| #!/usr/bin/python3 |
| |
| import numpy |
| import sympy |
| import scipy.integrate |
| from frc971.control_loops.python import control_loop |
| from frc971.control_loops.python import controls |
| |
| import matplotlib |
| from matplotlib import pylab |
| import sys |
| import gflags |
| import glog |
| |
| FLAGS = gflags.FLAGS |
| |
| matplotlib.use("GTK3Agg") |
| |
| |
| class SwerveSimulation(object): |
| |
| def __init__(self): |
| self.motor = control_loop.KrakenFOC() |
| |
| vx, vy, omega = sympy.symbols('vx vy omega') |
| fx, fy = sympy.symbols('fx fy') |
| t = sympy.symbols('t') |
| |
| # 5kg of force got us a slip angle of 0.05 radians with 4 tires. |
| self.C = 5 * 9.8 / 0.05 / 4.0 |
| |
| self.r = 2 * 0.0254 |
| |
| # Base is 20kg without battery. |
| self.m = 25.0 |
| self.G = 1.0 / 6.75 |
| |
| I = sympy.symbols('I') |
| |
| # Absolute linear velocity in x and y of the robot. |
| self.dvx = (self.C * (self.r * omega - vx) / vx + fx) / self.m |
| self.dvy = (-self.C * sympy.atan2(vy, vx) + fy) / self.m |
| # Angular velocity of the wheel. |
| self.domega = (-self.G * self.C * (self.r * omega - vx) / vx * self.r + |
| self.motor.Kt * I) * self.G / self.motor.motor_inertia |
| |
| self.x0 = sympy.lambdify((vx, vy, omega, fx, fy, I), self.dvx) |
| self.x1 = sympy.lambdify((vx, vy, omega, fx, fy, I), self.dvy) |
| self.x2 = sympy.lambdify((vx, vy, omega, fx, fy, I), self.domega) |
| |
| self.f = lambda X, fx, fy, I: numpy.array([ |
| self.x0(X[0], X[1], X[2], fx, fy, I), |
| self.x1(X[0], X[1], X[2], fx, fy, I), |
| self.x2(X[0], X[1], X[2], fx, fy, I) |
| ]) |
| |
| print(self.f) |
| print( |
| 'f', |
| self.f(numpy.matrix([[1.0], [0.0], [1.0 / self.r]]), 0.0, 0.0, |
| 0.0)) |
| |
| print(self.dvx) |
| print(self.dvy) |
| print(self.domega) |
| |
| def run(self, X_initial): |
| print(X_initial) |
| |
| fx = -9.8 |
| fy = 0.0 |
| I = -(fx * self.r * self.G / self.motor.Kt) |
| print(f"Fx: {fx}, Fy: {fy}, I: {I}") |
| |
| def f_const(t, X): |
| return self.f( |
| X=X, |
| fx=fx, |
| fy=fy, |
| I=I, |
| ) |
| |
| result = scipy.integrate.solve_ivp( |
| f_const, (0, 2.0), |
| numpy.squeeze(numpy.array(X_initial.transpose())), |
| max_step=0.01) |
| |
| pylab.plot(result.t, result.y[0, :], label="y0") |
| pylab.plot(result.t, result.y[1, :], label="y1") |
| pylab.plot(result.t, result.y[2, :], label="y2") |
| |
| pylab.legend() |
| pylab.show() |
| |
| |
| def main(argv): |
| s = SwerveSimulation() |
| s.run(numpy.matrix([[1.0], [0.0], [1.0 / s.r]])) |
| |
| return 0 |
| |
| |
| if __name__ == '__main__': |
| argv = FLAGS(sys.argv) |
| glog.init() |
| sys.exit(main(argv)) |