Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 1 | // Copyright 2018 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |
| 16 | #define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |
| 17 | |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 18 | #include <cassert> |
| 19 | #include <cstddef> |
| 20 | #include <memory> |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 21 | #include <new> |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 22 | #include <tuple> |
| 23 | #include <type_traits> |
| 24 | #include <utility> |
| 25 | |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 26 | #include "absl/base/config.h" |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 27 | #include "absl/memory/memory.h" |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 28 | #include "absl/meta/type_traits.h" |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 29 | #include "absl/utility/utility.h" |
| 30 | |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 31 | #ifdef ABSL_HAVE_ADDRESS_SANITIZER |
| 32 | #include <sanitizer/asan_interface.h> |
| 33 | #endif |
| 34 | |
| 35 | #ifdef ABSL_HAVE_MEMORY_SANITIZER |
| 36 | #include <sanitizer/msan_interface.h> |
| 37 | #endif |
| 38 | |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 39 | namespace absl { |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 40 | ABSL_NAMESPACE_BEGIN |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 41 | namespace container_internal { |
| 42 | |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 43 | template <size_t Alignment> |
| 44 | struct alignas(Alignment) AlignedType {}; |
| 45 | |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 46 | // Allocates at least n bytes aligned to the specified alignment. |
| 47 | // Alignment must be a power of 2. It must be positive. |
| 48 | // |
| 49 | // Note that many allocators don't honor alignment requirements above certain |
| 50 | // threshold (usually either alignof(std::max_align_t) or alignof(void*)). |
| 51 | // Allocate() doesn't apply alignment corrections. If the underlying allocator |
| 52 | // returns insufficiently alignment pointer, that's what you are going to get. |
| 53 | template <size_t Alignment, class Alloc> |
| 54 | void* Allocate(Alloc* alloc, size_t n) { |
| 55 | static_assert(Alignment > 0, ""); |
| 56 | assert(n && "n must be positive"); |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 57 | using M = AlignedType<Alignment>; |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 58 | using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; |
| 59 | using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 60 | // On macOS, "mem_alloc" is a #define with one argument defined in |
| 61 | // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it |
| 62 | // with the "foo(bar)" syntax. |
| 63 | A my_mem_alloc(*alloc); |
| 64 | void* p = AT::allocate(my_mem_alloc, (n + sizeof(M) - 1) / sizeof(M)); |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 65 | assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 && |
| 66 | "allocator does not respect alignment"); |
| 67 | return p; |
| 68 | } |
| 69 | |
| 70 | // The pointer must have been previously obtained by calling |
| 71 | // Allocate<Alignment>(alloc, n). |
| 72 | template <size_t Alignment, class Alloc> |
| 73 | void Deallocate(Alloc* alloc, void* p, size_t n) { |
| 74 | static_assert(Alignment > 0, ""); |
| 75 | assert(n && "n must be positive"); |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 76 | using M = AlignedType<Alignment>; |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 77 | using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; |
| 78 | using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 79 | // On macOS, "mem_alloc" is a #define with one argument defined in |
| 80 | // rpc/types.h, so we can't name the variable "mem_alloc" and initialize it |
| 81 | // with the "foo(bar)" syntax. |
| 82 | A my_mem_alloc(*alloc); |
| 83 | AT::deallocate(my_mem_alloc, static_cast<M*>(p), |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 84 | (n + sizeof(M) - 1) / sizeof(M)); |
| 85 | } |
| 86 | |
| 87 | namespace memory_internal { |
| 88 | |
| 89 | // Constructs T into uninitialized storage pointed by `ptr` using the args |
