blob: 6c88e15fad498a804ef3ffb4a225cdcd1b8d21d9 [file] [log] [blame]
Brian Silverman6260c092018-01-14 15:21:36 -08001#!/usr/bin/python
2
3from frc971.control_loops.python import control_loop
4from frc971.control_loops.python import controls
5import numpy
6import sys
7import copy
8import scipy.interpolate
9from matplotlib import pylab
10
11import gflags
12import glog
13
14FLAGS = gflags.FLAGS
15
16gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
17gflags.DEFINE_string('data', None, 'If defined, plot the provided CAN data')
18gflags.DEFINE_bool('rerun_kf', False, 'If true, rerun the KF. The torque in the data file will be interpreted as the commanded current.')
19
20class SystemParams(object):
21 def __init__(self, J, G, kP, kD, kCompensationTimeconstant, q_pos, q_vel,
22 q_torque, current_limit):
23 self.J = J
24 self.G = G
25 self.q_pos = q_pos
26 self.q_vel = q_vel
27 self.q_torque = q_torque
28 self.kP = kP
29 self.kD = kD
30 self.kCompensationTimeconstant = kCompensationTimeconstant
31 self.r_pos = 0.001
32 self.current_limit = current_limit
33
34 #[15.0, 0.25],
35 #[10.0, 0.2],
36 #[5.0, 0.13],
37 #[3.0, 0.10],
38 #[2.0, 0.08],
39 #[1.0, 0.06],
40 #[0.5, 0.05],
41 #[0.25, 0.025],
42
43kWheel = SystemParams(J=0.0008,
44 G=(1.25 + 0.02) / 0.35,
45 q_pos=0.001,
46 q_vel=0.20,
47 q_torque=0.005,
48 kP=7.0,
49 kD=0.0,
50 kCompensationTimeconstant=0.95,
51 current_limit=4.5)
52kTrigger = SystemParams(J=0.00025,
53 G=(0.925 * 2.0 + 0.02) / 0.35,
54 q_pos=0.001,
55 q_vel=0.1,
56 q_torque=0.005,
57 kP=120.0,
58 kD=1.8,
59 kCompensationTimeconstant=0.95,
60 current_limit=3.0)
61
62class HapticInput(control_loop.ControlLoop):
63 def __init__(self, params=None, name='HapticInput'):
64 # The defaults are for the steering wheel.
65 super(HapticInput, self).__init__(name)
66 motor = self.motor = control_loop.MN3510()
67
68 # Moment of inertia of the wheel in kg m^2
69 self.J = params.J
70
71 # Control loop time step
72 self.dt = 0.001
73
74 # Gear ratio from the motor to the input.
75 self.G = params.G
76
77 self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
78 self.A_continuous[1, 1] = 0
79 self.A_continuous[0, 1] = 1
80
81 self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
82 self.B_continuous[1, 0] = motor.Kt * self.G / self.J
83
84 # State feedback matrices
85 # [position, angular velocity]
86 self.C = numpy.matrix([[1.0, 0.0]])
87 self.D = numpy.matrix([[0.0]])
88
89 self.A, self.B = self.ContinuousToDiscrete(
90 self.A_continuous, self.B_continuous, self.dt)
91
92 self.U_max = numpy.matrix([[2.5]])
93 self.U_min = numpy.matrix([[-2.5]])
94
95 self.L = numpy.matrix([[0.0], [0.0]])
96 self.K = numpy.matrix([[0.0, 0.0]])
97
98 self.InitializeState()
99
100
101class IntegralHapticInput(HapticInput):
102 def __init__(self, params=None, name="IntegralHapticInput"):
103 super(IntegralHapticInput, self).__init__(name=name, params=params)
104
105 self.A_continuous_unaugmented = self.A_continuous
106 self.B_continuous_unaugmented = self.B_continuous
107
108 self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
109 self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
110 self.A_continuous[1, 2] = (1 / self.J)
111
112 self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
113 self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
114
115 self.C_unaugmented = self.C
116 self.C = numpy.matrix(numpy.zeros((1, 3)))
117 self.C[0:1, 0:2] = self.C_unaugmented
118
119 self.A, self.B = self.ContinuousToDiscrete(
120 self.A_continuous, self.B_continuous, self.dt)
121
122 self.Q = numpy.matrix([[(params.q_pos ** 2.0), 0.0, 0.0],
123 [0.0, (params.q_vel ** 2.0), 0.0],
124 [0.0, 0.0, (params.q_torque ** 2.0)]])
125
126 self.R = numpy.matrix([[(params.r_pos ** 2.0)]])
127
128 self.KalmanGain, self.Q_steady = controls.kalman(
129 A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
130 self.L = self.A * self.KalmanGain
131
132 self.K_unaugmented = self.K
133 self.K = numpy.matrix(numpy.zeros((1, 3)))
134 self.K[0, 0:2] = self.K_unaugmented
135 self.K[0, 2] = 1.0 / (self.motor.Kt / (self.motor.resistance))
136
137 self.InitializeState()
138
139def ReadCan(filename):
140 """Reads the candump in filename and returns the 4 fields."""
