Austin Schuh | dace2a6 | 2020-08-18 10:56:48 -0700 | [diff] [blame] | 1 | /* mpn_sqrtrem -- square root and remainder |
| 2 | |
| 3 | Contributed to the GNU project by Paul Zimmermann (most code), |
| 4 | Torbjorn Granlund (mpn_sqrtrem1) and Marco Bodrato (mpn_dc_sqrt). |
| 5 | |
| 6 | THE FUNCTIONS IN THIS FILE EXCEPT mpn_sqrtrem ARE INTERNAL WITH MUTABLE |
| 7 | INTERFACES. IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. |
| 8 | IN FACT, IT IS ALMOST GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A |
| 9 | FUTURE GMP RELEASE. |
| 10 | |
| 11 | Copyright 1999-2002, 2004, 2005, 2008, 2010, 2012, 2015, 2017 Free Software |
| 12 | Foundation, Inc. |
| 13 | |
| 14 | This file is part of the GNU MP Library. |
| 15 | |
| 16 | The GNU MP Library is free software; you can redistribute it and/or modify |
| 17 | it under the terms of either: |
| 18 | |
| 19 | * the GNU Lesser General Public License as published by the Free |
| 20 | Software Foundation; either version 3 of the License, or (at your |
| 21 | option) any later version. |
| 22 | |
| 23 | or |
| 24 | |
| 25 | * the GNU General Public License as published by the Free Software |
| 26 | Foundation; either version 2 of the License, or (at your option) any |
| 27 | later version. |
| 28 | |
| 29 | or both in parallel, as here. |
| 30 | |
| 31 | The GNU MP Library is distributed in the hope that it will be useful, but |
| 32 | WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| 33 | or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 34 | for more details. |
| 35 | |
| 36 | You should have received copies of the GNU General Public License and the |
| 37 | GNU Lesser General Public License along with the GNU MP Library. If not, |
| 38 | see https://www.gnu.org/licenses/. */ |
| 39 | |
| 40 | |
| 41 | /* See "Karatsuba Square Root", reference in gmp.texi. */ |
| 42 | |
| 43 | |
| 44 | #include <stdio.h> |
| 45 | #include <stdlib.h> |
| 46 | |
| 47 | #include "gmp-impl.h" |
| 48 | #include "longlong.h" |
| 49 | #define USE_DIVAPPR_Q 1 |
| 50 | #define TRACE(x) |
| 51 | |
| 52 | static const unsigned char invsqrttab[384] = /* The common 0x100 was removed */ |
| 53 | { |
| 54 | 0xff,0xfd,0xfb,0xf9,0xf7,0xf5,0xf3,0xf2, /* sqrt(1/80)..sqrt(1/87) */ |
| 55 | 0xf0,0xee,0xec,0xea,0xe9,0xe7,0xe5,0xe4, /* sqrt(1/88)..sqrt(1/8f) */ |
| 56 | 0xe2,0xe0,0xdf,0xdd,0xdb,0xda,0xd8,0xd7, /* sqrt(1/90)..sqrt(1/97) */ |
| 57 | 0xd5,0xd4,0xd2,0xd1,0xcf,0xce,0xcc,0xcb, /* sqrt(1/98)..sqrt(1/9f) */ |
| 58 | 0xc9,0xc8,0xc6,0xc5,0xc4,0xc2,0xc1,0xc0, /* sqrt(1/a0)..sqrt(1/a7) */ |
| 59 | 0xbe,0xbd,0xbc,0xba,0xb9,0xb8,0xb7,0xb5, /* sqrt(1/a8)..sqrt(1/af) */ |
| 60 | 0xb4,0xb3,0xb2,0xb0,0xaf,0xae,0xad,0xac, /* sqrt(1/b0)..sqrt(1/b7) */ |
| 61 | 0xaa,0xa9,0xa8,0xa7,0xa6,0xa5,0xa4,0xa3, /* sqrt(1/b8)..sqrt(1/bf) */ |
