Austin Schuh | 36244a1 | 2019-09-21 17:52:38 -0700 | [diff] [blame^] | 1 | // Copyright 2018 The Abseil Authors. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | #ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |
| 16 | #define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |
| 17 | |
| 18 | #ifdef ADDRESS_SANITIZER |
| 19 | #include <sanitizer/asan_interface.h> |
| 20 | #endif |
| 21 | |
| 22 | #ifdef MEMORY_SANITIZER |
| 23 | #include <sanitizer/msan_interface.h> |
| 24 | #endif |
| 25 | |
| 26 | #include <cassert> |
| 27 | #include <cstddef> |
| 28 | #include <memory> |
| 29 | #include <tuple> |
| 30 | #include <type_traits> |
| 31 | #include <utility> |
| 32 | |
| 33 | #include "absl/memory/memory.h" |
| 34 | #include "absl/utility/utility.h" |
| 35 | |
| 36 | namespace absl { |
| 37 | namespace container_internal { |
| 38 | |
| 39 | // Allocates at least n bytes aligned to the specified alignment. |
| 40 | // Alignment must be a power of 2. It must be positive. |
| 41 | // |
| 42 | // Note that many allocators don't honor alignment requirements above certain |
| 43 | // threshold (usually either alignof(std::max_align_t) or alignof(void*)). |
| 44 | // Allocate() doesn't apply alignment corrections. If the underlying allocator |
| 45 | // returns insufficiently alignment pointer, that's what you are going to get. |
| 46 | template <size_t Alignment, class Alloc> |
| 47 | void* Allocate(Alloc* alloc, size_t n) { |
| 48 | static_assert(Alignment > 0, ""); |
| 49 | assert(n && "n must be positive"); |
| 50 | struct alignas(Alignment) M {}; |
| 51 | using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; |
| 52 | using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; |
| 53 | A mem_alloc(*alloc); |
| 54 | void* p = AT::allocate(mem_alloc, (n + sizeof(M) - 1) / sizeof(M)); |
| 55 | assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 && |
| 56 | "allocator does not respect alignment"); |
| 57 | return p; |
| 58 | } |
| 59 | |
| 60 | // The pointer must have been previously obtained by calling |
| 61 | // Allocate<Alignment>(alloc, n). |
| 62 | template <size_t Alignment, class Alloc> |
| 63 | void Deallocate(Alloc* alloc, void* p, size_t n) { |
| 64 | static_assert(Alignment > 0, ""); |
| 65 | assert(n && "n must be positive"); |
| 66 | struct alignas(Alignment) M {}; |
| 67 | using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>; |
| 68 | using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>; |
| 69 | A mem_alloc(*alloc); |
| 70 | AT::deallocate(mem_alloc, static_cast<M*>(p), |
| 71 | (n + sizeof(M) - 1) / sizeof(M)); |
| 72 | } |
| 73 | |
| 74 | namespace memory_internal { |
| 75 | |
| 76 | // Constructs T into uninitialized storage pointed by `ptr` using the args |
| 77 | // specified in the tuple. |
| 78 | template <class Alloc, class T, class Tuple, size_t... I> |
| 79 | void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t, |
| 80 | absl::index_sequence<I...>) { |
| 81 | absl::allocator_traits<Alloc>::construct( |
| 82 | *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...); |
| 83 | } |
| 84 | |
| 85 | template <class T, class F> |
| 86 | struct WithConstructedImplF { |
| 87 | template <class... Args> |
| 88 | decltype(std::declval<F>()(std::declval<T>())) operator()( |
| 89 | Args&&... args) const { |
| 90 | return std::forward<F>(f)(T(std::forward<Args>(args)...)); |
| 91 | } |
| 92 | F&& f; |
| 93 | }; |
| 94 | |
| 95 | template <class T, class Tuple, size_t... Is, class F> |
| 96 | decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl( |
| 97 | Tuple&& t, absl::index_sequence<Is...>, F&& f) { |
| 98 | return WithConstructedImplF<T, F>{std::forward<F>(f)}( |
| 99 | std::get<Is>(std::forward<Tuple>(t))...); |
| 100 | } |
| 101 | |
| 102 | template <class T, size_t... Is> |
| 103 | auto TupleRefImpl(T&& t, absl::index_sequence<Is...>) |
| 104 | -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) { |
| 105 | return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...); |
| 106 | } |
| 107 | |
| 108 | // Returns a tuple of references to the elements of the input tuple. T must be a |
| 109 | // tuple. |
| 110 | template <class T> |
| 111 | auto TupleRef(T&& t) -> decltype( |
| 112 | TupleRefImpl(std::forward<T>(t), |
| 113 | absl::make_index_sequence< |
| 114 | std::tuple_size<typename std::decay<T>::type>::value>())) { |
| 115 | return TupleRefImpl( |
| 116 | std::forward<T>(t), |
| 117 | absl::make_index_sequence< |
| 118 | std::tuple_size<typename std::decay<T>::type>::value>()); |