141 trigger = []
142 trigger_velocity = []
143 trigger_torque = []
144 trigger_current = []
145 wheel = []
146 wheel_velocity = []
147 wheel_torque = []
148 wheel_current = []
149
150 trigger_request_time = [0.0]
151 trigger_request_current = [0.0]
152 wheel_request_time = [0.0]
153 wheel_request_current = [0.0]
154
155 with open(filename, 'r') as fd:
156 for line in fd:
157 data = line.split()
158 can_id = int(data[1], 16)
159 if can_id == 0:
160 data = [int(d, 16) for d in data[3:]]
161 trigger.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0)
162 trigger_velocity.append(((data[2] + (data[3] << 8)) - 32768) / 32768.0)
163 trigger_torque.append(((data[4] + (data[5] << 8)) - 32768) / 32768.0)
164 trigger_current.append(((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0)
165 elif can_id == 1:
166 data = [int(d, 16) for d in data[3:]]
167 wheel.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0)
168 wheel_velocity.append(((data[2] + (data[3] << 8)) - 32768) / 32768.0)
169 wheel_torque.append(((data[4] + (data[5] << 8)) - 32768) / 32768.0)
170 wheel_current.append(((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0)
171 elif can_id == 2:
172 data = [int(d, 16) for d in data[3:]]
173 trigger_request_current.append(((data[4] + (data[5] << 8)) - 32768) / 32768.0)
174 trigger_request_time.append(len(trigger) * 0.001)
175 elif can_id == 3:
176 data = [int(d, 16) for d in data[3:]]
177 wheel_request_current.append(((data[4] + (data[5] << 8)) - 32768) / 32768.0)
178 wheel_request_time.append(len(wheel) * 0.001)
179
180 trigger_data_time = numpy.arange(0, len(trigger)) * 0.001
181 wheel_data_time = numpy.arange(0, len(wheel)) * 0.001
182
183 # Extend out the data in the interpolation table.
184 trigger_request_time.append(trigger_data_time[-1])
185 trigger_request_current.append(trigger_request_current[-1])
186 wheel_request_time.append(wheel_data_time[-1])
187 wheel_request_current.append(wheel_request_current[-1])
188
189 return (trigger_data_time, wheel_data_time, trigger, wheel, trigger_velocity,
190 wheel_velocity, trigger_torque, wheel_torque, trigger_current,
191 wheel_current, trigger_request_time, trigger_request_current,
192 wheel_request_time, wheel_request_current)
193
194def rerun_and_plot_kf(data_time, data_radians, data_current, data_request_current,
195 params, run_correct=True):
196 kf_velocity = []
197 dt_velocity = []
198 kf_position = []
199 adjusted_position = []
200 last_angle = None
201 haptic_observer = IntegralHapticInput(params=params)
202
203 # Parameter sweep J.
204 num_kf = 1
205 min_J = max_J = params.J
206
207 # J = 0.0022
208 #num_kf = 15
209 #min_J = min_J / 2.0
210 #max_J = max_J * 2.0
211 initial_velocity = (data_radians[1] - data_radians[0]) * 1000.0
212
213 def DupParamsWithJ(params, J):
214 p = copy.copy(params)
215 p.J = J
216 return p
217 haptic_observers = [IntegralHapticInput(params=DupParamsWithJ(params, j)) for j in
218 numpy.logspace(numpy.log10(min_J),
219 numpy.log10(max_J), num=num_kf)]
220 # Initialize all the KF's.
