Add libgmp 6.2.0 to third_party

Don't build it yet.  That will come in the next review.

Change-Id: Idf3266558165e5ab45f4a41c98cc8c838c8244d5
diff --git a/third_party/gmp/mpn/generic/sqrtrem.c b/third_party/gmp/mpn/generic/sqrtrem.c
new file mode 100644
index 0000000..cc6dd9c
--- /dev/null
+++ b/third_party/gmp/mpn/generic/sqrtrem.c
@@ -0,0 +1,555 @@
+/* mpn_sqrtrem -- square root and remainder
+
+   Contributed to the GNU project by Paul Zimmermann (most code),
+   Torbjorn Granlund (mpn_sqrtrem1) and Marco Bodrato (mpn_dc_sqrt).
+
+   THE FUNCTIONS IN THIS FILE EXCEPT mpn_sqrtrem ARE INTERNAL WITH MUTABLE
+   INTERFACES.  IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.
+   IN FACT, IT IS ALMOST GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A
+   FUTURE GMP RELEASE.
+
+Copyright 1999-2002, 2004, 2005, 2008, 2010, 2012, 2015, 2017 Free Software
+Foundation, Inc.
+
+This file is part of the GNU MP Library.
+
+The GNU MP Library is free software; you can redistribute it and/or modify
+it under the terms of either:
+
+  * the GNU Lesser General Public License as published by the Free
+    Software Foundation; either version 3 of the License, or (at your
+    option) any later version.
+
+or
+
+  * the GNU General Public License as published by the Free Software
+    Foundation; either version 2 of the License, or (at your option) any
+    later version.
+
+or both in parallel, as here.
+
+The GNU MP Library is distributed in the hope that it will be useful, but
+WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
+or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
+for more details.
+
+You should have received copies of the GNU General Public License and the
+GNU Lesser General Public License along with the GNU MP Library.  If not,
+see https://www.gnu.org/licenses/.  */
+
+
+/* See "Karatsuba Square Root", reference in gmp.texi.  */
+
+
+#include <stdio.h>
+#include <stdlib.h>
+
+#include "gmp-impl.h"
+#include "longlong.h"
+#define USE_DIVAPPR_Q 1
+#define TRACE(x)
+
+static const unsigned char invsqrttab[384] = /* The common 0x100 was removed */
+{
+  0xff,0xfd,0xfb,0xf9,0xf7,0xf5,0xf3,0xf2, /* sqrt(1/80)..sqrt(1/87) */
+  0xf0,0xee,0xec,0xea,0xe9,0xe7,0xe5,0xe4, /* sqrt(1/88)..sqrt(1/8f) */
+  0xe2,0xe0,0xdf,0xdd,0xdb,0xda,0xd8,0xd7, /* sqrt(1/90)..sqrt(1/97) */
