Austin Schuh | 189376f | 2018-12-20 22:11:15 +1100 | [diff] [blame] | 1 | /* dsbmv.f -- translated by f2c (version 20100827). |
| 2 | You must link the resulting object file with libf2c: |
| 3 | on Microsoft Windows system, link with libf2c.lib; |
| 4 | on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
| 5 | or, if you install libf2c.a in a standard place, with -lf2c -lm |
| 6 | -- in that order, at the end of the command line, as in |
| 7 | cc *.o -lf2c -lm |
| 8 | Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
| 9 | |
| 10 | http://www.netlib.org/f2c/libf2c.zip |
| 11 | */ |
| 12 | |
| 13 | #include "datatypes.h" |
| 14 | |
| 15 | /* Subroutine */ int dsbmv_(char *uplo, integer *n, integer *k, doublereal * |
| 16 | alpha, doublereal *a, integer *lda, doublereal *x, integer *incx, |
| 17 | doublereal *beta, doublereal *y, integer *incy, ftnlen uplo_len) |
| 18 | { |
| 19 | /* System generated locals */ |
| 20 | integer a_dim1, a_offset, i__1, i__2, i__3, i__4; |
| 21 | |
| 22 | /* Local variables */ |
| 23 | integer i__, j, l, ix, iy, jx, jy, kx, ky, info; |
| 24 | doublereal temp1, temp2; |
| 25 | extern logical lsame_(char *, char *, ftnlen, ftnlen); |
| 26 | integer kplus1; |
| 27 | extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); |
| 28 | |
| 29 | /* .. Scalar Arguments .. */ |
| 30 | /* .. */ |
| 31 | /* .. Array Arguments .. */ |
| 32 | /* .. */ |
| 33 | |
| 34 | /* Purpose */ |
| 35 | /* ======= */ |
| 36 | |
| 37 | /* DSBMV performs the matrix-vector operation */ |
| 38 | |
| 39 | /* y := alpha*A*x + beta*y, */ |
| 40 | |
| 41 | /* where alpha and beta are scalars, x and y are n element vectors and */ |
| 42 | /* A is an n by n symmetric band matrix, with k super-diagonals. */ |
| 43 | |
| 44 | /* Arguments */ |
| 45 | /* ========== */ |
| 46 | |
| 47 | /* UPLO - CHARACTER*1. */ |
| 48 | /* On entry, UPLO specifies whether the upper or lower */ |
| 49 | /* triangular part of the band matrix A is being supplied as */ |
| 50 | /* follows: */ |
| 51 | |
| 52 | /* UPLO = 'U' or 'u' The upper triangular part of A is */ |
| 53 | /* being supplied. */ |
| 54 | |
| 55 | /* UPLO = 'L' or 'l' The lower triangular part of A is */ |
| 56 | /* being supplied. */ |
| 57 | |
| 58 | /* Unchanged on exit. */ |
| 59 | |
| 60 | /* N - INTEGER. */ |
| 61 | /* On entry, N specifies the order of the matrix A. */ |
| 62 | /* N must be at least zero. */ |
| 63 | /* Unchanged on exit. */ |
| 64 | |
| 65 | /* K - INTEGER. */ |
| 66 | /* On entry, K specifies the number of super-diagonals of the */ |
| 67 | /* matrix A. K must satisfy 0 .le. K. */ |
| 68 | /* Unchanged on exit. */ |
| 69 | |
| 70 | /* ALPHA - DOUBLE PRECISION. */ |
| 71 | /* On entry, ALPHA specifies the scalar alpha. */ |
| 72 | /* Unchanged on exit. */ |
| 73 | |
| 74 | /* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */ |
| 75 | /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */ |
| 76 | /* by n part of the array A must contain the upper triangular */ |
| 77 | /* band part of the symmetric matrix, supplied column by */ |
