blob: 8ae97c259df6814e125365e1417ab35877b2fd5b [file] [log] [blame]
Jim Ostrowskiba2edd12022-12-03 15:44:37 -08001#include "Eigen/Dense"
2#include "Eigen/Geometry"
3#include "absl/strings/str_format.h"
4#include "aos/events/logging/log_reader.h"
5#include "aos/init.h"
6#include "aos/network/team_number.h"
7#include "aos/time/time.h"
8#include "aos/util/file.h"
9#include "frc971/control_loops/quaternion_utils.h"
10#include "frc971/vision/extrinsics_calibration.h"
11#include "frc971/vision/vision_generated.h"
12#include "frc971/wpilib/imu_batch_generated.h"
13#include "y2020/vision/sift/sift_generated.h"
14#include "y2020/vision/sift/sift_training_generated.h"
15#include "y2020/vision/tools/python_code/sift_training_data.h"
16#include "y2022/control_loops/superstructure/superstructure_status_generated.h"
17
18DEFINE_string(pi, "pi-7971-2", "Pi name to calibrate.");
19DEFINE_bool(plot, false, "Whether to plot the resulting data.");
20DEFINE_bool(visualize, false, "Whether to visualize the resulting data.");
21DEFINE_bool(turret, true, "If true, the camera is on the turret");
22
23namespace frc971 {
24namespace vision {
25namespace chrono = std::chrono;
26using aos::distributed_clock;
27using aos::monotonic_clock;
28
29// TODO(austin): Source of IMU data? Is it the same?
30// TODO(austin): Intrinsics data?
31
32void Main(int argc, char **argv) {
33 CalibrationData data;
34
35 {
36 // Now, accumulate all the data into the data object.
37 aos::logger::LogReader reader(
38 aos::logger::SortParts(aos::logger::FindLogs(argc, argv)));
39
40 aos::SimulatedEventLoopFactory factory(reader.configuration());
41 reader.Register(&factory);
42
43 CHECK(aos::configuration::MultiNode(reader.configuration()));
44
45 // Find the nodes we care about.
46 const aos::Node *const imu_node =
47 aos::configuration::GetNode(factory.configuration(), "imu");
48 const aos::Node *const roborio_node =
49 aos::configuration::GetNode(factory.configuration(), "roborio");
50
51 std::optional<uint16_t> pi_number = aos::network::ParsePiNumber(FLAGS_pi);
52 CHECK(pi_number);
53 LOG(INFO) << "Pi " << *pi_number;
54 const aos::Node *const pi_node = aos::configuration::GetNode(
55 factory.configuration(), absl::StrCat("pi", *pi_number));
56
57 LOG(INFO) << "imu " << aos::FlatbufferToJson(imu_node);
58 LOG(INFO) << "roboRIO " << aos::FlatbufferToJson(roborio_node);
59 LOG(INFO) << "Pi " << aos::FlatbufferToJson(pi_node);
60
61 std::unique_ptr<aos::EventLoop> imu_event_loop =
62 factory.MakeEventLoop("calibration", imu_node);
63 std::unique_ptr<aos::EventLoop> roborio_event_loop =
64 factory.MakeEventLoop("calibration", roborio_node);
65 std::unique_ptr<aos::EventLoop> pi_event_loop =
66 factory.MakeEventLoop("calibration", pi_node);
67
68 // Now, hook Calibration up to everything.