| 119 | } |
| 120 | |
| 121 | template <class F, class K, class V> |
| 122 | decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct, |
| 123 | std::declval<std::tuple<K>>(), std::declval<V>())) |
| 124 | DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) { |
| 125 | const auto& key = std::get<0>(p.first); |
| 126 | return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first), |
| 127 | std::move(p.second)); |
| 128 | } |
| 129 | |
| 130 | } // namespace memory_internal |
| 131 | |
| 132 | // Constructs T into uninitialized storage pointed by `ptr` using the args |
| 133 | // specified in the tuple. |
| 134 | template <class Alloc, class T, class Tuple> |
| 135 | void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) { |
| 136 | memory_internal::ConstructFromTupleImpl( |
| 137 | alloc, ptr, std::forward<Tuple>(t), |
| 138 | absl::make_index_sequence< |
| 139 | std::tuple_size<typename std::decay<Tuple>::type>::value>()); |
| 140 | } |
| 141 | |
| 142 | // Constructs T using the args specified in the tuple and calls F with the |
| 143 | // constructed value. |
| 144 | template <class T, class Tuple, class F> |
| 145 | decltype(std::declval<F>()(std::declval<T>())) WithConstructed( |
| 146 | Tuple&& t, F&& f) { |
| 147 | return memory_internal::WithConstructedImpl<T>( |
| 148 | std::forward<Tuple>(t), |
| 149 | absl::make_index_sequence< |
| 150 | std::tuple_size<typename std::decay<Tuple>::type>::value>(), |
| 151 | std::forward<F>(f)); |
| 152 | } |
| 153 | |
| 154 | // Given arguments of an std::pair's consructor, PairArgs() returns a pair of |
| 155 | // tuples with references to the passed arguments. The tuples contain |
| 156 | // constructor arguments for the first and the second elements of the pair. |
| 157 | // |
| 158 | // The following two snippets are equivalent. |
| 159 | // |
| 160 | // 1. std::pair<F, S> p(args...); |
| 161 | // |
| 162 | // 2. auto a = PairArgs(args...); |
| 163 | // std::pair<F, S> p(std::piecewise_construct, |
| 164 | // std::move(p.first), std::move(p.second)); |
| 165 | inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; } |
| 166 | template <class F, class S> |
| 167 | std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) { |
| 168 | return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)), |
| 169 | std::forward_as_tuple(std::forward<S>(s))}; |
| 170 | } |
| 171 | template <class F, class S> |
| 172 | std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs( |
| 173 | const std::pair<F, S>& p) { |
| 174 | return PairArgs(p.first, p.second); |
| 175 | } |
| 176 | template <class F, class S> |
| 177 | std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) { |
| 178 | return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second)); |
| 179 | } |
| 180 | template <class F, class S> |
| 181 | auto PairArgs(std::piecewise_construct_t, F&& f, S&& s) |
| 182 | -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), |
| 183 | memory_internal::TupleRef(std::forward<S>(s)))) { |
| 184 | return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)), |
| 185 | memory_internal::TupleRef(std::forward<S>(s))); |
| 186 | } |
| 187 | |
| 188 | // A helper function for implementing apply() in map policies. |
| 189 | template <class F, class... Args> |
| 190 | auto DecomposePair(F&& f, Args&&... args) |
| 191 | -> decltype(memory_internal::DecomposePairImpl( |
| 192 | std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) { |
| 193 | return memory_internal::DecomposePairImpl( |
| 194 | std::forward<F>(f), PairArgs(std::forward<Args>(args)...)); |
| 195 | } |
| 196 | |
| 197 | // A helper function for implementing apply() in set policies. |
| 198 | template <class F, class Arg> |
| 199 | decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>())) |
| 200 | DecomposeValue(F&& f, Arg&& arg) { |
| 201 | const auto& key = arg; |
| 202 | return std::forward<F>(f)(key, std::forward<Arg>(arg)); |
| 203 | } |
| 204 | |
| 205 | // Helper functions for asan and msan. |
| 206 | inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) { |
| 207 | #ifdef ADDRESS_SANITIZER |
| 208 | ASAN_POISON_MEMORY_REGION(m, s); |
| 209 | #endif |
| 210 | #ifdef MEMORY_SANITIZER |
| 211 | __msan_poison(m, s); |
| 212 | #endif |
| 213 | (void)m; |
| 214 | (void)s; |
| 215 | } |
| 216 | |
| 217 | inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) { |
| 218 | #ifdef ADDRESS_SANITIZER |
| 219 | ASAN_UNPOISON_MEMORY_REGION(m, s); |
| 220 | #endif |
| 221 | #ifdef MEMORY_SANITIZER |
| 222 | __msan_unpoison(m, s); |