| 90 | // specified in the tuple. |
| 91 | template <class Alloc, class T, class Tuple, size_t... I> |
| 92 | void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t, |
| 93 | absl::index_sequence<I...>) { |
| 94 | absl::allocator_traits<Alloc>::construct( |
| 95 | *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...); |
| 96 | } |
| 97 | |
| 98 | template <class T, class F> |
| 99 | struct WithConstructedImplF { |
| 100 | template <class... Args> |
| 101 | decltype(std::declval<F>()(std::declval<T>())) operator()( |
| 102 | Args&&... args) const { |
| 103 | return std::forward<F>(f)(T(std::forward<Args>(args)...)); |
| 104 | } |
| 105 | F&& f; |
| 106 | }; |
| 107 | |
| 108 | template <class T, class Tuple, size_t... Is, class F> |
| 109 | decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl( |
| 110 | Tuple&& t, absl::index_sequence<Is...>, F&& f) { |
| 111 | return WithConstructedImplF<T, F>{std::forward<F>(f)}( |
| 112 | std::get<Is>(std::forward<Tuple>(t))...); |
| 113 | } |
| 114 | |
| 115 | template <class T, size_t... Is> |
| 116 | auto TupleRefImpl(T&& t, absl::index_sequence<Is...>) |
| 117 | -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) { |
| 118 | return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...); |
| 119 | } |
| 120 | |
| 121 | // Returns a tuple of references to the elements of the input tuple. T must be a |
| 122 | // tuple. |
| 123 | template <class T> |
| 124 | auto TupleRef(T&& t) -> decltype( |
| 125 | TupleRefImpl(std::forward<T>(t), |
| 126 | absl::make_index_sequence< |
| 127 | std::tuple_size<typename std::decay<T>::type>::value>())) { |
| 128 | return TupleRefImpl( |
| 129 | std::forward<T>(t), |
| 130 | absl::make_index_sequence< |
| 131 | std::tuple_size<typename std::decay<T>::type>::value>()); |
| 132 | } |
| 133 | |
| 134 | template <class F, class K, class V> |
| 135 | decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct, |
| 136 | std::declval<std::tuple<K>>(), std::declval<V>())) |
| 137 | DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) { |
| 138 | const auto& key = std::get<0>(p.first); |
| 139 | return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first), |
| 140 | std::move(p.second)); |
| 141 | } |
| 142 | |
| 143 | } // namespace memory_internal |
| 144 | |
| 145 | // Constructs T into uninitialized storage pointed by `ptr` using the args |
| 146 | // specified in the tuple. |
| 147 | template <class Alloc, class T, class Tuple> |
| 148 | void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) { |
| 149 | memory_internal::ConstructFromTupleImpl( |
| 150 | alloc, ptr, std::forward<Tuple>(t), |
| 151 | absl::make_index_sequence< |
| 152 | std::tuple_size<typename std::decay<Tuple>::type>::value>()); |
| 153 | } |
| 154 | |
| 155 | // Constructs T using the args specified in the tuple and calls F with the |
| 156 | // constructed value. |
| 157 | template <class T, class Tuple, class F> |
| 158 | decltype(std::declval<F>()(std::declval<T>())) WithConstructed( |
| 159 | Tuple&& t, F&& f) { |
| 160 | return memory_internal::WithConstructedImpl<T>( |
| 161 | std::forward<Tuple>(t), |
| 162 | absl::make_index_sequence< |
| 163 | std::tuple_size<typename std::decay<Tuple>::type>::value>(), |
| 164 | std::forward<F>(f)); |
| 165 | } |
| 166 | |
| 167 | // Given arguments of an std::pair's consructor, PairArgs() returns a pair of |
| 168 | // tuples with references to the passed arguments. The tuples contain |
| 169 | // constructor arguments for the first and the second elements of the pair. |
| 170 | // |
| 171 | // The following two snippets are equivalent. |
| 172 | // |
| 173 | // 1. std::pair<F, S> p(args...); |
| 174 | // |
| 175 | // 2. auto a = PairArgs(args...); |
| 176 | // std::pair<F, S> p(std::piecewise_construct, |
| 177 | // std::move(p.first), std::move(p.second)); |
| 178 | inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; } |
| 179 | template <class F, class S> |
| 180 | std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) { |
| 181 | return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)), |
| 182 | std::forward_as_tuple(std::forward<S>(s))}; |
| 183 | } |
| 184 | template <class F, class S> |
| 185 | std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs( |