| 62 | 0xa2,0xa0,0x9f,0x9e,0x9d,0x9c,0x9b,0x9a, /* sqrt(1/c0)..sqrt(1/c7) */ |
| 63 | 0x99,0x98,0x97,0x96,0x95,0x94,0x93,0x92, /* sqrt(1/c8)..sqrt(1/cf) */ |
| 64 | 0x91,0x90,0x8f,0x8e,0x8d,0x8c,0x8c,0x8b, /* sqrt(1/d0)..sqrt(1/d7) */ |
| 65 | 0x8a,0x89,0x88,0x87,0x86,0x85,0x84,0x83, /* sqrt(1/d8)..sqrt(1/df) */ |
| 66 | 0x83,0x82,0x81,0x80,0x7f,0x7e,0x7e,0x7d, /* sqrt(1/e0)..sqrt(1/e7) */ |
| 67 | 0x7c,0x7b,0x7a,0x79,0x79,0x78,0x77,0x76, /* sqrt(1/e8)..sqrt(1/ef) */ |
| 68 | 0x76,0x75,0x74,0x73,0x72,0x72,0x71,0x70, /* sqrt(1/f0)..sqrt(1/f7) */ |
| 69 | 0x6f,0x6f,0x6e,0x6d,0x6d,0x6c,0x6b,0x6a, /* sqrt(1/f8)..sqrt(1/ff) */ |
| 70 | 0x6a,0x69,0x68,0x68,0x67,0x66,0x66,0x65, /* sqrt(1/100)..sqrt(1/107) */ |
| 71 | 0x64,0x64,0x63,0x62,0x62,0x61,0x60,0x60, /* sqrt(1/108)..sqrt(1/10f) */ |
| 72 | 0x5f,0x5e,0x5e,0x5d,0x5c,0x5c,0x5b,0x5a, /* sqrt(1/110)..sqrt(1/117) */ |
| 73 | 0x5a,0x59,0x59,0x58,0x57,0x57,0x56,0x56, /* sqrt(1/118)..sqrt(1/11f) */ |
| 74 | 0x55,0x54,0x54,0x53,0x53,0x52,0x52,0x51, /* sqrt(1/120)..sqrt(1/127) */ |
| 75 | 0x50,0x50,0x4f,0x4f,0x4e,0x4e,0x4d,0x4d, /* sqrt(1/128)..sqrt(1/12f) */ |
| 76 | 0x4c,0x4b,0x4b,0x4a,0x4a,0x49,0x49,0x48, /* sqrt(1/130)..sqrt(1/137) */ |
| 77 | 0x48,0x47,0x47,0x46,0x46,0x45,0x45,0x44, /* sqrt(1/138)..sqrt(1/13f) */ |
| 78 | 0x44,0x43,0x43,0x42,0x42,0x41,0x41,0x40, /* sqrt(1/140)..sqrt(1/147) */ |
| 79 | 0x40,0x3f,0x3f,0x3e,0x3e,0x3d,0x3d,0x3c, /* sqrt(1/148)..sqrt(1/14f) */ |
| 80 | 0x3c,0x3b,0x3b,0x3a,0x3a,0x39,0x39,0x39, /* sqrt(1/150)..sqrt(1/157) */ |
| 81 | 0x38,0x38,0x37,0x37,0x36,0x36,0x35,0x35, /* sqrt(1/158)..sqrt(1/15f) */ |
| 82 | 0x35,0x34,0x34,0x33,0x33,0x32,0x32,0x32, /* sqrt(1/160)..sqrt(1/167) */ |
| 83 | 0x31,0x31,0x30,0x30,0x2f,0x2f,0x2f,0x2e, /* sqrt(1/168)..sqrt(1/16f) */ |
| 84 | 0x2e,0x2d,0x2d,0x2d,0x2c,0x2c,0x2b,0x2b, /* sqrt(1/170)..sqrt(1/177) */ |
| 85 | 0x2b,0x2a,0x2a,0x29,0x29,0x29,0x28,0x28, /* sqrt(1/178)..sqrt(1/17f) */ |
| 86 | 0x27,0x27,0x27,0x26,0x26,0x26,0x25,0x25, /* sqrt(1/180)..sqrt(1/187) */ |
| 87 | 0x24,0x24,0x24,0x23,0x23,0x23,0x22,0x22, /* sqrt(1/188)..sqrt(1/18f) */ |
| 88 | 0x21,0x21,0x21,0x20,0x20,0x20,0x1f,0x1f, /* sqrt(1/190)..sqrt(1/197) */ |
| 89 | 0x1f,0x1e,0x1e,0x1e,0x1d,0x1d,0x1d,0x1c, /* sqrt(1/198)..sqrt(1/19f) */ |
| 90 | 0x1c,0x1b,0x1b,0x1b,0x1a,0x1a,0x1a,0x19, /* sqrt(1/1a0)..sqrt(1/1a7) */ |
| 91 | 0x19,0x19,0x18,0x18,0x18,0x18,0x17,0x17, /* sqrt(1/1a8)..sqrt(1/1af) */ |
| 92 | 0x17,0x16,0x16,0x16,0x15,0x15,0x15,0x14, /* sqrt(1/1b0)..sqrt(1/1b7) */ |
| 93 | 0x14,0x14,0x13,0x13,0x13,0x12,0x12,0x12, /* sqrt(1/1b8)..sqrt(1/1bf) */ |
| 94 | 0x12,0x11,0x11,0x11,0x10,0x10,0x10,0x0f, /* sqrt(1/1c0)..sqrt(1/1c7) */ |
| 95 | 0x0f,0x0f,0x0f,0x0e,0x0e,0x0e,0x0d,0x0d, /* sqrt(1/1c8)..sqrt(1/1cf) */ |
| 96 | 0x0d,0x0c,0x0c,0x0c,0x0c,0x0b,0x0b,0x0b, /* sqrt(1/1d0)..sqrt(1/1d7) */ |
