Squashed 'third_party/eigen/' changes from 61d72f6..cf794d3


Change-Id: I9b814151b01f49af6337a8605d0c42a3a1ed4c72
git-subtree-dir: third_party/eigen
git-subtree-split: cf794d3b741a6278df169e58461f8529f43bce5d
diff --git a/blas/f2c/dsbmv.c b/blas/f2c/dsbmv.c
new file mode 100644
index 0000000..c6b4b21
--- /dev/null
+++ b/blas/f2c/dsbmv.c
@@ -0,0 +1,366 @@
+/* dsbmv.f -- translated by f2c (version 20100827).
+   You must link the resulting object file with libf2c:
+	on Microsoft Windows system, link with libf2c.lib;
+	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+	or, if you install libf2c.a in a standard place, with -lf2c -lm
+	-- in that order, at the end of the command line, as in
+		cc *.o -lf2c -lm
+	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+		http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int dsbmv_(char *uplo, integer *n, integer *k, doublereal *
+	alpha, doublereal *a, integer *lda, doublereal *x, integer *incx, 
+	doublereal *beta, doublereal *y, integer *incy, ftnlen uplo_len)
+{
+    /* System generated locals */
+    integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+    /* Local variables */
+    integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
+    doublereal temp1, temp2;
+    extern logical lsame_(char *, char *, ftnlen, ftnlen);
+    integer kplus1;
+    extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+
+/*     .. Scalar Arguments .. */
+/*     .. */
+/*     .. Array Arguments .. */
+/*     .. */
+
+/*  Purpose */
+/*  ======= */
+
+/*  DSBMV  performs the matrix-vector  operation */
+
+/*     y := alpha*A*x + beta*y, */
+
+/*  where alpha and beta are scalars, x and y are n element vectors and */
+/*  A is an n by n symmetric band matrix, with k super-diagonals. */
+
+/*  Arguments */
+/*  ========== */
+
+/*  UPLO   - CHARACTER*1. */
+/*           On entry, UPLO specifies whether the upper or lower */
+/*           triangular part of the band matrix A is being supplied as */
+/*           follows: */
+
+/*              UPLO = 'U' or 'u'   The upper triangular part of A is */
+/*                                  being supplied. */
+
+/*              UPLO = 'L' or 'l'   The lower triangular part of A is */
+/*                                  being supplied. */
+
+/*           Unchanged on exit. */
+
+/*  N      - INTEGER. */
+/*           On entry, N specifies the order of the matrix A. */
+/*           N must be at least zero. */
+/*           Unchanged on exit. */
+
+/*  K      - INTEGER. */
+/*           On entry, K specifies the number of super-diagonals of the */
+/*           matrix A. K must satisfy  0 .le. K. */
+/*           Unchanged on exit. */
+
+/*  ALPHA  - DOUBLE PRECISION. */
+/*           On entry, ALPHA specifies the scalar alpha. */
+/*           Unchanged on exit. */
+
+/*  A      - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
+/*           Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
+/*           by n part of the array A must contain the upper triangular */
+/*           band part of the symmetric matrix, supplied column by */
+/*           column, with the leading diagonal of the matrix in row */
+/*           ( k + 1 ) of the array, the first super-diagonal starting at */
+/*           position 2 in row k, and so on. The top left k by k triangle */
+/*           of the array A is not referenced. */
+/*           The following program segment will transfer the upper */
+/*           triangular part of a symmetric band matrix from conventional */
+/*           full matrix storage to band storage: */
+
+/*                 DO 20, J = 1, N */