| 78 | /* column, with the leading diagonal of the matrix in row */ |
| 79 | /* ( k + 1 ) of the array, the first super-diagonal starting at */ |
| 80 | /* position 2 in row k, and so on. The top left k by k triangle */ |
| 81 | /* of the array A is not referenced. */ |
| 82 | /* The following program segment will transfer the upper */ |
| 83 | /* triangular part of a symmetric band matrix from conventional */ |
| 84 | /* full matrix storage to band storage: */ |
| 85 | |
| 86 | /* DO 20, J = 1, N */ |
| 87 | /* M = K + 1 - J */ |
| 88 | /* DO 10, I = MAX( 1, J - K ), J */ |
| 89 | /* A( M + I, J ) = matrix( I, J ) */ |
| 90 | /* 10 CONTINUE */ |
| 91 | /* 20 CONTINUE */ |
| 92 | |
| 93 | /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */ |
| 94 | /* by n part of the array A must contain the lower triangular */ |
| 95 | /* band part of the symmetric matrix, supplied column by */ |
| 96 | /* column, with the leading diagonal of the matrix in row 1 of */ |
| 97 | /* the array, the first sub-diagonal starting at position 1 in */ |
| 98 | /* row 2, and so on. The bottom right k by k triangle of the */ |
| 99 | /* array A is not referenced. */ |
| 100 | /* The following program segment will transfer the lower */ |
| 101 | /* triangular part of a symmetric band matrix from conventional */ |
| 102 | /* full matrix storage to band storage: */ |
| 103 | |
| 104 | /* DO 20, J = 1, N */ |
| 105 | /* M = 1 - J */ |
| 106 | /* DO 10, I = J, MIN( N, J + K ) */ |
| 107 | /* A( M + I, J ) = matrix( I, J ) */ |
| 108 | /* 10 CONTINUE */ |
| 109 | /* 20 CONTINUE */ |
| 110 | |
| 111 | /* Unchanged on exit. */ |
| 112 | |
| 113 | /* LDA - INTEGER. */ |
| 114 | /* On entry, LDA specifies the first dimension of A as declared */ |
| 115 | /* in the calling (sub) program. LDA must be at least */ |
| 116 | /* ( k + 1 ). */ |
| 117 | /* Unchanged on exit. */ |
| 118 | |
| 119 | /* X - DOUBLE PRECISION array of DIMENSION at least */ |
| 120 | /* ( 1 + ( n - 1 )*abs( INCX ) ). */ |
| 121 | /* Before entry, the incremented array X must contain the */ |
| 122 | /* vector x. */ |
| 123 | /* Unchanged on exit. */ |
| 124 | |
| 125 | /* INCX - INTEGER. */ |
| 126 | /* On entry, INCX specifies the increment for the elements of */ |
| 127 | /* X. INCX must not be zero. */ |
| 128 | /* Unchanged on exit. */ |
| 129 | |
| 130 | /* BETA - DOUBLE PRECISION. */ |
| 131 | /* On entry, BETA specifies the scalar beta. */ |
| 132 | /* Unchanged on exit. */ |
| 133 | |
| 134 | /* Y - DOUBLE PRECISION array of DIMENSION at least */ |
| 135 | /* ( 1 + ( n - 1 )*abs( INCY ) ). */ |
| 136 | /* Before entry, the incremented array Y must contain the */ |
| 137 | /* vector y. On exit, Y is overwritten by the updated vector y. */ |
| 138 | |
| 139 | /* INCY - INTEGER. */ |
| 140 | /* On entry, INCY specifies the increment for the elements of */ |
| 141 | /* Y. INCY must not be zero. */ |
| 142 | /* Unchanged on exit. */ |
| 143 | |
| 144 | |
| 145 | /* Level 2 Blas routine. */ |
| 146 | |
| 147 | /* -- Written on 22-October-1986. */ |
| 148 | /* Jack Dongarra, Argonne National Lab. */ |
| 149 | /* Jeremy Du Croz, Nag Central Office. */ |
| 150 | /* Sven Hammarling, Nag Central Office. */ |
| 151 | /* Richard Hanson, Sandia National Labs. */ |
| 152 | |
| 153 | /* ===================================================================== */ |
| 154 | |
| 155 | /* .. Parameters .. */ |
| 156 | /* .. */ |
| 157 | /* .. Local Scalars .. */ |
| 158 | /* .. */ |
| 159 | /* .. External Functions .. */ |
| 160 | /* .. */ |
| 161 | /* .. External Subroutines .. */ |
| 162 | /* .. */ |
| 163 | /* .. Intrinsic Functions .. */ |
| 164 | /* .. */ |
| 165 | |
| 166 | /* Test the input parameters. */ |
| 167 | |
| 168 | /* Parameter adjustments */ |
| 169 | a_dim1 = *lda; |
| 170 | a_offset = 1 + a_dim1; |
| 171 | a -= a_offset; |
| 172 | --x; |
| 173 | --y; |
| 174 | |
| 175 | /* Function Body */ |
| 176 | info = 0; |
| 177 | if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( |
| 178 | ftnlen)1, (ftnlen)1)) { |
| 179 | info = 1; |
| 180 | } else if (*n < 0) { |
| 181 | info = 2; |
| 182 | } else if (*k < 0) { |
| 183 | info = 3; |
| 184 | } else if (*lda < *k + 1) { |
| 185 | info = 6; |
| 186 | } else if (*incx == 0) { |
| 187 | info = 8; |
| 188 | } else if (*incy == 0) { |
| 189 | info = 11; |
| 190 | } |
| 191 | if (info != 0) { |
| 192 | xerbla_("DSBMV ", &info, (ftnlen)6); |
| 193 | return 0; |
| 194 | } |
| 195 | |
| 196 | /* Quick return if possible. */ |
| 197 | |
| 198 | if (*n == 0 || (*alpha == 0. && *beta == 1.)) { |
| 199 | return 0; |
| 200 | } |
| 201 | |
| 202 | /* Set up the start points in X and Y. */ |
| 203 | |
| 204 | if (*incx > 0) { |
| 205 | kx = 1; |
| 206 | } else { |
| 207 | kx = 1 - (*n - 1) * *incx; |
| 208 | } |
| 209 | if (*incy > 0) { |
| 210 | ky = 1; |
| 211 | } else { |
| 212 | ky = 1 - (*n - 1) * *incy; |
| 213 | } |
| 214 | |
| 215 | /* Start the operations. In this version the elements of the array A */ |
| 216 | /* are accessed sequentially with one pass through A. */ |
| 217 | |
| 218 | /* First form y := beta*y. */ |
| 219 | |
| 220 | if (*beta != 1.) { |
| 221 | if (*incy == 1) { |
| 222 | if (*beta == 0.) { |
| 223 | i__1 = *n; |
| 224 | for (i__ = 1; i__ <= i__1; ++i__) { |
| 225 | y[i__] = 0.; |
| 226 | /* L10: */ |
| 227 | } |
| 228 | } else { |
| 229 | i__1 = *n; |
| 230 | for (i__ = 1; i__ <= i__1; ++i__) { |
| 231 | y[i__] = *beta * y[i__]; |
| 232 | /* L20: */ |
| 233 | } |
| 234 | } |
| 235 | } else { |
| 236 | iy = ky; |
| 237 | if (*beta == 0.) { |
| 238 | i__1 = *n; |
| 239 | for (i__ = 1; i__ <= i__1; ++i__) { |
| 240 | y[iy] = 0.; |
| 241 | iy += *incy; |
| 242 | /* L30: */ |
| 243 | } |
| 244 | } else { |
| 245 | i__1 = *n; |
| 246 | for (i__ = 1; i__ <= i__1; ++i__) { |
| 247 | y[iy] = *beta * y[iy]; |
| 248 | iy += *incy; |
| 249 | /* L40: */ |
| 250 | } |
| 251 | } |
| 252 | } |
| 253 | } |
| 254 | if (*alpha == 0.) { |
| 255 | return 0; |
| 256 | } |
| 257 | if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { |
| 258 | |