221 haptic_observer.X_hat[1, 0] = initial_velocity
222 haptic_observer.X_hat[0, 0] = data_radians[0]
223 for observer in haptic_observers:
224 observer.X_hat[1, 0] = initial_velocity
225 observer.X_hat[0, 0] = data_radians[0]
226
227 last_request_current = data_request_current[0]
228 kf_torques = [[] for i in xrange(num_kf)]
229 for angle, current, request_current in zip(data_radians, data_current,
230 data_request_current):
231 # Predict and correct all the parameter swept observers.
232 for i, observer in enumerate(haptic_observers):
233 observer.Y = numpy.matrix([[angle]])
234 if run_correct:
235 observer.CorrectObserver(numpy.matrix([[current]]))
236 kf_torques[i].append(-observer.X_hat[2, 0])
237 observer.PredictObserver(numpy.matrix([[current]]))
238 observer.PredictObserver(numpy.matrix([[current]]))
239
240 # Predict and correct the main observer.
241 haptic_observer.Y = numpy.matrix([[angle]])
242 if run_correct:
243 haptic_observer.CorrectObserver(numpy.matrix([[current]]))
244 kf_position.append(haptic_observer.X_hat[0, 0])
245 adjusted_position.append(kf_position[-1] - last_request_current / params.kP)
246 last_request_current = last_request_current * params.kCompensationTimeconstant + request_current * (1.0 - params.kCompensationTimeconstant)
247 kf_velocity.append(haptic_observer.X_hat[1, 0])
248 if last_angle is None:
249 last_angle = angle
250 dt_velocity.append((angle - last_angle) / 0.001)
251
252 haptic_observer.PredictObserver(numpy.matrix([[current]]))
253 last_angle = angle
254
255 # Plot the wheel observers.
256 fig, ax1 = pylab.subplots()
257 ax1.plot(data_time, data_radians, '.', label='wheel')
258 ax1.plot(data_time, dt_velocity, '.', label='dt_velocity')
259 ax1.plot(data_time, kf_velocity, '.', label='kf_velocity')
260 ax1.plot(data_time, kf_position, '.', label='kf_position')
261 ax1.plot(data_time, adjusted_position, '.', label='adjusted_position')
262
263 ax2 = ax1.twinx()
264 ax2.plot(data_time, data_current, label='data_current')
265 ax2.plot(data_time, data_request_current, label='request_current')
266
267 for i, kf_torque in enumerate(kf_torques):
268 ax2.plot(data_time, kf_torque,
269 label='-kf_torque[%f]' % haptic_observers[i].J)
270 fig.tight_layout()
271 ax1.legend(loc=3)
272 ax2.legend(loc=4)
273
274def plot_input(data_time, data_radians, data_velocity, data_torque,
275 data_current, params, run_correct=True):
276 dt_velocity = []
277 last_angle = None
278 initial_velocity = (data_radians[1] - data_radians[0]) * 1000.0
279
280 for angle in data_radians:
281 if last_angle is None:
282 last_angle = angle
283 dt_velocity.append((angle - last_angle) / 0.001)
284
285 last_angle = angle
286
287 # Plot the wheel observers.
288 fig, ax1 = pylab.subplots()
289 ax1.plot(data_time, data_radians, '.', label='angle')
290 ax1.plot(data_time, data_velocity, '-', label='velocity')
291 ax1.plot(data_time, dt_velocity, '.', label='dt_velocity')
292
293 ax2 = ax1.twinx()
294 ax2.plot(data_time, data_torque, label='data_torque')
295 ax2.plot(data_time, data_current, label='data_current')
296 fig.tight_layout()
297 ax1.legend(loc=3)
298 ax2.legend(loc=4)
299
300def main(argv):
301 if FLAGS.plot:
302 if FLAGS.data is None:
303 haptic_wheel = HapticInput()
304 haptic_wheel_controller = IntegralHapticInput()
305 observer_haptic_wheel = IntegralHapticInput()
306 observer_haptic_wheel.X_hat[2, 0] = 0.01
307
308 R = numpy.matrix([[0.0], [0.0], [0.0]])
309
310 control_loop.TestSingleIntegralAxisSquareWave(
311 R, 1.0, haptic_wheel, haptic_wheel_controller, observer_haptic_wheel)
312 else:
313 # Read the CAN trace in.