+/*                    M = K + 1 - J */
+/*                    DO 10, I = MAX( 1, J - K ), J */
+/*                       A( M + I, J ) = matrix( I, J ) */
+/*              10    CONTINUE */
+/*              20 CONTINUE */
+
+/*           Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
+/*           by n part of the array A must contain the lower triangular */
+/*           band part of the symmetric matrix, supplied column by */
+/*           column, with the leading diagonal of the matrix in row 1 of */
+/*           the array, the first sub-diagonal starting at position 1 in */
+/*           row 2, and so on. The bottom right k by k triangle of the */
+/*           array A is not referenced. */
+/*           The following program segment will transfer the lower */
+/*           triangular part of a symmetric band matrix from conventional */
+/*           full matrix storage to band storage: */
+
+/*                 DO 20, J = 1, N */
+/*                    M = 1 - J */
+/*                    DO 10, I = J, MIN( N, J + K ) */
+/*                       A( M + I, J ) = matrix( I, J ) */
+/*              10    CONTINUE */
+/*              20 CONTINUE */
+
+/*           Unchanged on exit. */
+
+/*  LDA    - INTEGER. */
+/*           On entry, LDA specifies the first dimension of A as declared */
+/*           in the calling (sub) program. LDA must be at least */
+/*           ( k + 1 ). */
+/*           Unchanged on exit. */
+
+/*  X      - DOUBLE PRECISION array of DIMENSION at least */
+/*           ( 1 + ( n - 1 )*abs( INCX ) ). */
+/*           Before entry, the incremented array X must contain the */
+/*           vector x. */
+/*           Unchanged on exit. */
+
+/*  INCX   - INTEGER. */
+/*           On entry, INCX specifies the increment for the elements of */
+/*           X. INCX must not be zero. */
+/*           Unchanged on exit. */
+
+/*  BETA   - DOUBLE PRECISION. */
+/*           On entry, BETA specifies the scalar beta. */
+/*           Unchanged on exit. */
+
+/*  Y      - DOUBLE PRECISION array of DIMENSION at least */
+/*           ( 1 + ( n - 1 )*abs( INCY ) ). */
+/*           Before entry, the incremented array Y must contain the */
+/*           vector y. On exit, Y is overwritten by the updated vector y. */
+
+/*  INCY   - INTEGER. */
+/*           On entry, INCY specifies the increment for the elements of */
+/*           Y. INCY must not be zero. */
+/*           Unchanged on exit. */
+
+
+/*  Level 2 Blas routine. */
+
+/*  -- Written on 22-October-1986. */
+/*     Jack Dongarra, Argonne National Lab. */
+/*     Jeremy Du Croz, Nag Central Office. */
+/*     Sven Hammarling, Nag Central Office. */
+/*     Richard Hanson, Sandia National Labs. */
+
+/*  ===================================================================== */
+
+/*     .. Parameters .. */
+/*     .. */
+/*     .. Local Scalars .. */
+/*     .. */
+/*     .. External Functions .. */
+/*     .. */
+/*     .. External Subroutines .. */
+/*     .. */
+/*     .. Intrinsic Functions .. */
+/*     .. */
+
+/*     Test the input parameters. */
+
+    /* Parameter adjustments */
+    a_dim1 = *lda;
+    a_offset = 1 + a_dim1;
+    a -= a_offset;
+    --x;
+    --y;
+
+    /* Function Body */
+    info = 0;
+    if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+	    ftnlen)1, (ftnlen)1)) {
+	info = 1;
+    } else if (*n < 0) {
+	info = 2;
+    } else if (*k < 0) {
+	info = 3;
+    } else if (*lda < *k + 1) {
+	info = 6;
+    } else if (*incx == 0) {
+	info = 8;
+    } else if (*incy == 0) {
+	info = 11;
+    }
+    if (info != 0) {
+	xerbla_("DSBMV ", &info, (ftnlen)6);