+  0xd5,0xd4,0xd2,0xd1,0xcf,0xce,0xcc,0xcb, /* sqrt(1/98)..sqrt(1/9f) */
+  0xc9,0xc8,0xc6,0xc5,0xc4,0xc2,0xc1,0xc0, /* sqrt(1/a0)..sqrt(1/a7) */
+  0xbe,0xbd,0xbc,0xba,0xb9,0xb8,0xb7,0xb5, /* sqrt(1/a8)..sqrt(1/af) */
+  0xb4,0xb3,0xb2,0xb0,0xaf,0xae,0xad,0xac, /* sqrt(1/b0)..sqrt(1/b7) */
+  0xaa,0xa9,0xa8,0xa7,0xa6,0xa5,0xa4,0xa3, /* sqrt(1/b8)..sqrt(1/bf) */
+  0xa2,0xa0,0x9f,0x9e,0x9d,0x9c,0x9b,0x9a, /* sqrt(1/c0)..sqrt(1/c7) */
+  0x99,0x98,0x97,0x96,0x95,0x94,0x93,0x92, /* sqrt(1/c8)..sqrt(1/cf) */
+  0x91,0x90,0x8f,0x8e,0x8d,0x8c,0x8c,0x8b, /* sqrt(1/d0)..sqrt(1/d7) */
+  0x8a,0x89,0x88,0x87,0x86,0x85,0x84,0x83, /* sqrt(1/d8)..sqrt(1/df) */
+  0x83,0x82,0x81,0x80,0x7f,0x7e,0x7e,0x7d, /* sqrt(1/e0)..sqrt(1/e7) */
+  0x7c,0x7b,0x7a,0x79,0x79,0x78,0x77,0x76, /* sqrt(1/e8)..sqrt(1/ef) */
+  0x76,0x75,0x74,0x73,0x72,0x72,0x71,0x70, /* sqrt(1/f0)..sqrt(1/f7) */
+  0x6f,0x6f,0x6e,0x6d,0x6d,0x6c,0x6b,0x6a, /* sqrt(1/f8)..sqrt(1/ff) */
+  0x6a,0x69,0x68,0x68,0x67,0x66,0x66,0x65, /* sqrt(1/100)..sqrt(1/107) */
+  0x64,0x64,0x63,0x62,0x62,0x61,0x60,0x60, /* sqrt(1/108)..sqrt(1/10f) */
+  0x5f,0x5e,0x5e,0x5d,0x5c,0x5c,0x5b,0x5a, /* sqrt(1/110)..sqrt(1/117) */
+  0x5a,0x59,0x59,0x58,0x57,0x57,0x56,0x56, /* sqrt(1/118)..sqrt(1/11f) */
+  0x55,0x54,0x54,0x53,0x53,0x52,0x52,0x51, /* sqrt(1/120)..sqrt(1/127) */
+  0x50,0x50,0x4f,0x4f,0x4e,0x4e,0x4d,0x4d, /* sqrt(1/128)..sqrt(1/12f) */
+  0x4c,0x4b,0x4b,0x4a,0x4a,0x49,0x49,0x48, /* sqrt(1/130)..sqrt(1/137) */
+  0x48,0x47,0x47,0x46,0x46,0x45,0x45,0x44, /* sqrt(1/138)..sqrt(1/13f) */
+  0x44,0x43,0x43,0x42,0x42,0x41,0x41,0x40, /* sqrt(1/140)..sqrt(1/147) */
+  0x40,0x3f,0x3f,0x3e,0x3e,0x3d,0x3d,0x3c, /* sqrt(1/148)..sqrt(1/14f) */
+  0x3c,0x3b,0x3b,0x3a,0x3a,0x39,0x39,0x39, /* sqrt(1/150)..sqrt(1/157) */
+  0x38,0x38,0x37,0x37,0x36,0x36,0x35,0x35, /* sqrt(1/158)..sqrt(1/15f) */
+  0x35,0x34,0x34,0x33,0x33,0x32,0x32,0x32, /* sqrt(1/160)..sqrt(1/167) */
+  0x31,0x31,0x30,0x30,0x2f,0x2f,0x2f,0x2e, /* sqrt(1/168)..sqrt(1/16f) */
+  0x2e,0x2d,0x2d,0x2d,0x2c,0x2c,0x2b,0x2b, /* sqrt(1/170)..sqrt(1/177) */
+  0x2b,0x2a,0x2a,0x29,0x29,0x29,0x28,0x28, /* sqrt(1/178)..sqrt(1/17f) */
+  0x27,0x27,0x27,0x26,0x26,0x26,0x25,0x25, /* sqrt(1/180)..sqrt(1/187) */
+  0x24,0x24,0x24,0x23,0x23,0x23,0x22,0x22, /* sqrt(1/188)..sqrt(1/18f) */
