Finish the pistol grip code
Change-Id: I95c03a95ac0ec64b4314ec310ad6535176b1d529
diff --git a/frc971/control_loops/python/haptic_wheel.py b/frc971/control_loops/python/haptic_wheel.py
new file mode 100755
index 0000000..6c88e15
--- /dev/null
+++ b/frc971/control_loops/python/haptic_wheel.py
@@ -0,0 +1,406 @@
+#!/usr/bin/python
+
+from frc971.control_loops.python import control_loop
+from frc971.control_loops.python import controls
+import numpy
+import sys
+import copy
+import scipy.interpolate
+from matplotlib import pylab
+
+import gflags
+import glog
+
+FLAGS = gflags.FLAGS
+
+gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.')
+gflags.DEFINE_string('data', None, 'If defined, plot the provided CAN data')
+gflags.DEFINE_bool('rerun_kf', False, 'If true, rerun the KF. The torque in the data file will be interpreted as the commanded current.')
+
+class SystemParams(object):
+ def __init__(self, J, G, kP, kD, kCompensationTimeconstant, q_pos, q_vel,
+ q_torque, current_limit):
+ self.J = J
+ self.G = G
+ self.q_pos = q_pos
+ self.q_vel = q_vel
+ self.q_torque = q_torque
+ self.kP = kP
+ self.kD = kD
+ self.kCompensationTimeconstant = kCompensationTimeconstant
+ self.r_pos = 0.001
+ self.current_limit = current_limit
+
+ #[15.0, 0.25],
+ #[10.0, 0.2],
+ #[5.0, 0.13],
+ #[3.0, 0.10],
+ #[2.0, 0.08],
+ #[1.0, 0.06],
+ #[0.5, 0.05],
+ #[0.25, 0.025],
+
+kWheel = SystemParams(J=0.0008,
+ G=(1.25 + 0.02) / 0.35,
+ q_pos=0.001,
+ q_vel=0.20,
+ q_torque=0.005,
+ kP=7.0,
+ kD=0.0,
+ kCompensationTimeconstant=0.95,
+ current_limit=4.5)
+kTrigger = SystemParams(J=0.00025,
+ G=(0.925 * 2.0 + 0.02) / 0.35,
+ q_pos=0.001,
+ q_vel=0.1,
+ q_torque=0.005,
+ kP=120.0,
+ kD=1.8,
+ kCompensationTimeconstant=0.95,
+ current_limit=3.0)
+
+class HapticInput(control_loop.ControlLoop):
+ def __init__(self, params=None, name='HapticInput'):
+ # The defaults are for the steering wheel.
+ super(HapticInput, self).__init__(name)
+ motor = self.motor = control_loop.MN3510()
+
+ # Moment of inertia of the wheel in kg m^2
+ self.J = params.J
+
+ # Control loop time step
+ self.dt = 0.001
+
+ # Gear ratio from the motor to the input.
+ self.G = params.G
+
+ self.A_continuous = numpy.matrix(numpy.zeros((2, 2)))
+ self.A_continuous[1, 1] = 0
+ self.A_continuous[0, 1] = 1
+
+ self.B_continuous = numpy.matrix(numpy.zeros((2, 1)))
+ self.B_continuous[1, 0] = motor.Kt * self.G / self.J
+
+ # State feedback matrices
+ # [position, angular velocity]
+ self.C = numpy.matrix([[1.0, 0.0]])
+ self.D = numpy.matrix([[0.0]])
+
+ self.A, self.B = self.ContinuousToDiscrete(
+ self.A_continuous, self.B_continuous, self.dt)
+
+ self.U_max = numpy.matrix([[2.5]])
+ self.U_min = numpy.matrix([[-2.5]])
+
+ self.L = numpy.matrix([[0.0], [0.0]])
+ self.K = numpy.matrix([[0.0, 0.0]])
+
+ self.InitializeState()
+
+
+class IntegralHapticInput(HapticInput):
+ def __init__(self, params=None, name="IntegralHapticInput"):
+ super(IntegralHapticInput, self).__init__(name=name, params=params)
+
+ self.A_continuous_unaugmented = self.A_continuous
+ self.B_continuous_unaugmented = self.B_continuous
+
+ self.A_continuous = numpy.matrix(numpy.zeros((3, 3)))
+ self.A_continuous[0:2, 0:2] = self.A_continuous_unaugmented
+ self.A_continuous[1, 2] = (1 / self.J)
+
+ self.B_continuous = numpy.matrix(numpy.zeros((3, 1)))
+ self.B_continuous[0:2, 0] = self.B_continuous_unaugmented
+
+ self.C_unaugmented = self.C
+ self.C = numpy.matrix(numpy.zeros((1, 3)))
+ self.C[0:1, 0:2] = self.C_unaugmented
+
+ self.A, self.B = self.ContinuousToDiscrete(
+ self.A_continuous, self.B_continuous, self.dt)
+
+ self.Q = numpy.matrix([[(params.q_pos ** 2.0), 0.0, 0.0],
+ [0.0, (params.q_vel ** 2.0), 0.0],
+ [0.0, 0.0, (params.q_torque ** 2.0)]])
+
+ self.R = numpy.matrix([[(params.r_pos ** 2.0)]])
+
+ self.KalmanGain, self.Q_steady = controls.kalman(
+ A=self.A, B=self.B, C=self.C, Q=self.Q, R=self.R)
+ self.L = self.A * self.KalmanGain
+
+ self.K_unaugmented = self.K
+ self.K = numpy.matrix(numpy.zeros((1, 3)))
+ self.K[0, 0:2] = self.K_unaugmented
+ self.K[0, 2] = 1.0 / (self.motor.Kt / (self.motor.resistance))
+
+ self.InitializeState()
+
+def ReadCan(filename):
+ """Reads the candump in filename and returns the 4 fields."""