| 97 | 0x0a,0x0a,0x0a,0x0a,0x09,0x09,0x09,0x09, /* sqrt(1/1d8)..sqrt(1/1df) */ |
| 98 | 0x08,0x08,0x08,0x07,0x07,0x07,0x07,0x06, /* sqrt(1/1e0)..sqrt(1/1e7) */ |
| 99 | 0x06,0x06,0x06,0x05,0x05,0x05,0x04,0x04, /* sqrt(1/1e8)..sqrt(1/1ef) */ |
| 100 | 0x04,0x04,0x03,0x03,0x03,0x03,0x02,0x02, /* sqrt(1/1f0)..sqrt(1/1f7) */ |
| 101 | 0x02,0x02,0x01,0x01,0x01,0x01,0x00,0x00 /* sqrt(1/1f8)..sqrt(1/1ff) */ |
| 102 | }; |
| 103 | |
| 104 | /* Compute s = floor(sqrt(a0)), and *rp = a0 - s^2. */ |
| 105 | |
| 106 | #if GMP_NUMB_BITS > 32 |
| 107 | #define MAGIC CNST_LIMB(0x10000000000) /* 0xffe7debbfc < MAGIC < 0x232b1850f410 */ |
| 108 | #else |
| 109 | #define MAGIC CNST_LIMB(0x100000) /* 0xfee6f < MAGIC < 0x29cbc8 */ |
| 110 | #endif |
| 111 | |
| 112 | static mp_limb_t |
| 113 | mpn_sqrtrem1 (mp_ptr rp, mp_limb_t a0) |
| 114 | { |
| 115 | #if GMP_NUMB_BITS > 32 |
| 116 | mp_limb_t a1; |
| 117 | #endif |
| 118 | mp_limb_t x0, t2, t, x2; |
| 119 | unsigned abits; |
| 120 | |
| 121 | ASSERT_ALWAYS (GMP_NAIL_BITS == 0); |
| 122 | ASSERT_ALWAYS (GMP_LIMB_BITS == 32 || GMP_LIMB_BITS == 64); |
| 123 | ASSERT (a0 >= GMP_NUMB_HIGHBIT / 2); |
| 124 | |
| 125 | /* Use Newton iterations for approximating 1/sqrt(a) instead of sqrt(a), |
| 126 | since we can do the former without division. As part of the last |
| 127 | iteration convert from 1/sqrt(a) to sqrt(a). */ |
| 128 | |
| 129 | abits = a0 >> (GMP_LIMB_BITS - 1 - 8); /* extract bits for table lookup */ |
| 130 | x0 = 0x100 | invsqrttab[abits - 0x80]; /* initial 1/sqrt(a) */ |
| 131 | |
| 132 | /* x0 is now an 8 bits approximation of 1/sqrt(a0) */ |
| 133 | |
| 134 | #if GMP_NUMB_BITS > 32 |
| 135 | a1 = a0 >> (GMP_LIMB_BITS - 1 - 32); |
| 136 | t = (mp_limb_signed_t) (CNST_LIMB(0x2000000000000) - 0x30000 - a1 * x0 * x0) >> 16; |
| 137 | x0 = (x0 << 16) + ((mp_limb_signed_t) (x0 * t) >> (16+2)); |
| 138 | |
| 139 | /* x0 is now a 16 bits approximation of 1/sqrt(a0) */ |
| 140 | |
| 141 | t2 = x0 * (a0 >> (32-8)); |
| 142 | t = t2 >> 25; |
| 143 | t = ((mp_limb_signed_t) ((a0 << 14) - t * t - MAGIC) >> (32-8)); |
| 144 | x0 = t2 + ((mp_limb_signed_t) (x0 * t) >> 15); |
| 145 | x0 >>= 32; |
| 146 | #else |
| 147 | t2 = x0 * (a0 >> (16-8)); |
| 148 | t = t2 >> 13; |
| 149 | t = ((mp_limb_signed_t) ((a0 << 6) - t * t - MAGIC) >> (16-8)); |
| 150 | x0 = t2 + ((mp_limb_signed_t) (x0 * t) >> 7); |
| 151 | x0 >>= 16; |
| 152 | #endif |
| 153 | |
| 154 | /* x0 is now a full limb approximation of sqrt(a0) */ |
| 155 | |
| 156 | x2 = x0 * x0; |
| 157 | if (x2 + 2*x0 <= a0 - 1) |
| 158 | { |
| 159 | x2 += 2*x0 + 1; |
| 160 | x0++; |
| 161 | } |
| 162 | |
| 163 | *rp = a0 - x2; |
| 164 | return x0; |
| 165 | } |
| 166 | |
| 167 | |
| 168 | #define Prec (GMP_NUMB_BITS >> 1) |
| 169 | #if ! defined(SQRTREM2_INPLACE) |
