster_builder.Finish());
+
+ // Read the Monster back.
+ const auto *monster = flatbuffers::GetRoot<Monster>(builder.GetBufferPointer());
+ TEST_EQ_STR(monster->name()->c_str(), "two");
+ const auto *testarrayofstring = monster->testarrayofstring();
+ TEST_EQ(testarrayofstring->size(), flatbuffers::uoffset_t(7));
+ const auto &a = *testarrayofstring;
+ TEST_EQ_STR(a[0]->c_str(), "one");
+ TEST_EQ_STR(a[1]->c_str(), "two");
+ TEST_EQ_STR(a[2]->c_str(), "one");
+ TEST_EQ_STR(a[3]->c_str(), "onetwo");
+ TEST_EQ(a[4]->str(), (std::string(chars_b, sizeof(chars_b))));
+ TEST_EQ(a[5]->str(), (std::string(chars_c, sizeof(chars_c))));
+ TEST_EQ(a[6]->str(), (std::string(chars_b, sizeof(chars_b))));
+
+ // Make sure String::operator< works, too, since it is related to StringOffsetCompare.
+ TEST_EQ((*a[0]) < (*a[1]), true);
+ TEST_EQ((*a[1]) < (*a[0]), false);
+ TEST_EQ((*a[1]) < (*a[2]), false);
+ TEST_EQ((*a[2]) < (*a[1]), true);
+ TEST_EQ((*a[4]) < (*a[3]), true);
+ TEST_EQ((*a[5]) < (*a[4]), false);
+ TEST_EQ((*a[5]) < (*a[4]), false);
+ TEST_EQ((*a[6]) < (*a[5]), true);
+}
+
+void FixedLengthArrayTest() {
+ // VS10 does not support typed enums, exclude from tests
+#if !defined(_MSC_VER) || _MSC_VER >= 1700
+ // Generate an ArrayTable containing one ArrayStruct.
+ flatbuffers::FlatBufferBuilder fbb;
+ MyGame::Example::NestedStruct nStruct0(MyGame::Example::TestEnum::B);
+ TEST_NOTNULL(nStruct0.mutable_a());
+ nStruct0.mutable_a()->Mutate(0, 1);
+ nStruct0.mutable_a()->Mutate(1, 2);
+ TEST_NOTNULL(nStruct0.mutable_c());
+ nStruct0.mutable_c()->Mutate(0, MyGame::Example::TestEnum::C);
+ nStruct0.mutable_c()->Mutate(1, MyGame::Example::TestEnum::A);
+ MyGame::Example::NestedStruct nStruct1(MyGame::Example::TestEnum::C);
+ TEST_NOTNULL(nStruct1.mutable_a());
+ nStruct1.mutable_a()->Mutate(0, 3);
+ nStruct1.mutable_a()->Mutate(1, 4);
+ TEST_NOTNULL(nStruct1.mutable_c());
+ nStruct1.mutable_c()->Mutate(0, MyGame::Example::TestEnum::C);
+ nStruct1.mutable_c()->Mutate(1, MyGame::Example::TestEnum::A);
+ MyGame::Example::ArrayStruct aStruct(2, 12);
+ TEST_NOTNULL(aStruct.b());
+ TEST_NOTNULL(aStruct.mutable_b());
+ TEST_NOTNULL(aStruct.mutable_d());
+ for (int i = 0; i < aStruct.b()->size(); i++)
+ aStruct.mutable_b()->Mutate(i, i + 1);
+ aStruct.mutable_d()->Mutate(0, nStruct0);
+ aStruct.mutable_d()->Mutate(1, nStruct1);
+ auto aTable = MyGame::Example::CreateArrayTable(fbb, &aStruct);
+ fbb.Finish(aTable);
+
+ // Verify correctness of the ArrayTable.
+ flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
+ MyGame::Example::VerifyArrayTableBuffer(verifier);
+ auto p = MyGame::Example::GetMutableArrayTable(fbb.GetBufferPointer());
+ auto mArStruct = p->mutable_a();
+ TEST_NOTNULL(mArStruct);
+ TEST_NOTNULL(mArStruct->b());
+ TEST_NOTNULL(mArStruct->d());
+ TEST_NOTNULL(mArStruct->mutable_b());
+ TEST_NOTNULL(mArStruct->mutable_d());
+ mArStruct->mutable_b()->Mutate(14, -14);
+ TEST_EQ(mArStruct->a(), 2);
+ TEST_EQ(mArStruct->b()->size(), 15);
+ TEST_EQ(mArStruct->b()->Get(aStruct.b()->size() - 1), -14);
+ TEST_EQ(mArStruct->c(), 12);
+ TEST_NOTNULL(mArStruct->d()->Get(0).a());
+ TEST_EQ(mArStruct->d()->Get(0).a()->Get(0), 1);
+ TEST_EQ(mArStruct->d()->Get(0).a()->Get(1), 2);
+ TEST_NOTNULL(mArStruct->d()->Get(1).a());
+ TEST_EQ(mArStruct->d()->Get(1).a()->Get(0), 3);
+ TEST_EQ(mArStruct->d()->Get(1).a()->Get(1), 4);
+ TEST_NOTNULL(mArStruct->mutable_d()->GetMutablePointer(1));
+ TEST_NOTNULL(mArStruct->mutable_d()->GetMutablePointer(1)->mutable_a());
+ mArStruct->mutable_d()->GetMutablePointer(1)->mutable_a()->Mutate(1, 5);
+ TEST_EQ(mArStruct->d()->Get(1).a()->Get(1), 5);
+ TEST_EQ(mArStruct->d()->Get(0).b() == MyGame::Example::TestEnum::B, true);
+ TEST_NOTNULL(mArStruct->d()->Get(0).c());
+ TEST_EQ(mArStruct->d()->Get(0).c()->Get(0) == MyGame::Example::TestEnum::C,
+ true);
+ TEST_EQ(mArStruct->d()->Get(0).c()->Get(1) == MyGame::Example::TestEnum::A,
+ true);
+ TEST_EQ(mArStruct->d()->Get(1).b() == MyGame::Example::TestEnum::C, true);
+ TEST_NOTNULL(mArStruct->d()->Get(1).c());
+ TEST_EQ(mArStruct->d()->Get(1).c()->Get(0) == MyGame::Example::TestEnum::C,
+ true);
+ TEST_EQ(mArStruct->d()->Get(1).c()->Get(1) == MyGame::Example::TestEnum::A,
+ true);
+ for (int i = 0; i < mArStruct->b()->size() - 1; i++)
+ TEST_EQ(mArStruct->b()->Get(i), i + 1);
+#endif
+}
+
+void NativeTypeTest() {
+ const int N = 3;
+
+ Geometry::ApplicationDataT src_data;
+ src_data.vectors.reserve(N);
+
+ for (int i = 0; i < N; ++i) {
+ src_data.vectors.push_back (Native::Vector3D(10 * i + 0.1f, 10 * i + 0.2f, 10 * i + 0.3f));
+ }
+
+ flatbuffers::FlatBufferBuilder fbb;
+ fbb.Finish(Geometry::ApplicationData::Pack(fbb, &src_data));
+
+ auto dstDataT = Geometry::UnPackApplicationData(fbb.GetBufferPointer());
+
+ for (int i = 0; i < N; ++i) {
+ Native::Vector3D& v = dstDataT->vectors[i];
+ TEST_EQ(v.x, 10 * i + 0.1f);
+ TEST_EQ(v.y, 10 * i + 0.2f);
+ TEST_EQ(v.z, 10 * i + 0.3f);
+ }
+}
+
+void FixedLengthArrayJsonTest(bool binary) {
+ // VS10 does not support typed enums, exclude from tests
+#if !defined(_MSC_VER) || _MSC_VER >= 1700
+ // load FlatBuffer schema (.fbs) and JSON from disk
+ std::string schemafile;
+ std::string jsonfile;
+ TEST_EQ(
+ flatbuffers::LoadFile(
+ (test_data_path + "arrays_test." + (binary ? "bfbs" : "fbs")).c_str(),
+ binary, &schemafile),
+ true);
+ TEST_EQ(flatbuffers::LoadFile((test_data_path + "arrays_test.golden").c_str(),
+ false, &jsonfile),
+ true);
+
+ // parse schema first, so we can use it to parse the data after
+ flatbuffers::Parser parserOrg, parserGen;
+ if (binary) {
+ flatbuffers::Verifier verifier(
+ reinterpret_cast<const uint8_t *>(schemafile.c_str()),
+ schemafile.size());
+ TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
+ TEST_EQ(parserOrg.Deserialize((const uint8_t *)schemafile.c_str(),
+ schemafile.size()),
+ true);
+ TEST_EQ(parserGen.Deserialize((const uint8_t *)schemafile.c_str(),
+ schemafile.size()),
+ true);
+ } else {
+ TEST_EQ(parserOrg.Parse(schemafile.c_str()), true);
+ TEST_EQ(parserGen.Parse(schemafile.c_str()), true);
+ }
+ TEST_EQ(parserOrg.Parse(jsonfile.c_str()), true);
+
+ // First, verify it, just in case:
+ flatbuffers::Verifier verifierOrg(parserOrg.builder_.GetBufferPointer(),
+ parserOrg.builder_.GetSize());
+ TEST_EQ(VerifyArrayTableBuffer(verifierOrg), true);
+
+ // Export to JSON
+ std::string jsonGen;
+ TEST_EQ(
+ GenerateText(parserOrg, parserOrg.builder_.GetBufferPointer(), &jsonGen),
+ true);
+
+ // Import from JSON
+ TEST_EQ(parserGen.Parse(jsonGen.c_str()), true);
+
+ // Verify buffer from generated JSON
+ flatbuffers::Verifier verifierGen(parserGen.builder_.GetBufferPointer(),
+ parserGen.builder_.GetSize());
+ TEST_EQ(VerifyArrayTableBuffer(verifierGen), true);
+
+ // Compare generated buffer to original
+ TEST_EQ(parserOrg.builder_.GetSize(), parserGen.builder_.GetSize());
+ TEST_EQ(std::memcmp(parserOrg.builder_.GetBufferPointer(),
+ parserGen.builder_.GetBufferPointer(),
+ parserOrg.builder_.GetSize()),
+ 0);
+#else
+ (void)binary;
+#endif
+}
+
+int FlatBufferTests() {
+ // clang-format off
+
+ // Run our various test suites:
+
+ std::string rawbuf;
+ auto flatbuf1 = CreateFlatBufferTest(rawbuf);
+ #if !defined(FLATBUFFERS_CPP98_STL)
+ auto flatbuf = std::move(flatbuf1); // Test move assignment.