+ trigger = []
+ trigger_velocity = []
+ trigger_torque = []
+ trigger_current = []
+ wheel = []
+ wheel_velocity = []
+ wheel_torque = []
+ wheel_current = []
+
+ trigger_request_time = [0.0]
+ trigger_request_current = [0.0]
+ wheel_request_time = [0.0]
+ wheel_request_current = [0.0]
+
+ with open(filename, 'r') as fd:
+ for line in fd:
+ data = line.split()
+ can_id = int(data[1], 16)
+ if can_id == 0:
+ data = [int(d, 16) for d in data[3:]]
+ trigger.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0)
+ trigger_velocity.append(((data[2] + (data[3] << 8)) - 32768) / 32768.0)
+ trigger_torque.append(((data[4] + (data[5] << 8)) - 32768) / 32768.0)
+ trigger_current.append(((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0)
+ elif can_id == 1:
+ data = [int(d, 16) for d in data[3:]]
+ wheel.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0)
+ wheel_velocity.append(((data[2] + (data[3] << 8)) - 32768) / 32768.0)
+ wheel_torque.append(((data[4] + (data[5] << 8)) - 32768) / 32768.0)
+ wheel_current.append(((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0)
+ elif can_id == 2:
+ data = [int(d, 16) for d in data[3:]]
+ trigger_request_current.append(((data[4] + (data[5] << 8)) - 32768) / 32768.0)
+ trigger_request_time.append(len(trigger) * 0.001)
+ elif can_id == 3:
+ data = [int(d, 16) for d in data[3:]]
+ wheel_request_current.append(((data[4] + (data[5] << 8)) - 32768) / 32768.0)
+ wheel_request_time.append(len(wheel) * 0.001)
+
+ trigger_data_time = numpy.arange(0, len(trigger)) * 0.001
+ wheel_data_time = numpy.arange(0, len(wheel)) * 0.001
+
+ # Extend out the data in the interpolation table.
+ trigger_request_time.append(trigger_data_time[-1])
+ trigger_request_current.append(trigger_request_current[-1])
+ wheel_request_time.append(wheel_data_time[-1])
+ wheel_request_current.append(wheel_request_current[-1])
+
+ return (trigger_data_time, wheel_data_time, trigger, wheel, trigger_velocity,
+ wheel_velocity, trigger_torque, wheel_torque, trigger_current,
+ wheel_current, trigger_request_time, trigger_request_current,
+ wheel_request_time, wheel_request_current)
+
+def rerun_and_plot_kf(data_time, data_radians, data_current, data_request_current,
+ params, run_correct=True):
+ kf_velocity = []
+ dt_velocity = []
+ kf_position = []
+ adjusted_position = []
+ last_angle = None
+ haptic_observer = IntegralHapticInput(params=params)
+
+ # Parameter sweep J.
+ num_kf = 1
+ min_J = max_J = params.J
+
+ # J = 0.0022
+ #num_kf = 15
+ #min_J = min_J / 2.0
+ #max_J = max_J * 2.0
+ initial_velocity = (data_radians[1] - data_radians[0]) * 1000.0
+
+ def DupParamsWithJ(params, J):
+ p = copy.copy(params)
+ p.J = J
+ return p
+ haptic_observers = [IntegralHapticInput(params=DupParamsWithJ(params, j)) for j in
+ numpy.logspace(numpy.log10(min_J),
+ numpy.log10(max_J), num=num_kf)]
+ # Initialize all the KF's.