+  0x21,0x21,0x21,0x20,0x20,0x20,0x1f,0x1f, /* sqrt(1/190)..sqrt(1/197) */
+  0x1f,0x1e,0x1e,0x1e,0x1d,0x1d,0x1d,0x1c, /* sqrt(1/198)..sqrt(1/19f) */
+  0x1c,0x1b,0x1b,0x1b,0x1a,0x1a,0x1a,0x19, /* sqrt(1/1a0)..sqrt(1/1a7) */
+  0x19,0x19,0x18,0x18,0x18,0x18,0x17,0x17, /* sqrt(1/1a8)..sqrt(1/1af) */
+  0x17,0x16,0x16,0x16,0x15,0x15,0x15,0x14, /* sqrt(1/1b0)..sqrt(1/1b7) */
+  0x14,0x14,0x13,0x13,0x13,0x12,0x12,0x12, /* sqrt(1/1b8)..sqrt(1/1bf) */
+  0x12,0x11,0x11,0x11,0x10,0x10,0x10,0x0f, /* sqrt(1/1c0)..sqrt(1/1c7) */
+  0x0f,0x0f,0x0f,0x0e,0x0e,0x0e,0x0d,0x0d, /* sqrt(1/1c8)..sqrt(1/1cf) */
+  0x0d,0x0c,0x0c,0x0c,0x0c,0x0b,0x0b,0x0b, /* sqrt(1/1d0)..sqrt(1/1d7) */
+  0x0a,0x0a,0x0a,0x0a,0x09,0x09,0x09,0x09, /* sqrt(1/1d8)..sqrt(1/1df) */
+  0x08,0x08,0x08,0x07,0x07,0x07,0x07,0x06, /* sqrt(1/1e0)..sqrt(1/1e7) */
+  0x06,0x06,0x06,0x05,0x05,0x05,0x04,0x04, /* sqrt(1/1e8)..sqrt(1/1ef) */
+  0x04,0x04,0x03,0x03,0x03,0x03,0x02,0x02, /* sqrt(1/1f0)..sqrt(1/1f7) */
+  0x02,0x02,0x01,0x01,0x01,0x01,0x00,0x00  /* sqrt(1/1f8)..sqrt(1/1ff) */
+};
+
+/* Compute s = floor(sqrt(a0)), and *rp = a0 - s^2.  */
+
+#if GMP_NUMB_BITS > 32
+#define MAGIC CNST_LIMB(0x10000000000)	/* 0xffe7debbfc < MAGIC < 0x232b1850f410 */
+#else
+#define MAGIC CNST_LIMB(0x100000)		/* 0xfee6f < MAGIC < 0x29cbc8 */
+#endif
+
+static mp_limb_t
+mpn_sqrtrem1 (mp_ptr rp, mp_limb_t a0)
+{
+#if GMP_NUMB_BITS > 32
+  mp_limb_t a1;
+#endif
+  mp_limb_t x0, t2, t, x2;
+  unsigned abits;
+
+  ASSERT_ALWAYS (GMP_NAIL_BITS == 0);
+  ASSERT_ALWAYS (GMP_LIMB_BITS == 32 || GMP_LIMB_BITS == 64);
+  ASSERT (a0 >= GMP_NUMB_HIGHBIT / 2);
+
+  /* Use Newton iterations for approximating 1/sqrt(a) instead of sqrt(a),
+     since we can do the former without division.  As part of the last
+     iteration convert from 1/sqrt(a) to sqrt(a).  */
+
+  abits = a0 >> (GMP_LIMB_BITS - 1 - 8);	/* extract bits for table lookup */
+  x0 = 0x100 | invsqrttab[abits - 0x80];	/* initial 1/sqrt(a) */
+
+  /* x0 is now an 8 bits approximation of 1/sqrt(a0) */
+
+#if GMP_NUMB_BITS > 32
+  a1 = a0 >> (GMP_LIMB_BITS - 1 - 32);
+  t = (mp_limb_signed_t) (CNST_LIMB(0x2000000000000) - 0x30000 - a1 * x0 * x0) >> 16;
+  x0 = (x0 << 16) + ((mp_limb_signed_t) (x0 * t) >> (16+2));
+
+  /* x0 is now a 16 bits approximation of 1/sqrt(a0) */