| 186 | const std::pair<F, S>& p) { |
| 187 | return PairArgs(p.first, p.second); |
| 188 | } |
| 189 | template <class F, class S> |
| 190 | std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) { |
| 191 | return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second)); |
| 192 | } |
| 193 | template <class F, class S> |
| 194 | auto PairArgs(std::piecewise_construct_t, F&& f, S&& s) |
| 195 | -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), |
| 196 | memory_internal::TupleRef(std::forward<S>(s)))) { |
| 197 | return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), |
| 198 | memory_internal::TupleRef(std::forward<S>(s))); |
| 199 | } |
| 200 | |
| 201 | // A helper function for implementing apply() in map policies. |
| 202 | template <class F, class... Args> |
| 203 | auto DecomposePair(F&& f, Args&&... args) |
| 204 | -> decltype(memory_internal::DecomposePairImpl( |
| 205 | std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) { |
| 206 | return memory_internal::DecomposePairImpl( |
| 207 | std::forward<F>(f), PairArgs(std::forward<Args>(args)...)); |
| 208 | } |
| 209 | |
| 210 | // A helper function for implementing apply() in set policies. |
| 211 | template <class F, class Arg> |
| 212 | decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>())) |
| 213 | DecomposeValue(F&& f, Arg&& arg) { |
| 214 | const auto& key = arg; |
| 215 | return std::forward<F>(f)(key, std::forward<Arg>(arg)); |
| 216 | } |
| 217 | |
| 218 | // Helper functions for asan and msan. |
| 219 | inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) { |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 220 | #ifdef ABSL_HAVE_ADDRESS_SANITIZER |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 221 | ASAN_POISON_MEMORY_REGION(m, s); |
| 222 | #endif |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 223 | #ifdef ABSL_HAVE_MEMORY_SANITIZER |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 224 | __msan_poison(m, s); |
| 225 | #endif |
| 226 | (void)m; |
| 227 | (void)s; |
| 228 | } |
| 229 | |
| 230 | inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) { |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 231 | #ifdef ABSL_HAVE_ADDRESS_SANITIZER |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 232 | ASAN_UNPOISON_MEMORY_REGION(m, s); |
| 233 | #endif |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 234 | #ifdef ABSL_HAVE_MEMORY_SANITIZER |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 235 | __msan_unpoison(m, s); |
| 236 | #endif |
| 237 | (void)m; |
| 238 | (void)s; |
| 239 | } |
| 240 | |
| 241 | template <typename T> |
| 242 | inline void SanitizerPoisonObject(const T* object) { |
| 243 | SanitizerPoisonMemoryRegion(object, sizeof(T)); |
| 244 | } |
| 245 | |
| 246 | template <typename T> |
| 247 | inline void SanitizerUnpoisonObject(const T* object) { |
| 248 | SanitizerUnpoisonMemoryRegion(object, sizeof(T)); |
| 249 | } |
| 250 | |
| 251 | namespace memory_internal { |
| 252 | |
| 253 | // If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and |
| 254 | // OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and |
| 255 | // offsetof(Pair, second) respectively. Otherwise they are -1. |
| 256 | // |
| 257 | // The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout |
| 258 | // type, which is non-portable. |
| 259 | template <class Pair, class = std::true_type> |
| 260 | struct OffsetOf { |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 261 | static constexpr size_t kFirst = static_cast<size_t>(-1); |
| 262 | static constexpr size_t kSecond = static_cast<size_t>(-1); |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 263 | }; |
| 264 | |
| 265 | template <class Pair> |
| 266 | struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> { |
| 267 | static constexpr size_t kFirst = offsetof(Pair, first); |
| 268 | static constexpr size_t kSecond = offsetof(Pair, second); |
| 269 | }; |
| 270 | |
| 271 | template <class K, class V> |
| 272 | struct IsLayoutCompatible { |
| 273 | private: |
| 274 | struct Pair { |
| 275 | K first; |
| 276 | V second; |
| 277 | }; |
| 278 | |
| 279 | // Is P layout-compatible with Pair? |
| 280 | template <class P> |
| 281 | static constexpr bool LayoutCompatible() { |