+ #else
+ auto &flatbuf = flatbuf1;
+ #endif // !defined(FLATBUFFERS_CPP98_STL)
+
+ TriviallyCopyableTest();
+
+ AccessFlatBufferTest(reinterpret_cast<const uint8_t *>(rawbuf.c_str()),
+ rawbuf.length());
+ AccessFlatBufferTest(flatbuf.data(), flatbuf.size());
+
+ MutateFlatBuffersTest(flatbuf.data(), flatbuf.size());
+
+ ObjectFlatBuffersTest(flatbuf.data());
+
+ MiniReflectFlatBuffersTest(flatbuf.data());
+
+ SizePrefixedTest();
+
+ #ifndef FLATBUFFERS_NO_FILE_TESTS
+ #ifdef FLATBUFFERS_TEST_PATH_PREFIX
+ test_data_path = FLATBUFFERS_STRING(FLATBUFFERS_TEST_PATH_PREFIX) +
+ test_data_path;
+ #endif
+ ParseAndGenerateTextTest(false);
+ ParseAndGenerateTextTest(true);
+ FixedLengthArrayJsonTest(false);
+ FixedLengthArrayJsonTest(true);
+ ReflectionTest(flatbuf.data(), flatbuf.size());
+ ParseProtoTest();
+ UnionVectorTest();
+ LoadVerifyBinaryTest();
+ GenerateTableTextTest();
+ #endif
+ // clang-format on
+
+ FuzzTest1();
+ FuzzTest2();
+
+ ErrorTest();
+ ValueTest();
+ EnumValueTest();
+ EnumStringsTest();
+ EnumNamesTest();
+ EnumOutOfRangeTest();
+ IntegerOutOfRangeTest();
+ IntegerBoundaryTest();
+ UnicodeTest();
+ UnicodeTestAllowNonUTF8();
+ UnicodeTestGenerateTextFailsOnNonUTF8();
+ UnicodeSurrogatesTest();
+ UnicodeInvalidSurrogatesTest();
+ InvalidUTF8Test();
+ UnknownFieldsTest();
+ ParseUnionTest();
+ InvalidNestedFlatbufferTest();
+ ConformTest();
+ ParseProtoBufAsciiTest();
+ TypeAliasesTest();
+ EndianSwapTest();
+ CreateSharedStringTest();
+ JsonDefaultTest();
+ JsonEnumsTest();
+ FlexBuffersTest();
+ UninitializedVectorTest();
+ EqualOperatorTest();
+ NumericUtilsTest();
+ IsAsciiUtilsTest();
+ ValidFloatTest();
+ InvalidFloatTest();
+ TestMonsterExtraFloats();
+ FixedLengthArrayTest();
+ NativeTypeTest();
+ return 0;
+}
+
+int main(int /*argc*/, const char * /*argv*/ []) {
+ InitTestEngine();
+
+ std::string req_locale;
+ if (flatbuffers::ReadEnvironmentVariable("FLATBUFFERS_TEST_LOCALE",
+ &req_locale)) {
+ TEST_OUTPUT_LINE("The environment variable FLATBUFFERS_TEST_LOCALE=%s",
+ req_locale.c_str());
+ req_locale = flatbuffers::RemoveStringQuotes(req_locale);
+ std::string the_locale;
+ TEST_ASSERT_FUNC(
+ flatbuffers::SetGlobalTestLocale(req_locale.c_str(), &the_locale));
+ TEST_OUTPUT_LINE("The global C-locale changed: %s", the_locale.c_str());
+ }
+
+ FlatBufferTests();
+ FlatBufferBuilderTest();
+
+ if (!testing_fails) {
+ TEST_OUTPUT_LINE("ALL TESTS PASSED");
+ } else {
+ TEST_OUTPUT_LINE("%d FAILED TESTS", testing_fails);
+ }
+ return CloseTestEngine();
+}