+
+  t2 = x0 * (a0 >> (32-8));
+  t = t2 >> 25;
+  t = ((mp_limb_signed_t) ((a0 << 14) - t * t - MAGIC) >> (32-8));
+  x0 = t2 + ((mp_limb_signed_t) (x0 * t) >> 15);
+  x0 >>= 32;
+#else
+  t2 = x0 * (a0 >> (16-8));
+  t = t2 >> 13;
+  t = ((mp_limb_signed_t) ((a0 << 6) - t * t - MAGIC) >> (16-8));
+  x0 = t2 + ((mp_limb_signed_t) (x0 * t) >> 7);
+  x0 >>= 16;
+#endif
+
+  /* x0 is now a full limb approximation of sqrt(a0) */
+
+  x2 = x0 * x0;
+  if (x2 + 2*x0 <= a0 - 1)
+    {
+      x2 += 2*x0 + 1;
+      x0++;
+    }
+
+  *rp = a0 - x2;
+  return x0;
+}
+
+
+#define Prec (GMP_NUMB_BITS >> 1)
+#if ! defined(SQRTREM2_INPLACE)
+#define SQRTREM2_INPLACE 0
+#endif
+
+/* same as mpn_sqrtrem, but for size=2 and {np, 2} normalized
+   return cc such that {np, 2} = sp[0]^2 + cc*2^GMP_NUMB_BITS + rp[0] */
+#if SQRTREM2_INPLACE
+#define CALL_SQRTREM2_INPLACE(sp,rp) mpn_sqrtrem2 (sp, rp)
+static mp_limb_t
+mpn_sqrtrem2 (mp_ptr sp, mp_ptr rp)
+{
+  mp_srcptr np = rp;
+#else
+#define CALL_SQRTREM2_INPLACE(sp,rp) mpn_sqrtrem2 (sp, rp, rp)
+static mp_limb_t
+mpn_sqrtrem2 (mp_ptr sp, mp_ptr rp, mp_srcptr np)
+{
+#endif
+  mp_limb_t q, u, np0, sp0, rp0, q2;
+  int cc;
+
+  ASSERT (np[1] >= GMP_NUMB_HIGHBIT / 2);
+
+  np0 = np[0];
+  sp0 = mpn_sqrtrem1 (rp, np[1]);
+  rp0 = rp[0];
+  /* rp0 <= 2*sp0 < 2^(Prec + 1) */
+  rp0 = (rp0 << (Prec - 1)) + (np0 >> (Prec + 1));
+  q = rp0 / sp0;
+  /* q <= 2^Prec, if q = 2^Prec, reduce the overestimate. */
+  q -= q >> Prec;
+  /* now we have q < 2^Prec */
+  u = rp0 - q * sp0;
+  /* now we have (rp[0]<<Prec + np0>>Prec)/2 = q * sp0 + u */
+  sp0 = (sp0 << Prec) | q;
+  cc = u >> (Prec - 1);
+  rp0 = ((u << (Prec + 1)) & GMP_NUMB_MASK) + (np0 & ((CNST_LIMB (1) << (Prec + 1)) - 1));
+  /* subtract q * q from rp */
+  q2 = q * q;
+  cc -= rp0 < q2;
+  rp0 -= q2;
+  if (cc < 0)
+    {
+      rp0 += sp0;
+      cc += rp0 < sp0;
+      --sp0;
+      rp0 += sp0;
+      cc += rp0 < sp0;
+    }
+
+  rp[0] = rp0;
+  sp[0] = sp0;
+  return cc;
+}
+
+/* writes in {sp, n} the square root (rounded towards zero) of {np, 2n},
+   and in {np, n} the low n limbs of the remainder, returns the high
+   limb of the remainder (which is 0 or 1).
+   Assumes {np, 2n} is normalized, i.e. np[2n-1] >= B/4
+   where B=2^GMP_NUMB_BITS.