+	return 0;
+    }
+
+/*     Quick return if possible. */
+
+    if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
+	return 0;
+    }
+
+/*     Set up the start points in  X  and  Y. */
+
+    if (*incx > 0) {
+	kx = 1;
+    } else {
+	kx = 1 - (*n - 1) * *incx;
+    }
+    if (*incy > 0) {
+	ky = 1;
+    } else {
+	ky = 1 - (*n - 1) * *incy;
+    }
+
+/*     Start the operations. In this version the elements of the array A */
+/*     are accessed sequentially with one pass through A. */
+
+/*     First form  y := beta*y. */
+
+    if (*beta != 1.) {
+	if (*incy == 1) {
+	    if (*beta == 0.) {
+		i__1 = *n;
+		for (i__ = 1; i__ <= i__1; ++i__) {
+		    y[i__] = 0.;
+/* L10: */
+		}
+	    } else {
+		i__1 = *n;
+		for (i__ = 1; i__ <= i__1; ++i__) {
+		    y[i__] = *beta * y[i__];
+/* L20: */
+		}
+	    }
+	} else {
+	    iy = ky;
+	    if (*beta == 0.) {
+		i__1 = *n;
+		for (i__ = 1; i__ <= i__1; ++i__) {
+		    y[iy] = 0.;
+		    iy += *incy;
+/* L30: */
+		}
+	    } else {
+		i__1 = *n;
+		for (i__ = 1; i__ <= i__1; ++i__) {
+		    y[iy] = *beta * y[iy];
+		    iy += *incy;
+/* L40: */
+		}
+	    }
+	}
+    }
+    if (*alpha == 0.) {
+	return 0;
+    }
+    if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+
+/*        Form  y  when upper triangle of A is stored. */
+
+	kplus1 = *k + 1;
+	if (*incx == 1 && *incy == 1) {
+	    i__1 = *n;
+	    for (j = 1; j <= i__1; ++j) {
+		temp1 = *alpha * x[j];
+		temp2 = 0.;
+		l = kplus1 - j;
+/* Computing MAX */
+		i__2 = 1, i__3 = j - *k;
+		i__4 = j - 1;
+		for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
+		    y[i__] += temp1 * a[l + i__ + j * a_dim1];
+		    temp2 += a[l + i__ + j * a_dim1] * x[i__];
+/* L50: */
+		}
+		y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
+/* L60: */
+	    }
+	} else {
+	    jx = kx;
+	    jy = ky;
+	    i__1 = *n;
+	    for (j = 1; j <= i__1; ++j) {
+		temp1 = *alpha * x[jx];
+		temp2 = 0.;
+		ix = kx;
+		iy = ky;
+		l = kplus1 - j;
+/* Computing MAX */
+		i__4 = 1, i__2 = j - *k;
+		i__3 = j - 1;
+		for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
+		    y[iy] += temp1 * a[l + i__ + j * a_dim1];
+		    temp2 += a[l + i__ + j * a_dim1] * x[ix];
+		    ix += *incx;
+		    iy += *incy;
+/* L70: */
+		}
+		y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha * 
+			temp2;
+		jx += *incx;
+		jy += *incy;
+		if (j > *k) {
+		    kx += *incx;
+		    ky += *incy;
+		}
+/* L80: */
+	    }
+	}
+    } else {
+
+/*        Form  y  when lower triangle of A is stored. */
+
+	if (*incx == 1 && *incy == 1) {
+	    i__1 = *n;
+	    for (j = 1; j <= i__1; ++j) {
+		temp1 = *alpha * x[j];
+		temp2 = 0.;
+		y[j] += temp1 * a[j * a_dim1 + 1];
+		l = 1 - j;
+/* Computing MIN */
+		i__4 = *n, i__2 = j + *k;
+		i__3 = min(i__4,i__2);
+		for (i__ = j + 1; i__ <= i__3; ++i__) {
+		    y[i__] += temp1 * a[l + i__ + j * a_dim1];
+		    temp2 += a[l + i__ + j * a_dim1] * x[i__];
+/* L90: */
+		}
+		y[j] += *alpha * temp2;
+/* L100: */
+	    }
+	} else {
+	    jx = kx;
+	    jy = ky;
+	    i__1 = *n;
+	    for (j = 1; j <= i__1; ++j) {
+		temp1 = *alpha * x[jx];
+		temp2 = 0.;
+		y[jy] += temp1 * a[j * a_dim1 + 1];
+		l = 1 - j;
+		ix = jx;
+		iy = jy;
+/* Computing MIN */
+		i__4 = *n, i__2 = j + *k;
+		i__3 = min(i__4,i__2);
+		for (i__ = j + 1; i__ <= i__3; ++i__) {
+		    ix += *incx;
+		    iy += *incy;
+		    y[iy] += temp1 * a[l + i__ + j * a_dim1];
+		    temp2 += a[l + i__ + j * a_dim1] * x[ix];
+/* L110: */
+		}
+		y[jy] += *alpha * temp2;
+		jx += *incx;
+		jy += *incy;
+/* L120: */
+	    }
+	}
+    }
+
+    return 0;
+
+/*     End of DSBMV . */
+
+} /* dsbmv_ */
+