| 170 | #define SQRTREM2_INPLACE 0 |
| 171 | #endif |
| 172 | |
| 173 | /* same as mpn_sqrtrem, but for size=2 and {np, 2} normalized |
| 174 | return cc such that {np, 2} = sp[0]^2 + cc*2^GMP_NUMB_BITS + rp[0] */ |
| 175 | #if SQRTREM2_INPLACE |
| 176 | #define CALL_SQRTREM2_INPLACE(sp,rp) mpn_sqrtrem2 (sp, rp) |
| 177 | static mp_limb_t |
| 178 | mpn_sqrtrem2 (mp_ptr sp, mp_ptr rp) |
| 179 | { |
| 180 | mp_srcptr np = rp; |
| 181 | #else |
| 182 | #define CALL_SQRTREM2_INPLACE(sp,rp) mpn_sqrtrem2 (sp, rp, rp) |
| 183 | static mp_limb_t |
| 184 | mpn_sqrtrem2 (mp_ptr sp, mp_ptr rp, mp_srcptr np) |
| 185 | { |
| 186 | #endif |
| 187 | mp_limb_t q, u, np0, sp0, rp0, q2; |
| 188 | int cc; |
| 189 | |
| 190 | ASSERT (np[1] >= GMP_NUMB_HIGHBIT / 2); |
| 191 | |
| 192 | np0 = np[0]; |
| 193 | sp0 = mpn_sqrtrem1 (rp, np[1]); |
| 194 | rp0 = rp[0]; |
| 195 | /* rp0 <= 2*sp0 < 2^(Prec + 1) */ |
| 196 | rp0 = (rp0 << (Prec - 1)) + (np0 >> (Prec + 1)); |
| 197 | q = rp0 / sp0; |
| 198 | /* q <= 2^Prec, if q = 2^Prec, reduce the overestimate. */ |
| 199 | q -= q >> Prec; |
| 200 | /* now we have q < 2^Prec */ |
| 201 | u = rp0 - q * sp0; |
| 202 | /* now we have (rp[0]<<Prec + np0>>Prec)/2 = q * sp0 + u */ |
| 203 | sp0 = (sp0 << Prec) | q; |
| 204 | cc = u >> (Prec - 1); |
| 205 | rp0 = ((u << (Prec + 1)) & GMP_NUMB_MASK) + (np0 & ((CNST_LIMB (1) << (Prec + 1)) - 1)); |
| 206 | /* subtract q * q from rp */ |
| 207 | q2 = q * q; |
| 208 | cc -= rp0 < q2; |
| 209 | rp0 -= q2; |
| 210 | if (cc < 0) |
| 211 | { |
| 212 | rp0 += sp0; |
| 213 | cc += rp0 < sp0; |
| 214 | --sp0; |
| 215 | rp0 += sp0; |
| 216 | cc += rp0 < sp0; |
| 217 | } |
| 218 | |
| 219 | rp[0] = rp0; |
| 220 | sp[0] = sp0; |
| 221 | return cc; |
| 222 | } |
| 223 | |
| 224 | /* writes in {sp, n} the square root (rounded towards zero) of {np, 2n}, |
| 225 | and in {np, n} the low n limbs of the remainder, returns the high |
| 226 | limb of the remainder (which is 0 or 1). |
| 227 | Assumes {np, 2n} is normalized, i.e. np[2n-1] >= B/4 |
| 228 | where B=2^GMP_NUMB_BITS. |
| 229 | Needs a scratch of n/2+1 limbs. */ |
| 230 | static mp_limb_t |
| 231 | mpn_dc_sqrtrem (mp_ptr sp, mp_ptr np, mp_size_t n, mp_limb_t approx, mp_ptr scratch) |
| 232 | { |
| 233 | mp_limb_t q; /* carry out of {sp, n} */ |
| 234 | int c, b; /* carry out of remainder */ |
| 235 | mp_size_t l, h; |
| 236 | |
| 237 | ASSERT (n > 1); |
| 238 | ASSERT (np[2 * n - 1] >= GMP_NUMB_HIGHBIT / 2); |
| 239 | |
| 240 | l = n / 2; |
| 241 | h = n - l; |
| 242 | if (h == 1) |
| 243 | q = CALL_SQRTREM2_INPLACE (sp + l, np + 2 * l); |
| 244 | else |
| 245 | q = mpn_dc_sqrtrem (sp + l, np + 2 * l, h, 0, scratch); |
| 246 | if (q != 0) |
| 247 | ASSERT_CARRY (mpn_sub_n (np + 2 * l, np + 2 * l, sp + l, h)); |
| 248 | TRACE(printf("tdiv_qr(,,,,%u,,%u) -> %u\n", (unsigned) n, (unsigned) h, (unsigned) (n - h + 1))); |