+   Needs a scratch of n/2+1 limbs. */
+static mp_limb_t
+mpn_dc_sqrtrem (mp_ptr sp, mp_ptr np, mp_size_t n, mp_limb_t approx, mp_ptr scratch)
+{
+  mp_limb_t q;			/* carry out of {sp, n} */
+  int c, b;			/* carry out of remainder */
+  mp_size_t l, h;
+
+  ASSERT (n > 1);
+  ASSERT (np[2 * n - 1] >= GMP_NUMB_HIGHBIT / 2);
+
+  l = n / 2;
+  h = n - l;
+  if (h == 1)
+    q = CALL_SQRTREM2_INPLACE (sp + l, np + 2 * l);
+  else
+    q = mpn_dc_sqrtrem (sp + l, np + 2 * l, h, 0, scratch);
+  if (q != 0)
+    ASSERT_CARRY (mpn_sub_n (np + 2 * l, np + 2 * l, sp + l, h));
+  TRACE(printf("tdiv_qr(,,,,%u,,%u) -> %u\n", (unsigned) n, (unsigned) h, (unsigned) (n - h + 1)));
+  mpn_tdiv_qr (scratch, np + l, 0, np + l, n, sp + l, h);
+  q += scratch[l];
+  c = scratch[0] & 1;
+  mpn_rshift (sp, scratch, l, 1);
+  sp[l - 1] |= (q << (GMP_NUMB_BITS - 1)) & GMP_NUMB_MASK;
+  if (UNLIKELY ((sp[0] & approx) != 0)) /* (sp[0] & mask) > 1 */
+    return 1; /* Remainder is non-zero */
+  q >>= 1;
+  if (c != 0)
+    c = mpn_add_n (np + l, np + l, sp + l, h);
+  TRACE(printf("sqr(,,%u)\n", (unsigned) l));
+  mpn_sqr (np + n, sp, l);
+  b = q + mpn_sub_n (np, np, np + n, 2 * l);
+  c -= (l == h) ? b : mpn_sub_1 (np + 2 * l, np + 2 * l, 1, (mp_limb_t) b);
+
+  if (c < 0)
+    {
+      q = mpn_add_1 (sp + l, sp + l, h, q);
+#if HAVE_NATIVE_mpn_addlsh1_n_ip1 || HAVE_NATIVE_mpn_addlsh1_n
+      c += mpn_addlsh1_n_ip1 (np, sp, n) + 2 * q;
+#else
+      c += mpn_addmul_1 (np, sp, n, CNST_LIMB(2)) + 2 * q;
+#endif
+      c -= mpn_sub_1 (np, np, n, CNST_LIMB(1));
+      q -= mpn_sub_1 (sp, sp, n, CNST_LIMB(1));
+    }
+
+  return c;
+}
+
+#if USE_DIVAPPR_Q
+static void
+mpn_divappr_q (mp_ptr qp, mp_srcptr np, mp_size_t nn, mp_srcptr dp, mp_size_t dn, mp_ptr scratch)
+{
+  gmp_pi1_t inv;
+  mp_limb_t qh;
+  ASSERT (dn > 2);
+  ASSERT (nn >= dn);
+  ASSERT ((dp[dn-1] & GMP_NUMB_HIGHBIT) != 0);
+
+  MPN_COPY (scratch, np, nn);
+  invert_pi1 (inv, dp[dn-1], dp[dn-2]);
+  if (BELOW_THRESHOLD (dn, DC_DIVAPPR_Q_THRESHOLD))
+    qh = mpn_sbpi1_divappr_q (qp, scratch, nn, dp, dn, inv.inv32);
+  else if (BELOW_THRESHOLD (dn, MU_DIVAPPR_Q_THRESHOLD))
+    qh = mpn_dcpi1_divappr_q (qp, scratch, nn, dp, dn, &inv);
+  else
+    {
+      mp_size_t itch = mpn_mu_divappr_q_itch (nn, dn, 0);
+      TMP_DECL;
+      TMP_MARK;
+      /* Sadly, scratch is too small. */
+      qh = mpn_mu_divappr_q (qp, np, nn, dp, dn, TMP_ALLOC_LIMBS (itch));
+      TMP_FREE;
+    }
+  qp [nn - dn] = qh;
+}
+#endif
+
+/* writes in {sp, n} the square root (rounded towards zero) of {np, 2n-odd},
+   returns zero if the operand was a perfect square, one otherwise.
