Austin Schuh | 999a19e | 2024-05-04 14:52:39 -0700 | [diff] [blame] | 1 | #!/usr/bin/python3 |
| 2 | |
| 3 | import numpy |
| 4 | import sympy |
| 5 | import scipy.integrate |
| 6 | from frc971.control_loops.python import control_loop |
| 7 | from frc971.control_loops.python import controls |
| 8 | |
James Kuszmaul | aa52ff8 | 2024-08-10 15:16:49 -0700 | [diff] [blame] | 9 | import matplotlib |
Austin Schuh | 999a19e | 2024-05-04 14:52:39 -0700 | [diff] [blame] | 10 | from matplotlib import pylab |
| 11 | import sys |
| 12 | import gflags |
| 13 | import glog |
| 14 | |
| 15 | FLAGS = gflags.FLAGS |
| 16 | |
James Kuszmaul | aa52ff8 | 2024-08-10 15:16:49 -0700 | [diff] [blame] | 17 | matplotlib.use("GTK3Agg") |
| 18 | |
Austin Schuh | 999a19e | 2024-05-04 14:52:39 -0700 | [diff] [blame] | 19 | |
| 20 | class SwerveSimulation(object): |
| 21 | |
| 22 | def __init__(self): |
| 23 | self.motor = control_loop.KrakenFOC() |
| 24 | |
| 25 | vx, vy, omega = sympy.symbols('vx vy omega') |
| 26 | fx, fy = sympy.symbols('fx fy') |
| 27 | t = sympy.symbols('t') |
| 28 | |
| 29 | # 5kg of force got us a slip angle of 0.05 radians with 4 tires. |
| 30 | self.C = 5 * 9.8 / 0.05 / 4.0 |
| 31 | |
| 32 | self.r = 2 * 0.0254 |
| 33 | |
| 34 | # Base is 20kg without battery. |
| 35 | self.m = 25.0 |
| 36 | self.G = 1.0 / 6.75 |
| 37 | |
| 38 | I = sympy.symbols('I') |
| 39 | |
| 40 | # Absolute linear velocity in x and y of the robot. |
| 41 | self.dvx = (self.C * (self.r * omega - vx) / vx + fx) / self.m |
| 42 | self.dvy = (-self.C * sympy.atan2(vy, vx) + fy) / self.m |
| 43 | # Angular velocity of the wheel. |
| 44 | self.domega = (-self.G * self.C * (self.r * omega - vx) / vx * self.r + |
| 45 | self.motor.Kt * I) * self.G / self.motor.motor_inertia |
| 46 | |
| 47 | self.x0 = sympy.lambdify((vx, vy, omega, fx, fy, I), self.dvx) |
| 48 | self.x1 = sympy.lambdify((vx, vy, omega, fx, fy, I), self.dvy) |
| 49 | self.x2 = sympy.lambdify((vx, vy, omega, fx, fy, I), self.domega) |
| 50 | |
| 51 | self.f = lambda X, fx, fy, I: numpy.array([ |
| 52 | self.x0(X[0], X[1], X[2], fx, fy, I), |
| 53 | self.x1(X[0], X[1], X[2], fx, fy, I), |
| 54 | self.x2(X[0], X[1], X[2], fx, fy, I) |
| 55 | ]) |
| 56 | |
| 57 | print(self.f) |
| 58 | print( |
| 59 | 'f', |
| 60 | self.f(numpy.matrix([[1.0], [0.0], [1.0 / self.r]]), 0.0, 0.0, |
| 61 | 0.0)) |
| 62 | |
| 63 | print(self.dvx) |
| 64 | print(self.dvy) |
| 65 | print(self.domega) |
| 66 | |
| 67 | def run(self, X_initial): |
| 68 | print(X_initial) |
| 69 | |
| 70 | fx = -9.8 |
| 71 | fy = 0.0 |
| 72 | I = -(fx * self.r * self.G / self.motor.Kt) |
| 73 | print(f"Fx: {fx}, Fy: {fy}, I: {I}") |
| 74 | |
| 75 | def f_const(t, X): |
| 76 | return self.f( |
| 77 | X=X, |
| 78 | fx=fx, |
| 79 | fy=fy, |
| 80 | I=I, |
| 81 | ) |
| 82 | |
| 83 | result = scipy.integrate.solve_ivp( |
| 84 | f_const, (0, 2.0), |
| 85 | numpy.squeeze(numpy.array(X_initial.transpose())), |
| 86 | max_step=0.01) |
| 87 | |
| 88 | pylab.plot(result.t, result.y[0, :], label="y0") |
| 89 | pylab.plot(result.t, result.y[1, :], label="y1") |
| 90 | pylab.plot(result.t, result.y[2, :], label="y2") |
| 91 | |
| 92 | pylab.legend() |
| 93 | pylab.show() |
| 94 | |
| 95 | |
| 96 | def main(argv): |
| 97 | s = SwerveSimulation() |
| 98 | s.run(numpy.matrix([[1.0], [0.0], [1.0 / s.r]])) |
| 99 | |
| 100 | return 0 |
| 101 | |
| 102 | |
| 103 | if __name__ == '__main__': |
| 104 | argv = FLAGS(sys.argv) |
| 105 | glog.init() |
| 106 | sys.exit(main(argv)) |