| 249 | mpn_tdiv_qr (scratch, np + l, 0, np + l, n, sp + l, h); |
| 250 | q += scratch[l]; |
| 251 | c = scratch[0] & 1; |
| 252 | mpn_rshift (sp, scratch, l, 1); |
| 253 | sp[l - 1] |= (q << (GMP_NUMB_BITS - 1)) & GMP_NUMB_MASK; |
| 254 | if (UNLIKELY ((sp[0] & approx) != 0)) /* (sp[0] & mask) > 1 */ |
| 255 | return 1; /* Remainder is non-zero */ |
| 256 | q >>= 1; |
| 257 | if (c != 0) |
| 258 | c = mpn_add_n (np + l, np + l, sp + l, h); |
| 259 | TRACE(printf("sqr(,,%u)\n", (unsigned) l)); |
| 260 | mpn_sqr (np + n, sp, l); |
| 261 | b = q + mpn_sub_n (np, np, np + n, 2 * l); |
| 262 | c -= (l == h) ? b : mpn_sub_1 (np + 2 * l, np + 2 * l, 1, (mp_limb_t) b); |
| 263 | |
| 264 | if (c < 0) |
| 265 | { |
| 266 | q = mpn_add_1 (sp + l, sp + l, h, q); |
| 267 | #if HAVE_NATIVE_mpn_addlsh1_n_ip1 || HAVE_NATIVE_mpn_addlsh1_n |
| 268 | c += mpn_addlsh1_n_ip1 (np, sp, n) + 2 * q; |
| 269 | #else |
| 270 | c += mpn_addmul_1 (np, sp, n, CNST_LIMB(2)) + 2 * q; |
| 271 | #endif |
| 272 | c -= mpn_sub_1 (np, np, n, CNST_LIMB(1)); |
| 273 | q -= mpn_sub_1 (sp, sp, n, CNST_LIMB(1)); |
| 274 | } |
| 275 | |
| 276 | return c; |
| 277 | } |
| 278 | |
| 279 | #if USE_DIVAPPR_Q |
| 280 | static void |
| 281 | mpn_divappr_q (mp_ptr qp, mp_srcptr np, mp_size_t nn, mp_srcptr dp, mp_size_t dn, mp_ptr scratch) |
| 282 | { |
| 283 | gmp_pi1_t inv; |
| 284 | mp_limb_t qh; |
| 285 | ASSERT (dn > 2); |
| 286 | ASSERT (nn >= dn); |
| 287 | ASSERT ((dp[dn-1] & GMP_NUMB_HIGHBIT) != 0); |
| 288 | |
| 289 | MPN_COPY (scratch, np, nn); |
| 290 | invert_pi1 (inv, dp[dn-1], dp[dn-2]); |
| 291 | if (BELOW_THRESHOLD (dn, DC_DIVAPPR_Q_THRESHOLD)) |
| 292 | qh = mpn_sbpi1_divappr_q (qp, scratch, nn, dp, dn, inv.inv32); |
| 293 | else if (BELOW_THRESHOLD (dn, MU_DIVAPPR_Q_THRESHOLD)) |
| 294 | qh = mpn_dcpi1_divappr_q (qp, scratch, nn, dp, dn, &inv); |
| 295 | else |
| 296 | { |
| 297 | mp_size_t itch = mpn_mu_divappr_q_itch (nn, dn, 0); |
| 298 | TMP_DECL; |
| 299 | TMP_MARK; |
| 300 | /* Sadly, scratch is too small. */ |
| 301 | qh = mpn_mu_divappr_q (qp, np, nn, dp, dn, TMP_ALLOC_LIMBS (itch)); |
| 302 | TMP_FREE; |
| 303 | } |
| 304 | qp [nn - dn] = qh; |
| 305 | } |
| 306 | #endif |
| 307 | |
| 308 | /* writes in {sp, n} the square root (rounded towards zero) of {np, 2n-odd}, |
| 309 | returns zero if the operand was a perfect square, one otherwise. |
| 310 | Assumes {np, 2n-odd}*4^nsh is normalized, i.e. B > np[2n-1-odd]*4^nsh >= B/4 |
| 311 | where B=2^GMP_NUMB_BITS. |
| 312 | THINK: In the odd case, three more (dummy) limbs are taken into account, |
| 313 | when nsh is maximal, two limbs are discarded from the result of the |
| 314 | division. Too much? Is a single dummy limb enough? */ |
| 315 | static int |