+   Assumes {np, 2n-odd}*4^nsh is normalized, i.e. B > np[2n-1-odd]*4^nsh >= B/4
+   where B=2^GMP_NUMB_BITS.
+   THINK: In the odd case, three more (dummy) limbs are taken into account,
+   when nsh is maximal, two limbs are discarded from the result of the
+   division. Too much? Is a single dummy limb enough? */
+static int
+mpn_dc_sqrt (mp_ptr sp, mp_srcptr np, mp_size_t n, unsigned nsh, unsigned odd)
+{
+  mp_limb_t q;			/* carry out of {sp, n} */
+  int c;			/* carry out of remainder */
+  mp_size_t l, h;
+  mp_ptr qp, tp, scratch;
+  TMP_DECL;
+  TMP_MARK;
+
+  ASSERT (np[2 * n - 1 - odd] != 0);
+  ASSERT (n > 4);
+  ASSERT (nsh < GMP_NUMB_BITS / 2);
+
+  l = (n - 1) / 2;
+  h = n - l;
+  ASSERT (n >= l + 2 && l + 2 >= h && h > l && l >= 1 + odd);
+  scratch = TMP_ALLOC_LIMBS (l + 2 * n + 5 - USE_DIVAPPR_Q); /* n + 2-USE_DIVAPPR_Q */
+  tp = scratch + n + 2 - USE_DIVAPPR_Q; /* n + h + 1, but tp [-1] is writable */
+  if (nsh != 0)
+    {
+      /* o is used to exactly set the lowest bits of the dividend, is it needed? */
+      int o = l > (1 + odd);
+      ASSERT_NOCARRY (mpn_lshift (tp - o, np + l - 1 - o - odd, n + h + 1 + o, 2 * nsh));
+    }
+  else
+    MPN_COPY (tp, np + l - 1 - odd, n + h + 1);
+  q = mpn_dc_sqrtrem (sp + l, tp + l + 1, h, 0, scratch);
+  if (q != 0)
+    ASSERT_CARRY (mpn_sub_n (tp + l + 1, tp + l + 1, sp + l, h));
+  qp = tp + n + 1; /* l + 2 */
+  TRACE(printf("div(appr)_q(,,%u,,%u) -> %u \n", (unsigned) n+1, (unsigned) h, (unsigned) (n + 1 - h + 1)));
+#if USE_DIVAPPR_Q
+  mpn_divappr_q (qp, tp, n + 1, sp + l, h, scratch);
+#else
+  mpn_div_q (qp, tp, n + 1, sp + l, h, scratch);
+#endif
+  q += qp [l + 1];
+  c = 1;
+  if (q > 1)
+    {
+      /* FIXME: if s!=0 we will shift later, a noop on this area. */
+      MPN_FILL (sp, l, GMP_NUMB_MAX);
+    }
+  else
+    {
+      /* FIXME: if s!=0 we will shift again later, shift just once. */
+      mpn_rshift (sp, qp + 1, l, 1);
+      sp[l - 1] |= q << (GMP_NUMB_BITS - 1);
+      if (((qp[0] >> (2 + USE_DIVAPPR_Q)) | /* < 3 + 4*USE_DIVAPPR_Q */
+	   (qp[1] & (GMP_NUMB_MASK >> ((GMP_NUMB_BITS >> odd)- nsh - 1)))) == 0)
+	{
+	  mp_limb_t cy;
+	  /* Approximation is not good enough, the extra limb(+ nsh bits)
+	     is smaller than needed to absorb the possible error. */
+	  /* {qp + 1, l + 1} equals 2*{sp, l} */
+	  /* FIXME: use mullo or wrap-around, or directly evaluate
+	     remainder with a single sqrmod_bnm1. */