| 223 | #endif |
| 224 | (void)m; |
| 225 | (void)s; |
| 226 | } |
| 227 | |
| 228 | template <typename T> |
| 229 | inline void SanitizerPoisonObject(const T* object) { |
| 230 | SanitizerPoisonMemoryRegion(object, sizeof(T)); |
| 231 | } |
| 232 | |
| 233 | template <typename T> |
| 234 | inline void SanitizerUnpoisonObject(const T* object) { |
| 235 | SanitizerUnpoisonMemoryRegion(object, sizeof(T)); |
| 236 | } |
| 237 | |
| 238 | namespace memory_internal { |
| 239 | |
| 240 | // If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and |
| 241 | // OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and |
| 242 | // offsetof(Pair, second) respectively. Otherwise they are -1. |
| 243 | // |
| 244 | // The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout |
| 245 | // type, which is non-portable. |
| 246 | template <class Pair, class = std::true_type> |
| 247 | struct OffsetOf { |
| 248 | static constexpr size_t kFirst = -1; |
| 249 | static constexpr size_t kSecond = -1; |
| 250 | }; |
| 251 | |
| 252 | template <class Pair> |
| 253 | struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> { |
| 254 | static constexpr size_t kFirst = offsetof(Pair, first); |
| 255 | static constexpr size_t kSecond = offsetof(Pair, second); |
| 256 | }; |
| 257 | |
| 258 | template <class K, class V> |
| 259 | struct IsLayoutCompatible { |
| 260 | private: |
| 261 | struct Pair { |
| 262 | K first; |
| 263 | V second; |
| 264 | }; |
| 265 | |
| 266 | // Is P layout-compatible with Pair? |
| 267 | template <class P> |
| 268 | static constexpr bool LayoutCompatible() { |
| 269 | return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) && |
| 270 | alignof(P) == alignof(Pair) && |
| 271 | memory_internal::OffsetOf<P>::kFirst == |
| 272 | memory_internal::OffsetOf<Pair>::kFirst && |
| 273 | memory_internal::OffsetOf<P>::kSecond == |
| 274 | memory_internal::OffsetOf<Pair>::kSecond; |
| 275 | } |
| 276 | |
| 277 | public: |
| 278 | // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are, |
| 279 | // then it is safe to store them in a union and read from either. |
| 280 | static constexpr bool value = std::is_standard_layout<K>() && |
| 281 | std::is_standard_layout<Pair>() && |
| 282 | memory_internal::OffsetOf<Pair>::kFirst == 0 && |
| 283 | LayoutCompatible<std::pair<K, V>>() && |
| 284 | LayoutCompatible<std::pair<const K, V>>(); |
| 285 | }; |
| 286 | |
| 287 | } // namespace memory_internal |
| 288 | |
| 289 | // The internal storage type for key-value containers like flat_hash_map. |
| 290 | // |
| 291 | // It is convenient for the value_type of a flat_hash_map<K, V> to be |
| 292 | // pair<const K, V>; the "const K" prevents accidental modification of the key |
| 293 | // when dealing with the reference returned from find() and similar methods. |
| 294 | // However, this creates other problems; we want to be able to emplace(K, V) |
| 295 | // efficiently with move operations, and similarly be able to move a |
| 296 | // pair<K, V> in insert(). |
| 297 | // |
| 298 | // The solution is this union, which aliases the const and non-const versions |
| 299 | // of the pair. This also allows flat_hash_map<const K, V> to work, even though |
| 300 | // that has the same efficiency issues with move in emplace() and insert() - |
| 301 | // but people do it anyway. |
| 302 | // |
| 303 | // If kMutableKeys is false, only the value member can be accessed. |
| 304 | // |
| 305 | // If kMutableKeys is true, key can be accessed through all slots while value |
| 306 | // and mutable_value must be accessed only via INITIALIZED slots. Slots are |
| 307 | // created and destroyed via mutable_value so that the key can be moved later. |
| 308 | // |
| 309 | // Accessing one of the union fields while the other is active is safe as |
| 310 | // long as they are layout-compatible, which is guaranteed by the definition of |
| 311 | // kMutableKeys. For C++11, the relevant section of the standard is |
| 312 | // https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19) |
| 313 | template <class K, class V> |
| 314 | union map_slot_type { |
| 315 | map_slot_type() {} |
| 316 | ~map_slot_type() = delete; |
| 317 | using value_type = std::pair<const K, V>; |
| 318 | using mutable_value_type = std::pair<K, V>; |
| 319 | |
| 320 | value_type value; |
| 321 | mutable_value_type mutable_value; |
| 322 | K key; |
| 323 | }; |
| 324 | |
| 325 | template <class K, class V> |
| 326 | struct map_slot_policy { |
| 327 | using slot_type = map_slot_type<K, V>; |