+ haptic_observer.X_hat[1, 0] = initial_velocity
+ haptic_observer.X_hat[0, 0] = data_radians[0]
+ for observer in haptic_observers:
+ observer.X_hat[1, 0] = initial_velocity
+ observer.X_hat[0, 0] = data_radians[0]
+
+ last_request_current = data_request_current[0]
+ kf_torques = [[] for i in xrange(num_kf)]
+ for angle, current, request_current in zip(data_radians, data_current,
+ data_request_current):
+ # Predict and correct all the parameter swept observers.
+ for i, observer in enumerate(haptic_observers):
+ observer.Y = numpy.matrix([[angle]])
+ if run_correct:
+ observer.CorrectObserver(numpy.matrix([[current]]))
+ kf_torques[i].append(-observer.X_hat[2, 0])
+ observer.PredictObserver(numpy.matrix([[current]]))
+ observer.PredictObserver(numpy.matrix([[current]]))
+
+ # Predict and correct the main observer.
+ haptic_observer.Y = numpy.matrix([[angle]])
+ if run_correct:
+ haptic_observer.CorrectObserver(numpy.matrix([[current]]))
+ kf_position.append(haptic_observer.X_hat[0, 0])
+ adjusted_position.append(kf_position[-1] - last_request_current / params.kP)
+ last_request_current = last_request_current * params.kCompensationTimeconstant + request_current * (1.0 - params.kCompensationTimeconstant)
+ kf_velocity.append(haptic_observer.X_hat[1, 0])
+ if last_angle is None:
+ last_angle = angle
+ dt_velocity.append((angle - last_angle) / 0.001)
+
+ haptic_observer.PredictObserver(numpy.matrix([[current]]))
+ last_angle = angle
+
+ # Plot the wheel observers.
+ fig, ax1 = pylab.subplots()
+ ax1.plot(data_time, data_radians, '.', label='wheel')
+ ax1.plot(data_time, dt_velocity, '.', label='dt_velocity')
+ ax1.plot(data_time, kf_velocity, '.', label='kf_velocity')
+ ax1.plot(data_time, kf_position, '.', label='kf_position')
+ ax1.plot(data_time, adjusted_position, '.', label='adjusted_position')
+
+ ax2 = ax1.twinx()
+ ax2.plot(data_time, data_current, label='data_current')
+ ax2.plot(data_time, data_request_current, label='request_current')
+
+ for i, kf_torque in enumerate(kf_torques):
+ ax2.plot(data_time, kf_torque,
+ label='-kf_torque[%f]' % haptic_observers[i].J)
+ fig.tight_layout()
+ ax1.legend(loc=3)
+ ax2.legend(loc=4)
+
+def plot_input(data_time, data_radians, data_velocity, data_torque,
+ data_current, params, run_correct=True):
+ dt_velocity = []
+ last_angle = None
+ initial_velocity = (data_radians[1] - data_radians[0]) * 1000.0
+
+ for angle in data_radians:
+ if last_angle is None:
+ last_angle = angle
+ dt_velocity.append((angle - last_angle) / 0.001)
+
+ last_angle = angle
+
+ # Plot the wheel observers.
+ fig, ax1 = pylab.subplots()
+ ax1.plot(data_time, data_radians, '.', label='angle')
+ ax1.plot(data_time, data_velocity, '-', label='velocity')
+ ax1.plot(data_time, dt_velocity, '.', label='dt_velocity')
+
+ ax2 = ax1.twinx()
+ ax2.plot(data_time, data_torque, label='data_torque')
+ ax2.plot(data_time, data_current, label='data_current')
+ fig.tight_layout()
+ ax1.legend(loc=3)
+ ax2.legend(loc=4)
+
+def main(argv):
+ if FLAGS.plot:
+ if FLAGS.data is None:
+ haptic_wheel = HapticInput()
+ haptic_wheel_controller = IntegralHapticInput()
+ observer_haptic_wheel = IntegralHapticInput()
+ observer_haptic_wheel.X_hat[2, 0] = 0.01
+
+ R = numpy.matrix([[0.0], [0.0], [0.0]])
+
+ control_loop.TestSingleIntegralAxisSquareWave(
+ R, 1.0, haptic_wheel, haptic_wheel_controller, observer_haptic_wheel)
+ else:
+ # Read the CAN trace in.