+	  TRACE(printf("mul(,,%u,,%u)\n", (unsigned) h, (unsigned) (l+1)));
+	  ASSERT_NOCARRY (mpn_mul (scratch, sp + l, h, qp + 1, l + 1));
+	  /* Compute the remainder of the previous mpn_div(appr)_q. */
+	  cy = mpn_sub_n (tp + 1, tp + 1, scratch, h);
+#if USE_DIVAPPR_Q || WANT_ASSERT
+	  MPN_DECR_U (tp + 1 + h, l, cy);
+#if USE_DIVAPPR_Q
+	  ASSERT (mpn_cmp (tp + 1 + h, scratch + h, l) <= 0);
+	  if (mpn_cmp (tp + 1 + h, scratch + h, l) < 0)
+	    {
+	      /* May happen only if div result was not exact. */
+#if HAVE_NATIVE_mpn_addlsh1_n_ip1 || HAVE_NATIVE_mpn_addlsh1_n
+	      cy = mpn_addlsh1_n_ip1 (tp + 1, sp + l, h);
+#else
+	      cy = mpn_addmul_1 (tp + 1, sp + l, h, CNST_LIMB(2));
+#endif
+	      ASSERT_NOCARRY (mpn_add_1 (tp + 1 + h, tp + 1 + h, l, cy));
+	      MPN_DECR_U (sp, l, 1);
+	    }
+	  /* Can the root be exact when a correction was needed? We
+	     did not find an example, but it depends on divappr
+	     internals, and we can not assume it true in general...*/
+	  /* else */
+#else /* WANT_ASSERT */
+	  ASSERT (mpn_cmp (tp + 1 + h, scratch + h, l) == 0);
+#endif
+#endif
+	  if (mpn_zero_p (tp + l + 1, h - l))
+	    {
+	      TRACE(printf("sqr(,,%u)\n", (unsigned) l));
+	      mpn_sqr (scratch, sp, l);
+	      c = mpn_cmp (tp + 1, scratch + l, l);
+	      if (c == 0)
+		{
+		  if (nsh != 0)
+		    {
+		      mpn_lshift (tp, np, l, 2 * nsh);
+		      np = tp;
+		    }
+		  c = mpn_cmp (np, scratch + odd, l - odd);
+		}
+	      if (c < 0)
+		{
+		  MPN_DECR_U (sp, l, 1);
+		  c = 1;
+		}
+	    }
+	}
+    }
+  TMP_FREE;
+
+  if ((odd | nsh) != 0)
+    mpn_rshift (sp, sp, n, nsh + (odd ? GMP_NUMB_BITS / 2 : 0));
+  return c;
+}
+
+
+mp_size_t
+mpn_sqrtrem (mp_ptr sp, mp_ptr rp, mp_srcptr np, mp_size_t nn)
+{
+  mp_limb_t cc, high, rl;
+  int c;
+  mp_size_t rn, tn;
+  TMP_DECL;
+
+  ASSERT (nn > 0);
+  ASSERT_MPN (np, nn);
+
+  ASSERT (np[nn - 1] != 0);
+  ASSERT (rp == NULL || MPN_SAME_OR_SEPARATE_P (np, rp, nn));
+  ASSERT (rp == NULL || ! MPN_OVERLAP_P (sp, (nn + 1) / 2, rp, nn));
+  ASSERT (! MPN_OVERLAP_P (sp, (nn + 1) / 2, np, nn));
+
+  high = np[nn - 1];
+  if (high & (GMP_NUMB_HIGHBIT | (GMP_NUMB_HIGHBIT / 2)))
+    c = 0;
+  else
+    {
+      count_leading_zeros (c, high);
+      c -= GMP_NAIL_BITS;
+
+      c = c / 2; /* we have to shift left by 2c bits to normalize {np, nn} */
+    }
+  if (nn == 1) {
+    if (c == 0)
+      {
+	sp[0] = mpn_sqrtrem1 (&rl, high);
+	if (rp != NULL)
+	  rp[0] = rl;
+      }
+    else