| 316 | mpn_dc_sqrt (mp_ptr sp, mp_srcptr np, mp_size_t n, unsigned nsh, unsigned odd) |
| 317 | { |
| 318 | mp_limb_t q; /* carry out of {sp, n} */ |
| 319 | int c; /* carry out of remainder */ |
| 320 | mp_size_t l, h; |
| 321 | mp_ptr qp, tp, scratch; |
| 322 | TMP_DECL; |
| 323 | TMP_MARK; |
| 324 | |
| 325 | ASSERT (np[2 * n - 1 - odd] != 0); |
| 326 | ASSERT (n > 4); |
| 327 | ASSERT (nsh < GMP_NUMB_BITS / 2); |
| 328 | |
| 329 | l = (n - 1) / 2; |
| 330 | h = n - l; |
| 331 | ASSERT (n >= l + 2 && l + 2 >= h && h > l && l >= 1 + odd); |
| 332 | scratch = TMP_ALLOC_LIMBS (l + 2 * n + 5 - USE_DIVAPPR_Q); /* n + 2-USE_DIVAPPR_Q */ |
| 333 | tp = scratch + n + 2 - USE_DIVAPPR_Q; /* n + h + 1, but tp [-1] is writable */ |
| 334 | if (nsh != 0) |
| 335 | { |
| 336 | /* o is used to exactly set the lowest bits of the dividend, is it needed? */ |
| 337 | int o = l > (1 + odd); |
| 338 | ASSERT_NOCARRY (mpn_lshift (tp - o, np + l - 1 - o - odd, n + h + 1 + o, 2 * nsh)); |
| 339 | } |
| 340 | else |
| 341 | MPN_COPY (tp, np + l - 1 - odd, n + h + 1); |
| 342 | q = mpn_dc_sqrtrem (sp + l, tp + l + 1, h, 0, scratch); |
| 343 | if (q != 0) |
| 344 | ASSERT_CARRY (mpn_sub_n (tp + l + 1, tp + l + 1, sp + l, h)); |
| 345 | qp = tp + n + 1; /* l + 2 */ |
| 346 | TRACE(printf("div(appr)_q(,,%u,,%u) -> %u \n", (unsigned) n+1, (unsigned) h, (unsigned) (n + 1 - h + 1))); |
| 347 | #if USE_DIVAPPR_Q |
| 348 | mpn_divappr_q (qp, tp, n + 1, sp + l, h, scratch); |
| 349 | #else |
| 350 | mpn_div_q (qp, tp, n + 1, sp + l, h, scratch); |
| 351 | #endif |
| 352 | q += qp [l + 1]; |
| 353 | c = 1; |
| 354 | if (q > 1) |
| 355 | { |
| 356 | /* FIXME: if s!=0 we will shift later, a noop on this area. */ |
| 357 | MPN_FILL (sp, l, GMP_NUMB_MAX); |
| 358 | } |
| 359 | else |
| 360 | { |
| 361 | /* FIXME: if s!=0 we will shift again later, shift just once. */ |
| 362 | mpn_rshift (sp, qp + 1, l, 1); |
| 363 | sp[l - 1] |= q << (GMP_NUMB_BITS - 1); |
| 364 | if (((qp[0] >> (2 + USE_DIVAPPR_Q)) | /* < 3 + 4*USE_DIVAPPR_Q */ |
| 365 | (qp[1] & (GMP_NUMB_MASK >> ((GMP_NUMB_BITS >> odd)- nsh - 1)))) == 0) |
| 366 | { |
| 367 | mp_limb_t cy; |
| 368 | /* Approximation is not good enough, the extra limb(+ nsh bits) |
| 369 | is smaller than needed to absorb the possible error. */ |
| 370 | /* {qp + 1, l + 1} equals 2*{sp, l} */ |
| 371 | /* FIXME: use mullo or wrap-around, or directly evaluate |
| 372 | remainder with a single sqrmod_bnm1. */ |
| 373 | TRACE(printf("mul(,,%u,,%u)\n", (unsigned) h, (unsigned) (l+1))); |
| 374 | ASSERT_NOCARRY (mpn_mul (scratch, sp + l, h, qp + 1, l + 1)); |
| 375 | /* Compute the remainder of the previous mpn_div(appr)_q. */ |
| 376 | cy = mpn_sub_n (tp + 1, tp + 1, scratch, h); |
| 377 | #if USE_DIVAPPR_Q || WANT_ASSERT |
| 378 | MPN_DECR_U (tp + 1 + h, l, cy); |
| 379 | #if USE_DIVAPPR_Q |
