Austin Schuh | 9049e20 | 2022-02-20 17:34:16 -0800 | [diff] [blame] | 1 | Huber fitting |
| 2 | ============= |
| 3 | |
| 4 | *Huber fitting* or the *robust least-squares problem* performs linear regression under the assumption that there are outliers in the data. |
| 5 | The fitting problem is written as |
| 6 | |
| 7 | .. math:: |
| 8 | \begin{array}{ll} |
| 9 | \mbox{minimize} & \sum_{i=1}^{m} \phi_{\rm hub}(a_i^T x - b_i), |
| 10 | \end{array} |
| 11 | |
| 12 | with the Huber penalty function :math:`\phi_{\rm hub}:\mathbf{R}\to\mathbf{R}` defined as |
| 13 | |
| 14 | .. math:: |
| 15 | \phi_{\rm hub}(u) = |
| 16 | \begin{cases} |
| 17 | u^2 & |u| \le 1 \\ |
| 18 | (2|u| - 1) & |u| > 1 |
| 19 | \end{cases} |
| 20 | |
| 21 | The problem has the following equivalent form (see `here <https://doi.org/10.1109/34.877518>`_ for more details) |
| 22 | |
| 23 | .. math:: |
| 24 | \begin{array}{ll} |
| 25 | \mbox{minimize} & u^T u + 2\,\boldsymbol{1}^T (r+s) \\ |
| 26 | \mbox{subject to} & Ax - b - u = r - s \\ |
| 27 | & r \ge 0 \\ |
| 28 | & s \ge 0 |
| 29 | \end{array} |
| 30 | |
| 31 | |
| 32 | |
| 33 | Python |
| 34 | ------ |
| 35 | |
| 36 | .. code:: python |
| 37 | |
| 38 | import osqp |
| 39 | import numpy as np |
| 40 | import scipy as sp |
| 41 | from scipy import sparse |
| 42 | |
| 43 | # Generate problem data |
| 44 | sp.random.seed(1) |
| 45 | n = 10 |
| 46 | m = 100 |
| 47 | Ad = sparse.random(m, n, density=0.5, format='csc') |
| 48 | x_true = np.random.randn(n) / np.sqrt(n) |
| 49 | ind95 = (np.random.rand(m) < 0.95).astype(float) |
| 50 | b = Ad.dot(x_true) + np.multiply(0.5*np.random.randn(m), ind95) \ |
| 51 | + np.multiply(10.*np.random.rand(m), 1. - ind95) |
| 52 | |
| 53 | # OSQP data |
| 54 | Im = sparse.eye(m) |
| 55 | P = sparse.block_diag([sparse.csc_matrix((n, n)), 2*Im, |
| 56 | sparse.csc_matrix((2*m, 2*m))], |
| 57 | format='csc') |
| 58 | q = np.append(np.zeros(m+n), 2*np.ones(2*m)) |
| 59 | A = sparse.bmat([[Ad, -Im, -Im, Im], |
| 60 | [None, None, Im, None], |
| 61 | [None, None, None, Im]], format='csc') |
| 62 | l = np.hstack([b, np.zeros(2*m)]) |
| 63 | u = np.hstack([b, np.inf*np.ones(2*m)]) |
| 64 | |
| 65 | # Create an OSQP object |
| 66 | prob = osqp.OSQP() |
| 67 | |
| 68 | # Setup workspace |
| 69 | prob.setup(P, q, A, l, u) |
| 70 | |
| 71 | # Solve problem |
| 72 | res = prob.solve() |
| 73 | |
| 74 | |
| 75 | |
| 76 | Matlab |
| 77 | ------ |
| 78 | |
| 79 | .. code:: matlab |
| 80 | |
| 81 | % Generate problem data |
| 82 | rng(1) |
| 83 | n = 10; |
| 84 | m = 100; |
| 85 | Ad = sprandn(m, n, 0.5); |
| 86 | x_true = randn(n, 1) / sqrt(n); |
| 87 | ind95 = rand(m, 1) > 0.95; |
| 88 | b = Ad*x_true + 10*rand(m, 1).*ind95 + 0.5*randn(m, 1).*(1-ind95); |
| 89 | |
| 90 | % OSQP data |
| 91 | Im = speye(m); |
| 92 | Om = sparse(m, m); |
| 93 | Omn = sparse(m, n); |
| 94 | P = blkdiag(sparse(n, n), 2*Im, sparse(2*m, 2*m)); |
| 95 | q = [zeros(m + n, 1); 2*ones(2*m, 1)]; |
| 96 | A = [Ad, -Im, -Im, Im; |
| 97 | Omn, Om, Im, Om; |
| 98 | Omn, Om, Om, Im]; |
| 99 | l = [b; zeros(2*m, 1)]; |
| 100 | u = [b; inf*ones(2*m, 1)]; |
| 101 | |
| 102 | % Create an OSQP object |
| 103 | prob = osqp; |
| 104 | |
| 105 | % Setup workspace |
| 106 | prob.setup(P, q, A, l, u); |
| 107 | |
| 108 | % Solve problem |
| 109 | res = prob.solve(); |
| 110 | |
| 111 | |
| 112 | |
| 113 | CVXPY |
| 114 | ----- |
| 115 | |
| 116 | .. code:: python |
| 117 | |
| 118 | from cvxpy import * |
| 119 | import numpy as np |
| 120 | import scipy as sp |
| 121 | from scipy import sparse |
| 122 | |
| 123 | # Generate problem data |
| 124 | sp.random.seed(1) |
| 125 | n = 10 |
| 126 | m = 100 |
| 127 | A = sparse.random(m, n, density=0.5, format='csc') |
| 128 | x_true = np.random.randn(n) / np.sqrt(n) |
| 129 | ind95 = (np.random.rand(m) < 0.95).astype(float) |
| 130 | b = A.dot(x_true) + np.multiply(0.5*np.random.randn(m), ind95) \ |
| 131 | + np.multiply(10.*np.random.rand(m), 1. - ind95) |
| 132 | |
| 133 | # Define problem |
| 134 | x = Variable(n) |
| 135 | objective = sum(huber(A*x - b)) |
| 136 | |
| 137 | # Solve with OSQP |
| 138 | Problem(Minimize(objective)).solve(solver=OSQP) |
| 139 | |
| 140 | |
| 141 | |
| 142 | YALMIP |
| 143 | ------ |
| 144 | |
| 145 | .. code:: matlab |
| 146 | |
| 147 | % Generate problem data |
| 148 | rng(1) |
| 149 | n = 10; |
| 150 | m = 100; |
| 151 | A = sprandn(m, n, 0.5); |
| 152 | x_true = randn(n, 1) / sqrt(n); |
| 153 | ind95 = rand(m, 1) > 0.95; |
| 154 | b = A*x_true + 10*rand(m, 1).*ind95 + 0.5*randn(m, 1).*(1-ind95); |
| 155 | |
| 156 | % Define problem |
| 157 | x = sdpvar(n, 1); |
| 158 | objective = huber(A*x - b); |
| 159 | |
| 160 | % Solve with OSQP |
| 161 | options = sdpsettings('solver', 'osqp'); |
| 162 | optimize([], objective, options); |