+      {
+	cc = mpn_sqrtrem1 (&rl, high << (2*c)) >> c;
+	sp[0] = cc;
+	if (rp != NULL)
+	  rp[0] = rl = high - cc*cc;
+      }
+    return rl != 0;
+  }
+  if (nn == 2) {
+    mp_limb_t tp [2];
+    if (rp == NULL) rp = tp;
+    if (c == 0)
+      {
+#if SQRTREM2_INPLACE
+	rp[1] = high;
+	rp[0] = np[0];
+	cc = CALL_SQRTREM2_INPLACE (sp, rp);
+#else
+	cc = mpn_sqrtrem2 (sp, rp, np);
+#endif
+	rp[1] = cc;
+	return ((rp[0] | cc) != 0) + cc;
+      }
+    else
+      {
+	rl = np[0];
+	rp[1] = (high << (2*c)) | (rl >> (GMP_NUMB_BITS - 2*c));
+	rp[0] = rl << (2*c);
+	CALL_SQRTREM2_INPLACE (sp, rp);
+	cc = sp[0] >>= c;	/* c != 0, the highest bit of the root cc is 0. */
+	rp[0] = rl -= cc*cc;	/* Computed modulo 2^GMP_LIMB_BITS, because it's smaller. */
+	return rl != 0;
+      }
+  }
+  tn = (nn + 1) / 2; /* 2*tn is the smallest even integer >= nn */
+
+  if ((rp == NULL) && (nn > 8))
+    return mpn_dc_sqrt (sp, np, tn, c, nn & 1);
+  TMP_MARK;
+  if (((nn & 1) | c) != 0)
+    {
+      mp_limb_t s0[1], mask;
+      mp_ptr tp, scratch;
+      TMP_ALLOC_LIMBS_2 (tp, 2 * tn, scratch, tn / 2 + 1);
+      tp[0] = 0;	     /* needed only when 2*tn > nn, but saves a test */
+      if (c != 0)
+	mpn_lshift (tp + (nn & 1), np, nn, 2 * c);
+      else
+	MPN_COPY (tp + (nn & 1), np, nn);
+      c += (nn & 1) ? GMP_NUMB_BITS / 2 : 0;		/* c now represents k */
+      mask = (CNST_LIMB (1) << c) - 1;
+      rl = mpn_dc_sqrtrem (sp, tp, tn, (rp == NULL) ? mask - 1 : 0, scratch);
+      /* We have 2^(2k)*N = S^2 + R where k = c + (2tn-nn)*GMP_NUMB_BITS/2,
+	 thus 2^(2k)*N = (S-s0)^2 + 2*S*s0 - s0^2 + R where s0=S mod 2^k */
+      s0[0] = sp[0] & mask;	/* S mod 2^k */
+      rl += mpn_addmul_1 (tp, sp, tn, 2 * s0[0]);	/* R = R + 2*s0*S */
+      cc = mpn_submul_1 (tp, s0, 1, s0[0]);
+      rl -= (tn > 1) ? mpn_sub_1 (tp + 1, tp + 1, tn - 1, cc) : cc;
+      mpn_rshift (sp, sp, tn, c);
+      tp[tn] = rl;
+      if (rp == NULL)
+	rp = tp;
+      c = c << 1;
+      if (c < GMP_NUMB_BITS)
+	tn++;
+      else
+	{
+	  tp++;
+	  c -= GMP_NUMB_BITS;
+	}
+      if (c != 0)
+	mpn_rshift (rp, tp, tn, c);
+      else
+	MPN_COPY_INCR (rp, tp, tn);
+      rn = tn;
+    }
+  else
+    {
+      if (rp != np)
+	{
+	  if (rp == NULL) /* nn <= 8 */
+	    rp = TMP_SALLOC_LIMBS (nn);
+	  MPN_COPY (rp, np, nn);
+	}
+      rn = tn + (rp[tn] = mpn_dc_sqrtrem (sp, rp, tn, 0, TMP_ALLOC_LIMBS(tn / 2 + 1)));
+    }
+
+  MPN_NORMALIZE (rp, rn);
+
+  TMP_FREE;
+  return rn;
+}