69 Calibration extractor(&factory, pi_event_loop.get(), imu_event_loop.get(),
70 FLAGS_pi, &data);
71
72 if (FLAGS_turret) {
73 aos::NodeEventLoopFactory *roborio_factory =
74 factory.GetNodeEventLoopFactory(roborio_node->name()->string_view());
75 roborio_event_loop->MakeWatcher(
76 "/superstructure",
77 [roborio_factory, roborio_event_loop = roborio_event_loop.get(),
78 &data](const y2022::control_loops::superstructure::Status &status) {
79 data.AddTurret(
80 roborio_factory->ToDistributedClock(
81 roborio_event_loop->context().monotonic_event_time),
82 Eigen::Vector2d(status.turret()->position(),
83 status.turret()->velocity()));
84 });
85 }
86
87 factory.Run();
88
89 reader.Deregister();
90 }
91
92 LOG(INFO) << "Done with event_loop running";
93 CHECK(data.imu_samples_size() > 0) << "Didn't get any IMU data";
94 CHECK(data.camera_samples_size() > 0) << "Didn't get any camera observations";
95
96 // And now we have it, we can start processing it.
97 const Eigen::Quaternion<double> nominal_initial_orientation(
98 frc971::controls::ToQuaternionFromRotationVector(
99 Eigen::Vector3d(0.0, 0.0, M_PI)));
100 const Eigen::Quaternion<double> nominal_pivot_to_camera(
101 Eigen::AngleAxisd(-0.5 * M_PI, Eigen::Vector3d::UnitX()));
102 const Eigen::Quaternion<double> nominal_pivot_to_imu(
103 Eigen::AngleAxisd(0.0, Eigen::Vector3d::UnitX()));
104 const Eigen::Quaternion<double> nominal_board_to_world(
105 Eigen::AngleAxisd(0.5 * M_PI, Eigen::Vector3d::UnitX()));
106 Eigen::Matrix<double, 6, 1> nominal_initial_state =
107 Eigen::Matrix<double, 6, 1>::Zero();
108 // Set x value to 0.5 m (center view on the board)
109 // nominal_initial_state(0, 0) = 0.5;
110 // Set y value to -1 m (approx distance from imu to board/world)
111 nominal_initial_state(1, 0) = -1.0;
112
113 CalibrationParameters calibration_parameters;
114 calibration_parameters.initial_orientation = nominal_initial_orientation;
115 calibration_parameters.pivot_to_camera = nominal_pivot_to_camera;
116 calibration_parameters.pivot_to_imu = nominal_pivot_to_imu;
117 calibration_parameters.board_to_world = nominal_board_to_world;
118 calibration_parameters.initial_state = nominal_initial_state;
119
120 // Show the inverse of pivot_to_camera, since camera_to_pivot tells where the
121 // camera is with respect to the pivot frame
122 const Eigen::Affine3d nominal_affine_pivot_to_camera =
123 Eigen::Translation3d(calibration_parameters.pivot_to_camera_translation) *
124 nominal_pivot_to_camera;
125 const Eigen::Quaterniond nominal_camera_to_pivot_rotation(
126 nominal_affine_pivot_to_camera.inverse().rotation());
127 const Eigen::Vector3d nominal_camera_to_pivot_translation(
128 nominal_affine_pivot_to_camera.inverse().translation());
129
130 if (data.turret_samples_size() > 0) {
131 LOG(INFO) << "Have turret, so using pivot setup";
132 calibration_parameters.has_pivot = true;
133 }
134
135 LOG(INFO) << "Initial Conditions for solver. Assumes:\n"
136 << "1) board origin is same as world, but rotated pi/2 about "
137 "x-axis, so z points out\n"
138 << "2) pivot origin matches imu origin\n"
139 << "3) camera is offset from pivot (depends on which camera)";
140
141 LOG(INFO)
142 << "Nominal initial_orientation of imu w.r.t. world (angle-axis vector): "
143 << frc971::controls::ToRotationVectorFromQuaternion(
144 nominal_initial_orientation)
145 .transpose();
146 LOG(INFO) << "Nominal initial_state: \n"
147 << "Position: "
148 << nominal_initial_state.block<3, 1>(0, 0).transpose() << "\n"