314 trigger_data_time, wheel_data_time, trigger, wheel, trigger_velocity, \
315 wheel_velocity, trigger_torque, wheel_torque, trigger_current, \
316 wheel_current, trigger_request_time, trigger_request_current, \
317 wheel_request_time, wheel_request_current = ReadCan(FLAGS.data)
318
319 wheel_radians = [w * numpy.pi * (338.16 / 360.0) for w in wheel]
320 wheel_velocity = [w * 50.0 for w in wheel_velocity]
321 wheel_torque = [w / 2.0 for w in wheel_torque]
322 wheel_current = [w * 10.0 for w in wheel_current]
323 wheel_request_current = [w * 2.0 for w in wheel_request_current]
324 resampled_wheel_request_current = scipy.interpolate.interp1d(
325 wheel_request_time, wheel_request_current, kind="zero")(wheel_data_time)
326
327 trigger_radians = [t * numpy.pi * (45.0 / 360.0) for t in trigger]
328 trigger_velocity = [t * 50.0 for t in trigger_velocity]
329 trigger_torque = [t / 2.0 for t in trigger_torque]
330 trigger_current = [t * 10.0 for t in trigger_current]
331 trigger_request_current = [t * 2.0 for t in trigger_request_current]
332 resampled_trigger_request_current = scipy.interpolate.interp1d(
333 trigger_request_time, trigger_request_current, kind="zero")(trigger_data_time)
334
335 if FLAGS.rerun_kf:
336 rerun_and_plot_kf(trigger_data_time, trigger_radians, trigger_current,
337 resampled_trigger_request_current, kTrigger, run_correct=True)
338 rerun_and_plot_kf(wheel_data_time, wheel_radians, wheel_current,
339 resampled_wheel_request_current, kWheel, run_correct=True)
340 else:
341 plot_input(trigger_data_time, trigger_radians, trigger_velocity,
342 trigger_torque, trigger_current, kTrigger)
343 plot_input(wheel_data_time, wheel_radians, wheel_velocity, wheel_torque,
344 wheel_current, kWheel)
345 pylab.show()
346
347 return
348
349 if len(argv) != 9:
350 glog.fatal('Expected .h file name and .cc file name')
351 else:
352 namespaces = ['frc971', 'control_loops', 'drivetrain']
353 for name, params, filenames in [('HapticWheel', kWheel, argv[1:5]),
354 ('HapticTrigger', kTrigger, argv[5:9])]:
355 haptic_input = HapticInput(params=params, name=name)
356 loop_writer = control_loop.ControlLoopWriter(name, [haptic_input],
357 namespaces=namespaces,
358 scalar_type='float')
359 loop_writer.Write(filenames[0], filenames[1])
360
361 integral_haptic_input = IntegralHapticInput(params=params,
362 name='Integral' + name)
363 integral_loop_writer = control_loop.ControlLoopWriter(
364 'Integral' + name, [integral_haptic_input], namespaces=namespaces,
365 scalar_type='float')
366
367 integral_loop_writer.AddConstant(
368 control_loop.Constant("k" + name + "Dt", "%f",
369 integral_haptic_input.dt))
370 integral_loop_writer.AddConstant(
371 control_loop.Constant("k" + name + "FreeCurrent", "%f",
372 integral_haptic_input.motor.free_current))
373 integral_loop_writer.AddConstant(
374 control_loop.Constant("k" + name + "StallTorque", "%f",
375 integral_haptic_input.motor.stall_torque))
376 integral_loop_writer.AddConstant(
377 control_loop.Constant("k" + name + "J", "%f",
378 integral_haptic_input.J))
379 integral_loop_writer.AddConstant(
380 control_loop.Constant("k" + name + "R", "%f",
381 integral_haptic_input.motor.resistance))
382 integral_loop_writer.AddConstant(
383 control_loop.Constant("k" + name + "T", "%f",
384 integral_haptic_input.motor.Kt))
385 integral_loop_writer.AddConstant(
386 control_loop.Constant("k" + name + "V", "%f",
387 integral_haptic_input.motor.Kv))
388 integral_loop_writer.AddConstant(
389 control_loop.Constant("k" + name + "P", "%f",
390 params.kP))
391 integral_loop_writer.AddConstant(
392 control_loop.Constant("k" + name + "D", "%f",
393 params.kD))
394 integral_loop_writer.AddConstant(
395 control_loop.Constant("k" + name + "G", "%f",
396 params.G))
397 integral_loop_writer.AddConstant(
398 control_loop.Constant("k" + name + "CurrentLimit", "%f",
399 params.current_limit))
400
401 integral_loop_writer.Write(filenames[2], filenames[3])
402
403
404if __name__ == '__main__':
405 argv = FLAGS(sys.argv)
406 sys.exit(main(argv))