| 282 | return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) && |
| 283 | alignof(P) == alignof(Pair) && |
| 284 | memory_internal::OffsetOf<P>::kFirst == |
| 285 | memory_internal::OffsetOf<Pair>::kFirst && |
| 286 | memory_internal::OffsetOf<P>::kSecond == |
| 287 | memory_internal::OffsetOf<Pair>::kSecond; |
| 288 | } |
| 289 | |
| 290 | public: |
| 291 | // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are, |
| 292 | // then it is safe to store them in a union and read from either. |
| 293 | static constexpr bool value = std::is_standard_layout<K>() && |
| 294 | std::is_standard_layout<Pair>() && |
| 295 | memory_internal::OffsetOf<Pair>::kFirst == 0 && |
| 296 | LayoutCompatible<std::pair<K, V>>() && |
| 297 | LayoutCompatible<std::pair<const K, V>>(); |
| 298 | }; |
| 299 | |
| 300 | } // namespace memory_internal |
| 301 | |
| 302 | // The internal storage type for key-value containers like flat_hash_map. |
| 303 | // |
| 304 | // It is convenient for the value_type of a flat_hash_map<K, V> to be |
| 305 | // pair<const K, V>; the "const K" prevents accidental modification of the key |
| 306 | // when dealing with the reference returned from find() and similar methods. |
| 307 | // However, this creates other problems; we want to be able to emplace(K, V) |
| 308 | // efficiently with move operations, and similarly be able to move a |
| 309 | // pair<K, V> in insert(). |
| 310 | // |
| 311 | // The solution is this union, which aliases the const and non-const versions |
| 312 | // of the pair. This also allows flat_hash_map<const K, V> to work, even though |
| 313 | // that has the same efficiency issues with move in emplace() and insert() - |
| 314 | // but people do it anyway. |
| 315 | // |
| 316 | // If kMutableKeys is false, only the value member can be accessed. |
| 317 | // |
| 318 | // If kMutableKeys is true, key can be accessed through all slots while value |
| 319 | // and mutable_value must be accessed only via INITIALIZED slots. Slots are |
| 320 | // created and destroyed via mutable_value so that the key can be moved later. |
| 321 | // |
| 322 | // Accessing one of the union fields while the other is active is safe as |
| 323 | // long as they are layout-compatible, which is guaranteed by the definition of |
| 324 | // kMutableKeys. For C++11, the relevant section of the standard is |
| 325 | // https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19) |
| 326 | template <class K, class V> |
| 327 | union map_slot_type { |
| 328 | map_slot_type() {} |
| 329 | ~map_slot_type() = delete; |
| 330 | using value_type = std::pair<const K, V>; |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 331 | using mutable_value_type = |
| 332 | std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>; |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 333 | |
| 334 | value_type value; |
| 335 | mutable_value_type mutable_value; |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 336 | absl::remove_const_t<K> key; |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 337 | }; |
| 338 | |
| 339 | template <class K, class V> |
| 340 | struct map_slot_policy { |
| 341 | using slot_type = map_slot_type<K, V>; |
| 342 | using value_type = std::pair<const K, V>; |
| 343 | using mutable_value_type = std::pair<K, V>; |
| 344 | |
| 345 | private: |
| 346 | static void emplace(slot_type* slot) { |
| 347 | // The construction of union doesn't do anything at runtime but it allows us |
| 348 | // to access its members without violating aliasing rules. |
| 349 | new (slot) slot_type; |
| 350 | } |
| 351 | // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one |
| 352 | // or the other via slot_type. We are also free to access the key via |
| 353 | // slot_type::key in this case. |
| 354 | using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>; |
| 355 | |
| 356 | public: |
| 357 | static value_type& element(slot_type* slot) { return slot->value; } |
| 358 | static const value_type& element(const slot_type* slot) { |
| 359 | return slot->value; |
| 360 | } |
| 361 | |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 362 | // When C++17 is available, we can use std::launder to provide mutable |
| 363 | // access to the key for use in node handle. |