| 259 | /* Form y when upper triangle of A is stored. */ |
| 260 | |
| 261 | kplus1 = *k + 1; |
| 262 | if (*incx == 1 && *incy == 1) { |
| 263 | i__1 = *n; |
| 264 | for (j = 1; j <= i__1; ++j) { |
| 265 | temp1 = *alpha * x[j]; |
| 266 | temp2 = 0.; |
| 267 | l = kplus1 - j; |
| 268 | /* Computing MAX */ |
| 269 | i__2 = 1, i__3 = j - *k; |
| 270 | i__4 = j - 1; |
| 271 | for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { |
| 272 | y[i__] += temp1 * a[l + i__ + j * a_dim1]; |
| 273 | temp2 += a[l + i__ + j * a_dim1] * x[i__]; |
| 274 | /* L50: */ |
| 275 | } |
| 276 | y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2; |
| 277 | /* L60: */ |
| 278 | } |
| 279 | } else { |
| 280 | jx = kx; |
| 281 | jy = ky; |
| 282 | i__1 = *n; |
| 283 | for (j = 1; j <= i__1; ++j) { |
| 284 | temp1 = *alpha * x[jx]; |
| 285 | temp2 = 0.; |
| 286 | ix = kx; |
| 287 | iy = ky; |
| 288 | l = kplus1 - j; |
| 289 | /* Computing MAX */ |
| 290 | i__4 = 1, i__2 = j - *k; |
| 291 | i__3 = j - 1; |
| 292 | for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { |
| 293 | y[iy] += temp1 * a[l + i__ + j * a_dim1]; |
| 294 | temp2 += a[l + i__ + j * a_dim1] * x[ix]; |
| 295 | ix += *incx; |
| 296 | iy += *incy; |
| 297 | /* L70: */ |
| 298 | } |
| 299 | y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha * |
| 300 | temp2; |
| 301 | jx += *incx; |
| 302 | jy += *incy; |
| 303 | if (j > *k) { |
| 304 | kx += *incx; |
| 305 | ky += *incy; |
| 306 | } |
| 307 | /* L80: */ |
| 308 | } |
| 309 | } |
| 310 | } else { |
| 311 | |
| 312 | /* Form y when lower triangle of A is stored. */ |
| 313 | |
| 314 | if (*incx == 1 && *incy == 1) { |
| 315 | i__1 = *n; |
| 316 | for (j = 1; j <= i__1; ++j) { |
| 317 | temp1 = *alpha * x[j]; |
| 318 | temp2 = 0.; |
| 319 | y[j] += temp1 * a[j * a_dim1 + 1]; |
| 320 | l = 1 - j; |
| 321 | /* Computing MIN */ |
| 322 | i__4 = *n, i__2 = j + *k; |
| 323 | i__3 = min(i__4,i__2); |
| 324 | for (i__ = j + 1; i__ <= i__3; ++i__) { |
| 325 | y[i__] += temp1 * a[l + i__ + j * a_dim1]; |
| 326 | temp2 += a[l + i__ + j * a_dim1] * x[i__]; |
| 327 | /* L90: */ |
| 328 | } |
| 329 | y[j] += *alpha * temp2; |
| 330 | /* L100: */ |
| 331 | } |
| 332 | } else { |
| 333 | jx = kx; |
| 334 | jy = ky; |
| 335 | i__1 = *n; |
| 336 | for (j = 1; j <= i__1; ++j) { |
| 337 | temp1 = *alpha * x[jx]; |
| 338 | temp2 = 0.; |
| 339 | y[jy] += temp1 * a[j * a_dim1 + 1]; |
| 340 | l = 1 - j; |
| 341 | ix = jx; |
| 342 | iy = jy; |
| 343 | /* Computing MIN */ |
| 344 | i__4 = *n, i__2 = j + *k; |
| 345 | i__3 = min(i__4,i__2); |
| 346 | for (i__ = j + 1; i__ <= i__3; ++i__) { |
| 347 | ix += *incx; |
| 348 | iy += *incy; |
| 349 | y[iy] += temp1 * a[l + i__ + j * a_dim1]; |
| 350 | temp2 += a[l + i__ + j * a_dim1] * x[ix]; |
| 351 | /* L110: */ |
| 352 | } |
| 353 | y[jy] += *alpha * temp2; |
| 354 | jx += *incx; |
| 355 | jy += *incy; |
| 356 | /* L120: */ |
| 357 | } |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | return 0; |
| 362 | |
| 363 | /* End of DSBMV . */ |
| 364 | |
| 365 | } /* dsbmv_ */ |
| 366 | |