| 380 | ASSERT (mpn_cmp (tp + 1 + h, scratch + h, l) <= 0); |
| 381 | if (mpn_cmp (tp + 1 + h, scratch + h, l) < 0) |
| 382 | { |
| 383 | /* May happen only if div result was not exact. */ |
| 384 | #if HAVE_NATIVE_mpn_addlsh1_n_ip1 || HAVE_NATIVE_mpn_addlsh1_n |
| 385 | cy = mpn_addlsh1_n_ip1 (tp + 1, sp + l, h); |
| 386 | #else |
| 387 | cy = mpn_addmul_1 (tp + 1, sp + l, h, CNST_LIMB(2)); |
| 388 | #endif |
| 389 | ASSERT_NOCARRY (mpn_add_1 (tp + 1 + h, tp + 1 + h, l, cy)); |
| 390 | MPN_DECR_U (sp, l, 1); |
| 391 | } |
| 392 | /* Can the root be exact when a correction was needed? We |
| 393 | did not find an example, but it depends on divappr |
| 394 | internals, and we can not assume it true in general...*/ |
| 395 | /* else */ |
| 396 | #else /* WANT_ASSERT */ |
| 397 | ASSERT (mpn_cmp (tp + 1 + h, scratch + h, l) == 0); |
| 398 | #endif |
| 399 | #endif |
| 400 | if (mpn_zero_p (tp + l + 1, h - l)) |
| 401 | { |
| 402 | TRACE(printf("sqr(,,%u)\n", (unsigned) l)); |
| 403 | mpn_sqr (scratch, sp, l); |
| 404 | c = mpn_cmp (tp + 1, scratch + l, l); |
| 405 | if (c == 0) |
| 406 | { |
| 407 | if (nsh != 0) |
| 408 | { |
| 409 | mpn_lshift (tp, np, l, 2 * nsh); |
| 410 | np = tp; |
| 411 | } |
| 412 | c = mpn_cmp (np, scratch + odd, l - odd); |
| 413 | } |
| 414 | if (c < 0) |
| 415 | { |
| 416 | MPN_DECR_U (sp, l, 1); |
| 417 | c = 1; |
| 418 | } |
| 419 | } |
| 420 | } |
| 421 | } |
| 422 | TMP_FREE; |
| 423 | |
| 424 | if ((odd | nsh) != 0) |
| 425 | mpn_rshift (sp, sp, n, nsh + (odd ? GMP_NUMB_BITS / 2 : 0)); |
| 426 | return c; |
| 427 | } |
| 428 | |
| 429 | |
| 430 | mp_size_t |
| 431 | mpn_sqrtrem (mp_ptr sp, mp_ptr rp, mp_srcptr np, mp_size_t nn) |
| 432 | { |
| 433 | mp_limb_t cc, high, rl; |
| 434 | int c; |
| 435 | mp_size_t rn, tn; |
| 436 | TMP_DECL; |
| 437 | |
| 438 | ASSERT (nn > 0); |
| 439 | ASSERT_MPN (np, nn); |
| 440 | |
| 441 | ASSERT (np[nn - 1] != 0); |
| 442 | ASSERT (rp == NULL || MPN_SAME_OR_SEPARATE_P (np, rp, nn)); |
| 443 | ASSERT (rp == NULL || ! MPN_OVERLAP_P (sp, (nn + 1) / 2, rp, nn)); |
| 444 | ASSERT (! MPN_OVERLAP_P (sp, (nn + 1) / 2, np, nn)); |
| 445 | |
| 446 | high = np[nn - 1]; |
| 447 | if (high & (GMP_NUMB_HIGHBIT | (GMP_NUMB_HIGHBIT / 2))) |
| 448 | c = 0; |
| 449 | else |
| 450 | { |
| 451 | count_leading_zeros (c, high); |
| 452 | c -= GMP_NAIL_BITS; |
| 453 | |
| 454 | c = c / 2; /* we have to shift left by 2c bits to normalize {np, nn} */ |
| 455 | } |
| 456 | if (nn == 1) { |
| 457 | if (c == 0) |
| 458 | { |
| 459 | sp[0] = mpn_sqrtrem1 (&rl, high); |
| 460 | if (rp != NULL) |
| 461 | rp[0] = rl; |
| 462 | } |
| 463 | else |
| 464 | { |
| 465 | cc = mpn_sqrtrem1 (&rl, high << (2*c)) >> c; |
| 466 | sp[0] = cc; |
| 467 | if (rp != NULL) |
| 468 | rp[0] = rl = high - cc*cc; |
| 469 | } |
| 470 | return rl != 0; |