+ trigger_data_time, wheel_data_time, trigger, wheel, trigger_velocity, \
+ wheel_velocity, trigger_torque, wheel_torque, trigger_current, \
+ wheel_current, trigger_request_time, trigger_request_current, \
+ wheel_request_time, wheel_request_current = ReadCan(FLAGS.data)
+
+ wheel_radians = [w * numpy.pi * (338.16 / 360.0) for w in wheel]
+ wheel_velocity = [w * 50.0 for w in wheel_velocity]
+ wheel_torque = [w / 2.0 for w in wheel_torque]
+ wheel_current = [w * 10.0 for w in wheel_current]
+ wheel_request_current = [w * 2.0 for w in wheel_request_current]
+ resampled_wheel_request_current = scipy.interpolate.interp1d(
+ wheel_request_time, wheel_request_current, kind="zero")(wheel_data_time)
+
+ trigger_radians = [t * numpy.pi * (45.0 / 360.0) for t in trigger]
+ trigger_velocity = [t * 50.0 for t in trigger_velocity]
+ trigger_torque = [t / 2.0 for t in trigger_torque]
+ trigger_current = [t * 10.0 for t in trigger_current]
+ trigger_request_current = [t * 2.0 for t in trigger_request_current]
+ resampled_trigger_request_current = scipy.interpolate.interp1d(
+ trigger_request_time, trigger_request_current, kind="zero")(trigger_data_time)
+
+ if FLAGS.rerun_kf:
+ rerun_and_plot_kf(trigger_data_time, trigger_radians, trigger_current,
+ resampled_trigger_request_current, kTrigger, run_correct=True)
+ rerun_and_plot_kf(wheel_data_time, wheel_radians, wheel_current,
+ resampled_wheel_request_current, kWheel, run_correct=True)
+ else:
+ plot_input(trigger_data_time, trigger_radians, trigger_velocity,
+ trigger_torque, trigger_current, kTrigger)
+ plot_input(wheel_data_time, wheel_radians, wheel_velocity, wheel_torque,
+ wheel_current, kWheel)
+ pylab.show()
+
+ return
+
+ if len(argv) != 9:
+ glog.fatal('Expected .h file name and .cc file name')
+ else:
+ namespaces = ['frc971', 'control_loops', 'drivetrain']
+ for name, params, filenames in [('HapticWheel', kWheel, argv[1:5]),
+ ('HapticTrigger', kTrigger, argv[5:9])]:
+ haptic_input = HapticInput(params=params, name=name)
+ loop_writer = control_loop.ControlLoopWriter(name, [haptic_input],
+ namespaces=namespaces,
+ scalar_type='float')
+ loop_writer.Write(filenames[0], filenames[1])
+
+ integral_haptic_input = IntegralHapticInput(params=params,
+ name='Integral' + name)
+ integral_loop_writer = control_loop.ControlLoopWriter(
+ 'Integral' + name, [integral_haptic_input], namespaces=namespaces,
+ scalar_type='float')
+
+ integral_loop_writer.AddConstant(
+ control_loop.Constant("k" + name + "Dt", "%f",
+ integral_haptic_input.dt))
+ integral_loop_writer.AddConstant(
+ control_loop.Constant("k" + name + "FreeCurrent", "%f",
+ integral_haptic_input.motor.free_current))
+ integral_loop_writer.AddConstant(
+ control_loop.Constant("k" + name + "StallTorque", "%f",
+ integral_haptic_input.motor.stall_torque))
+ integral_loop_writer.AddConstant(
+ control_loop.Constant("k" + name + "J", "%f",
+ integral_haptic_input.J))
+ integral_loop_writer.AddConstant(
+ control_loop.Constant("k" + name + "R", "%f",
+ integral_haptic_input.motor.resistance))
+ integral_loop_writer.AddConstant(
+ control_loop.Constant("k" + name + "T", "%f",
+ integral_haptic_input.motor.Kt))
+ integral_loop_writer.AddConstant(
+ control_loop.Constant("k" + name + "V", "%f",
+ integral_haptic_input.motor.Kv))
+ integral_loop_writer.AddConstant(
+ control_loop.Constant("k" + name + "P", "%f",
+ params.kP))
+ integral_loop_writer.AddConstant(
+ control_loop.Constant("k" + name + "D", "%f",
+ params.kD))
+ integral_loop_writer.AddConstant(
+ control_loop.Constant("k" + name + "G", "%f",
+ params.G))
+ integral_loop_writer.AddConstant(
+ control_loop.Constant("k" + name + "CurrentLimit", "%f",
+ params.current_limit))
+
+ integral_loop_writer.Write(filenames[2], filenames[3])
+
+
+if __name__ == '__main__':
+ argv = FLAGS(sys.argv)
+ sys.exit(main(argv))