149 << "Velocity: "
150 << nominal_initial_state.block<3, 1>(3, 0).transpose();
151 LOG(INFO) << "Nominal pivot_to_imu (angle-axis vector) "
152 << frc971::controls::ToRotationVectorFromQuaternion(
153 calibration_parameters.pivot_to_imu)
154 .transpose();
155 LOG(INFO) << "Nominal pivot_to_imu translation: "
156 << calibration_parameters.pivot_to_imu_translation.transpose();
157 // TODO<Jim>: Might be nice to take out the rotation component that maps into
158 // camera image coordinates (with x right, y down, z forward)
159 LOG(INFO) << "Nominal camera_to_pivot (angle-axis vector): "
160 << frc971::controls::ToRotationVectorFromQuaternion(
161 nominal_camera_to_pivot_rotation)
162 .transpose();
163 LOG(INFO) << "Nominal camera_to_pivot translation: "
164 << nominal_camera_to_pivot_translation.transpose();
165
166 Solve(data, &calibration_parameters);
167
168 LOG(INFO) << "RESULTS OF CALIBRATION SOLVER:";
169 LOG(INFO) << "initial_orientation of imu w.r.t. world (angle-axis vector): "
170 << frc971::controls::ToRotationVectorFromQuaternion(
171 calibration_parameters.initial_orientation)
172 .transpose();
173 LOG(INFO)
174 << "initial_state: \n"
175 << "Position: "
176 << calibration_parameters.initial_state.block<3, 1>(0, 0).transpose()
177 << "\n"
178 << "Velocity: "
179 << calibration_parameters.initial_state.block<3, 1>(3, 0).transpose();
180
181 LOG(INFO) << "pivot_to_imu rotation (angle-axis vec) "
182 << frc971::controls::ToRotationVectorFromQuaternion(
183 calibration_parameters.pivot_to_imu)
184 .transpose();
185 LOG(INFO) << "pivot_to_imu_translation "
186 << calibration_parameters.pivot_to_imu_translation.transpose();
187 const Eigen::Affine3d affine_pivot_to_camera =
188 Eigen::Translation3d(calibration_parameters.pivot_to_camera_translation) *
189 calibration_parameters.pivot_to_camera;
190 const Eigen::Quaterniond camera_to_pivot_rotation(
191 affine_pivot_to_camera.inverse().rotation());
192 const Eigen::Vector3d camera_to_pivot_translation(
193 affine_pivot_to_camera.inverse().translation());
194 LOG(INFO) << "camera to pivot (angle-axis vec): "
195 << frc971::controls::ToRotationVectorFromQuaternion(
196 camera_to_pivot_rotation)
197 .transpose();
198 LOG(INFO) << "camera to pivot translation: "
199 << camera_to_pivot_translation.transpose();
200 LOG(INFO) << "board_to_world (rotation) "
201 << frc971::controls::ToRotationVectorFromQuaternion(
202 calibration_parameters.board_to_world)
203 .transpose();
204 LOG(INFO) << "accelerometer bias "
205 << calibration_parameters.accelerometer_bias.transpose();
206 LOG(INFO) << "gyro_bias " << calibration_parameters.gyro_bias.transpose();
207 LOG(INFO) << "gravity " << 9.81 * calibration_parameters.gravity_scalar;
208
209 LOG(INFO) << "pivot_to_camera change "
210 << frc971::controls::ToRotationVectorFromQuaternion(
211 calibration_parameters.pivot_to_camera *
212 nominal_pivot_to_camera.inverse())
213 .transpose();
214 LOG(INFO) << "board_to_world delta "
215 << frc971::controls::ToRotationVectorFromQuaternion(
216 calibration_parameters.board_to_world *
217 nominal_board_to_world.inverse())
218 .transpose();
219
220 if (FLAGS_visualize) {
221 LOG(INFO) << "Showing visualization";
222 Visualize(data, calibration_parameters);
223 }
224
225 if (FLAGS_plot) {
226 Plot(data, calibration_parameters);
227 }
228}
229
230} // namespace vision
231} // namespace frc971
232
233int main(int argc, char **argv) {
234 aos::InitGoogle(&argc, &argv);
235
236 frc971::vision::Main(argc, argv);
237}