| 471 | } |
| 472 | if (nn == 2) { |
| 473 | mp_limb_t tp [2]; |
| 474 | if (rp == NULL) rp = tp; |
| 475 | if (c == 0) |
| 476 | { |
| 477 | #if SQRTREM2_INPLACE |
| 478 | rp[1] = high; |
| 479 | rp[0] = np[0]; |
| 480 | cc = CALL_SQRTREM2_INPLACE (sp, rp); |
| 481 | #else |
| 482 | cc = mpn_sqrtrem2 (sp, rp, np); |
| 483 | #endif |
| 484 | rp[1] = cc; |
| 485 | return ((rp[0] | cc) != 0) + cc; |
| 486 | } |
| 487 | else |
| 488 | { |
| 489 | rl = np[0]; |
| 490 | rp[1] = (high << (2*c)) | (rl >> (GMP_NUMB_BITS - 2*c)); |
| 491 | rp[0] = rl << (2*c); |
| 492 | CALL_SQRTREM2_INPLACE (sp, rp); |
| 493 | cc = sp[0] >>= c; /* c != 0, the highest bit of the root cc is 0. */ |
| 494 | rp[0] = rl -= cc*cc; /* Computed modulo 2^GMP_LIMB_BITS, because it's smaller. */ |
| 495 | return rl != 0; |
| 496 | } |
| 497 | } |
| 498 | tn = (nn + 1) / 2; /* 2*tn is the smallest even integer >= nn */ |
| 499 | |
| 500 | if ((rp == NULL) && (nn > 8)) |
| 501 | return mpn_dc_sqrt (sp, np, tn, c, nn & 1); |
| 502 | TMP_MARK; |
| 503 | if (((nn & 1) | c) != 0) |
| 504 | { |
| 505 | mp_limb_t s0[1], mask; |
| 506 | mp_ptr tp, scratch; |
| 507 | TMP_ALLOC_LIMBS_2 (tp, 2 * tn, scratch, tn / 2 + 1); |
| 508 | tp[0] = 0; /* needed only when 2*tn > nn, but saves a test */ |
| 509 | if (c != 0) |
| 510 | mpn_lshift (tp + (nn & 1), np, nn, 2 * c); |
| 511 | else |
| 512 | MPN_COPY (tp + (nn & 1), np, nn); |
| 513 | c += (nn & 1) ? GMP_NUMB_BITS / 2 : 0; /* c now represents k */ |
| 514 | mask = (CNST_LIMB (1) << c) - 1; |
| 515 | rl = mpn_dc_sqrtrem (sp, tp, tn, (rp == NULL) ? mask - 1 : 0, scratch); |
| 516 | /* We have 2^(2k)*N = S^2 + R where k = c + (2tn-nn)*GMP_NUMB_BITS/2, |
| 517 | thus 2^(2k)*N = (S-s0)^2 + 2*S*s0 - s0^2 + R where s0=S mod 2^k */ |
| 518 | s0[0] = sp[0] & mask; /* S mod 2^k */ |
| 519 | rl += mpn_addmul_1 (tp, sp, tn, 2 * s0[0]); /* R = R + 2*s0*S */ |
| 520 | cc = mpn_submul_1 (tp, s0, 1, s0[0]); |
| 521 | rl -= (tn > 1) ? mpn_sub_1 (tp + 1, tp + 1, tn - 1, cc) : cc; |
| 522 | mpn_rshift (sp, sp, tn, c); |
| 523 | tp[tn] = rl; |
| 524 | if (rp == NULL) |
| 525 | rp = tp; |
| 526 | c = c << 1; |
| 527 | if (c < GMP_NUMB_BITS) |
| 528 | tn++; |
| 529 | else |
| 530 | { |
| 531 | tp++; |
| 532 | c -= GMP_NUMB_BITS; |
| 533 | } |
| 534 | if (c != 0) |
| 535 | mpn_rshift (rp, tp, tn, c); |
| 536 | else |
| 537 | MPN_COPY_INCR (rp, tp, tn); |
| 538 | rn = tn; |
| 539 | } |
| 540 | else |
| 541 | { |
| 542 | if (rp != np) |
| 543 | { |
| 544 | if (rp == NULL) /* nn <= 8 */ |
| 545 | rp = TMP_SALLOC_LIMBS (nn); |
| 546 | MPN_COPY (rp, np, nn); |
| 547 | } |
| 548 | rn = tn + (rp[tn] = mpn_dc_sqrtrem (sp, rp, tn, 0, TMP_ALLOC_LIMBS(tn / 2 + 1))); |
| 549 | } |
| 550 | |
| 551 | MPN_NORMALIZE (rp, rn); |
| 552 | |
| 553 | TMP_FREE; |
| 554 | return rn; |
| 555 | } |