| 328 | using value_type = std::pair<const K, V>; |
| 329 | using mutable_value_type = std::pair<K, V>; |
| 330 | |
| 331 | private: |
| 332 | static void emplace(slot_type* slot) { |
| 333 | // The construction of union doesn't do anything at runtime but it allows us |
| 334 | // to access its members without violating aliasing rules. |
| 335 | new (slot) slot_type; |
| 336 | } |
| 337 | // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one |
| 338 | // or the other via slot_type. We are also free to access the key via |
| 339 | // slot_type::key in this case. |
| 340 | using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>; |
| 341 | |
| 342 | public: |
| 343 | static value_type& element(slot_type* slot) { return slot->value; } |
| 344 | static const value_type& element(const slot_type* slot) { |
| 345 | return slot->value; |
| 346 | } |
| 347 | |
| 348 | static const K& key(const slot_type* slot) { |
| 349 | return kMutableKeys::value ? slot->key : slot->value.first; |
| 350 | } |
| 351 | |
| 352 | template <class Allocator, class... Args> |
| 353 | static void construct(Allocator* alloc, slot_type* slot, Args&&... args) { |
| 354 | emplace(slot); |
| 355 | if (kMutableKeys::value) { |
| 356 | absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value, |
| 357 | std::forward<Args>(args)...); |
| 358 | } else { |
| 359 | absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, |
| 360 | std::forward<Args>(args)...); |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | // Construct this slot by moving from another slot. |
| 365 | template <class Allocator> |
| 366 | static void construct(Allocator* alloc, slot_type* slot, slot_type* other) { |
| 367 | emplace(slot); |
| 368 | if (kMutableKeys::value) { |
| 369 | absl::allocator_traits<Allocator>::construct( |
| 370 | *alloc, &slot->mutable_value, std::move(other->mutable_value)); |
| 371 | } else { |
| 372 | absl::allocator_traits<Allocator>::construct(*alloc, &slot->value, |
| 373 | std::move(other->value)); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | template <class Allocator> |
| 378 | static void destroy(Allocator* alloc, slot_type* slot) { |
| 379 | if (kMutableKeys::value) { |
| 380 | absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value); |
| 381 | } else { |
| 382 | absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value); |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | template <class Allocator> |
| 387 | static void transfer(Allocator* alloc, slot_type* new_slot, |
| 388 | slot_type* old_slot) { |
| 389 | emplace(new_slot); |
| 390 | if (kMutableKeys::value) { |
| 391 | absl::allocator_traits<Allocator>::construct( |
| 392 | *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value)); |
| 393 | } else { |
| 394 | absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value, |
| 395 | std::move(old_slot->value)); |
| 396 | } |
| 397 | destroy(alloc, old_slot); |
| 398 | } |
| 399 | |
| 400 | template <class Allocator> |
| 401 | static void swap(Allocator* alloc, slot_type* a, slot_type* b) { |
| 402 | if (kMutableKeys::value) { |
| 403 | using std::swap; |
| 404 | swap(a->mutable_value, b->mutable_value); |
| 405 | } else { |
| 406 | value_type tmp = std::move(a->value); |
| 407 | absl::allocator_traits<Allocator>::destroy(*alloc, &a->value); |
| 408 | absl::allocator_traits<Allocator>::construct(*alloc, &a->value, |
| 409 | std::move(b->value)); |
| 410 | absl::allocator_traits<Allocator>::destroy(*alloc, &b->value); |
| 411 | absl::allocator_traits<Allocator>::construct(*alloc, &b->value, |
| 412 | std::move(tmp)); |
| 413 | } |
| 414 | } |
| 415 | |
| 416 | template <class Allocator> |
| 417 | static void move(Allocator* alloc, slot_type* src, slot_type* dest) { |
| 418 | if (kMutableKeys::value) { |
| 419 | dest->mutable_value = std::move(src->mutable_value); |
| 420 | } else { |
| 421 | absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value); |
| 422 | absl::allocator_traits<Allocator>::construct(*alloc, &dest->value, |
| 423 | std::move(src->value)); |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | template <class Allocator> |
| 428 | static void move(Allocator* alloc, slot_type* first, slot_type* last, |
| 429 | slot_type* result) { |
| 430 | for (slot_type *src = first, *dest = result; src != last; ++src, ++dest) |
| 431 | move(alloc, src, dest); |
| 432 | } |
| 433 | }; |
| 434 | |
| 435 | } // namespace container_internal |
| 436 | } // namespace absl |
| 437 | |
| 438 | #endif // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_ |