| 364 | #if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606 |
| 365 | static K& mutable_key(slot_type* slot) { |
| 366 | // Still check for kMutableKeys so that we can avoid calling std::launder |
| 367 | // unless necessary because it can interfere with optimizations. |
| 368 | return kMutableKeys::value ? slot->key |
| 369 | : *std::launder(const_cast<K*>( |
| 370 | std::addressof(slot->value.first))); |
| 371 | } |
| 372 | #else // !(defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606) |
| 373 | static const K& mutable_key(slot_type* slot) { return key(slot); } |
| 374 | #endif |
| 375 | |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 376 | static const K& key(const slot_type* slot) { |
| 377 | return kMutableKeys::value ? slot->key : slot->value.first; |
| 378 | } |
| 379 | |
| 380 | template <class Allocator, class... Args> |
| 381 | static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { |
| 382 | emplace(slot); |
| 383 | if (kMutableKeys::value) { |
| 384 | absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value, |
| 385 | std::forward<Args>(args)...); |
| 386 | } else { |
| 387 | absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, |
| 388 | std::forward<Args>(args)...); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | // Construct this slot by moving from another slot. |
| 393 | template <class Allocator> |
| 394 | static void construct(Allocator* alloc, slot_type* slot, slot_type* other) { |
| 395 | emplace(slot); |
| 396 | if (kMutableKeys::value) { |
| 397 | absl::allocator_traits<Allocator>::construct( |
| 398 | *alloc, &slot->mutable_value, std::move(other->mutable_value)); |
| 399 | } else { |
| 400 | absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, |
| 401 | std::move(other->value)); |
| 402 | } |
| 403 | } |
| 404 | |
| 405 | template <class Allocator> |
| 406 | static void destroy(Allocator* alloc, slot_type* slot) { |
| 407 | if (kMutableKeys::value) { |
| 408 | absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value); |
| 409 | } else { |
| 410 | absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value); |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | template <class Allocator> |
| 415 | static void transfer(Allocator* alloc, slot_type* new_slot, |
| 416 | slot_type* old_slot) { |
| 417 | emplace(new_slot); |
| 418 | if (kMutableKeys::value) { |
| 419 | absl::allocator_traits<Allocator>::construct( |
| 420 | *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value)); |
| 421 | } else { |
| 422 | absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value, |
| 423 | std::move(old_slot->value)); |
| 424 | } |
| 425 | destroy(alloc, old_slot); |
| 426 | } |
| 427 | |
| 428 | template <class Allocator> |
| 429 | static void swap(Allocator* alloc, slot_type* a, slot_type* b) { |
| 430 | if (kMutableKeys::value) { |
| 431 | using std::swap; |
| 432 | swap(a->mutable_value, b->mutable_value); |
| 433 | } else { |
| 434 | value_type tmp = std::move(a->value); |
| 435 | absl::allocator_traits<Allocator>::destroy(*alloc, &a->value); |
| 436 | absl::allocator_traits<Allocator>::construct(*alloc, &a->value, |
| 437 | std::move(b->value)); |
| 438 | absl::allocator_traits<Allocator>::destroy(*alloc, &b->value); |
| 439 | absl::allocator_traits<Allocator>::construct(*alloc, &b->value, |
| 440 | std::move(tmp)); |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | template <class Allocator> |
| 445 | static void move(Allocator* alloc, slot_type* src, slot_type* dest) { |
| 446 | if (kMutableKeys::value) { |
| 447 | dest->mutable_value = std::move(src->mutable_value); |
| 448 | } else { |
| 449 | absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value); |
| 450 | absl::allocator_traits<Allocator>::construct(*alloc, &dest->value, |
| 451 | std::move(src->value)); |
| 452 | } |
| 453 | } |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 454 | }; |
| 455 | |
| 456 | } // namespace container_internal |
Austin Schuh | b4691e9 | 2020-12-31 12:37:18 -0800 | [diff] [blame^] | 457 | ABSL_NAMESPACE_END |
Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame] | 458 | } // namespace absl |
| 459 | |
| 460 | #endif // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |