Brian Silverman | cabadaf | 2018-09-03 19:36:44 -0700 | [diff] [blame] | 1 | #include "motors/peripheral/adc_dma.h" |
| 2 | |
| 3 | #include <assert.h> |
| 4 | |
| 5 | // Design notes: |
| 6 | // * Want to grab 3 differential-pair captures in rapid succession (aka 3 pairs |
| 7 | // each containing 2 differential ADC input values) |
| 8 | // * Use hardware triggering to allow triggering captures on both ADCs at the |
| 9 | // exact same time |
| 10 | // * Need to use both A and B channels within each ADC because writing to SC1n |
| 11 | // while it's doing a capture (like to set up the next one) aborts the capture |
| 12 | // * Can't use alternate (non-PDB) ADC triggers, because we want to use both A |
| 13 | // and B channels within each ADC, and only the PDB triggers know how to use |
| 14 | // two pre-triggers to choose which ADC channel to trigger |
| 15 | // * Back-to-back connections aren't directly helpful because they're only |
| 16 | // set up to go ADC0.A, ADC0.B, ADC1.A, ADC1.B, in a loop |
| 17 | // * Setup: |
| 18 | // * Set ADC0 and ADC1 for hardware triggering |
| 19 | // * Write to ADC0_SC1A and ADC1_SC1A (with CPU) with initial values |
| 20 | // * PDB: |
| 21 | // * One-shot mode |
| 22 | // * A output bypassed (so it goes right after the trigger) |
| 23 | // * Triggered by FTM trigger outputs (twice per cycle) |
| 24 | // * B output in back-to-back mode |
| 25 | // * Delays don't matter |
| 26 | // * A doesn't re-trigger off of B, so PDB+ADC by themselves stop after |
| 27 | // doing two samples |
| 28 | // * FTM triggers it at the appropriate points in the cycle (using two |
| 29 | // otherwise-unused FTM channels) |
| 30 | // * DMA: |
| 31 | // * One result triggers off of ADC.COCO (either one) |
| 32 | // * SOFF moves between RA and RB |
| 33 | // * 1 minor loop = reading Rn from one ADC |
| 34 | // * Trigger other result channel or first reconfigure channel after |
| 35 | // (link on both major and minor completion) |
| 36 | // * SMOD wraps back to RB after RA |
| 37 | // * One major iteration is all four samples |
| 38 | // * Can't use SOFF and SMOD to read all results with one channel because |
| 39 | // SOFF is too small |
| 40 | // * Same idea for two reconfigure channels |
| 41 | // * Use DREQ so disabled after doing all four for CPU to read results |
| 42 | // * Configure to reset everything after the major iteration so CPU just |
| 43 | // has to re-enable |
| 44 | // * Desired sequence: |
| 45 | // 1. Trigger ADC0.A and ADC1.A |
| 46 | // 2. [Reading ADC0.RB and ADC1.RB would be OK] |
| 47 | // 3. Wait for ADC0.A and ADC1.A to finish |
| 48 | // 4. Trigger ADC0.B and ADC0.B |
| 49 | // 5. Read ADC0.RA and ADC1.RA |
| 50 | // 6. Wait for ADC0.B and ADC1.B to finish |
| 51 | // 7. Trigger ADC0.A and ADC0.A |
| 52 | // 8. Read ADC0.RB and ADC1.RB |
| 53 | // 9. Go back to step #3 |
| 54 | |
| 55 | namespace frc971 { |
| 56 | namespace teensy { |
| 57 | namespace { |
| 58 | |
| 59 | constexpr uint32_t pdb_sc(int pdb_input) { |
| 60 | return V_PDB_LDMOD(0) /* Load immediately after LDOK */ | |
| 61 | V_PDB_PRESCALER(0) /* Doesn't matter */ | V_PDB_TRGSEL(pdb_input) | |
| 62 | M_PDB_PDBEN /* Enable it */ | V_PDB_MULT(0) /* Doesn't matter */ | |
| 63 | M_PDB_LDOK /* Load new values now */; |
| 64 | } |
| 65 | |
| 66 | } // namespace |
| 67 | |
Brian Silverman | a1d8482 | 2018-09-15 17:18:49 -0700 | [diff] [blame] | 68 | AdcDmaSampler::AdcDmaSampler(int counts_per_cycle) : counts_per_cycle_(counts_per_cycle) { |
Brian Silverman | cabadaf | 2018-09-03 19:36:44 -0700 | [diff] [blame] | 69 | for (int adc = 0; adc < 2; ++adc) { |
| 70 | for (int i = 0; i < 2; ++i) { |
| 71 | adc_sc1s_[adc][kNumberAdcSamples + i] = ADC_SC1_ADCH(0x1f); |
| 72 | } |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | void AdcDmaSampler::set_adc0_samples( |
| 77 | const ::std::array<uint32_t, kNumberAdcSamples> &adc0_samples) { |
| 78 | for (int i = 0; i < kNumberAdcSamples; ++i) { |
| 79 | adc_sc1s_[0][i] = adc0_samples[i] | ADC_SC1_AIEN; |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | void AdcDmaSampler::set_adc1_samples( |
| 84 | const ::std::array<uint32_t, kNumberAdcSamples> &adc1_samples) { |
| 85 | for (int i = 0; i < kNumberAdcSamples; ++i) { |
| 86 | adc_sc1s_[1][i] = adc1_samples[i] | ADC_SC1_AIEN; |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | void AdcDmaSampler::Initialize() { |
| 91 | // TODO(Brian): Put this somewhere better? |
| 92 | SIM_SCGC6 |= SIM_SCGC6_DMAMUX | SIM_SCGC6_PDB; |
| 93 | |
| 94 | assert(ftm_delays_[0] != nullptr); |
| 95 | assert(ftm_delays_[1] != nullptr); |
| 96 | { |
| 97 | // See "Figure 33-92. Conversion time equation" for details on this math. |
| 98 | // All the math is in bus clock cycles, until being divided into FTM |
| 99 | // clock cycles at the end. |
| 100 | |
| 101 | // Divider from bus clock to FTM clock. |
| 102 | // TODO(Brian): Make it so this can actually change. |
| 103 | const int ftm_clock_divider = 1; |
| 104 | |
| 105 | // Divider from bus clock to ADC clock. |
| 106 | // TODO(Brian): Make sure this stays in sync with what adc.cc actually |
| 107 | // configures. |
| 108 | static constexpr int kAdcClockDivider = 4; |
| 109 | |
| 110 | static constexpr int kSfcAdder = 5 * kAdcClockDivider + 5; |
| 111 | |
| 112 | // 12-bit single-ended is only 20, but waiting a bit too long for some of |
| 113 | // the samples doesn't hurt anything. |
| 114 | static constexpr int kBct = 30 /* 13-bit differential */ * kAdcClockDivider; |
| 115 | |
| 116 | static constexpr int kLstAdder = 0 * kAdcClockDivider; |
| 117 | |
| 118 | static constexpr int kHscAdder = 2 * kAdcClockDivider; |
| 119 | |
Brian Silverman | a1d8482 | 2018-09-15 17:18:49 -0700 | [diff] [blame] | 120 | |
Brian Silverman | cabadaf | 2018-09-03 19:36:44 -0700 | [diff] [blame] | 121 | static constexpr int kConversionTime = |
| 122 | kSfcAdder + 1 /* AverageNum */ * (kBct + kLstAdder + kHscAdder); |
| 123 | |
Brian Silverman | a1d8482 | 2018-09-15 17:18:49 -0700 | [diff] [blame] | 124 | // Sampling takes 8 ADCK cycles according to |
| 125 | // "33.4.4.5 Sample time and total conversion time". This means we want 0 |
| 126 | // (the start of the cycle) to be 4 ADCK cycles into the second of our four |
| 127 | // samples. |
| 128 | const int delay_before_cycle = |
| 129 | (kConversionTime - |
| 130 | 4 /* Clocks before middle of sample */ * kAdcClockDivider + |
| 131 | ftm_clock_divider - 1) / |
| 132 | ftm_clock_divider; |
Brian Silverman | cabadaf | 2018-09-03 19:36:44 -0700 | [diff] [blame] | 133 | const int ftm_delay = |
| 134 | (kConversionTime * 2 /* 2 ADC samples */ + ftm_clock_divider - 1) / |
| 135 | ftm_clock_divider; |
Brian Silverman | a1d8482 | 2018-09-15 17:18:49 -0700 | [diff] [blame] | 136 | *ftm_delays_[0] = counts_per_cycle_ - delay_before_cycle; |
| 137 | *ftm_delays_[1] = ftm_delay - delay_before_cycle; |
Brian Silverman | cabadaf | 2018-09-03 19:36:44 -0700 | [diff] [blame] | 138 | } |
| 139 | |
| 140 | InitializePdbChannel(&PDB0.CH[0]); |
| 141 | InitializePdbChannel(&PDB0.CH[1]); |
| 142 | PDB0.MOD = 1 /* Doesn't matter */; |
| 143 | PDB0.SC = pdb_sc(pdb_input_); |
| 144 | |
| 145 | DMAMUX0.CHCFG[result_dma_channel(0)] = M_DMAMUX_ENBL | DMAMUX_SOURCE_ADC0; |
| 146 | DMAMUX0.CHCFG[result_dma_channel(1)] = 0; |
| 147 | DMAMUX0.CHCFG[reconfigure_dma_channel(0)] = 0; |
| 148 | DMAMUX0.CHCFG[reconfigure_dma_channel(1)] = 0; |
| 149 | |
| 150 | static constexpr ssize_t kResultABOffset = |
| 151 | static_cast<ssize_t>(offsetof(KINETIS_ADC_t, RB)) - |
| 152 | static_cast<ssize_t>(offsetof(KINETIS_ADC_t, RA)); |
| 153 | static_assert(kResultABOffset > 0, "Offset is backwards"); |
| 154 | static constexpr ssize_t kResultOffsetBits = |
| 155 | ConstexprLog2(kResultABOffset * 2); |
| 156 | static constexpr ssize_t kSC1ABOffset = |
| 157 | static_cast<ssize_t>(offsetof(KINETIS_ADC_t, SC1B)) - |
| 158 | static_cast<ssize_t>(offsetof(KINETIS_ADC_t, SC1A)); |
| 159 | static_assert(kSC1ABOffset > 0, "Offset is backwards"); |
| 160 | static constexpr ssize_t kSC1OffsetBits = ConstexprLog2(kSC1ABOffset * 2); |
| 161 | for (int adc = 0; adc < 2; ++adc) { |
| 162 | // Make sure we can actually write to all the fields in the DMA channels. |
| 163 | DMA.CDNE = result_dma_channel(adc); |
| 164 | DMA.CDNE = reconfigure_dma_channel(adc); |
| 165 | DMA.CERQ = result_dma_channel(adc); |
| 166 | DMA.CERQ = reconfigure_dma_channel(adc); |
| 167 | |
| 168 | ADC(adc) |
| 169 | ->SC2 |= ADC_SC2_ADTRG /* Use hardware triggering */ | |
| 170 | ADC_SC2_DMAEN /* Enable DMA triggers */; |
| 171 | |
| 172 | int next_result_channel, next_reconfigure_channel; |
| 173 | if (adc == 0) { |
| 174 | next_result_channel = result_dma_channel(1); |
| 175 | next_reconfigure_channel = reconfigure_dma_channel(1); |
| 176 | } else { |
| 177 | next_result_channel = reconfigure_dma_channel(0); |
| 178 | #if 0 |
| 179 | // TODO(Brian): Use this once we're actually doing encoder captures. |
| 180 | next_reconfigure_channel = encoder_value_dma_channel(); |
| 181 | #else |
| 182 | next_reconfigure_channel = -1; |
| 183 | #endif |
| 184 | } |
| 185 | result_dma(adc)->SOFF = kResultABOffset; |
| 186 | reconfigure_dma(adc)->SOFF = sizeof(uint32_t); |
| 187 | result_dma(adc)->SADDR = &ADC(adc)->RA; |
| 188 | reconfigure_dma(adc)->SADDR = &adc_sc1s_[adc][2]; |
| 189 | result_dma(adc)->ATTR = |
| 190 | V_TCD_SMOD(kResultOffsetBits) | V_TCD_SSIZE(TCD_SIZE_16BIT) | |
| 191 | V_TCD_DMOD(0) /* No DMOD */ | V_TCD_DSIZE(TCD_SIZE_16BIT); |
| 192 | reconfigure_dma(adc)->ATTR = |
| 193 | V_TCD_SMOD(0) /* No SMOD */ | V_TCD_SSIZE(TCD_SIZE_32BIT) | |
| 194 | V_TCD_DMOD(kSC1OffsetBits) | V_TCD_DSIZE(TCD_SIZE_32BIT); |
| 195 | result_dma(adc)->NBYTES = sizeof(uint16_t); |
| 196 | reconfigure_dma(adc)->NBYTES = sizeof(uint32_t); |
| 197 | result_dma(adc)->SLAST = 0; |
| 198 | reconfigure_dma(adc)->SLAST = -(kNumberAdcSamples * sizeof(uint32_t)); |
| 199 | result_dma(adc)->DADDR = &adc_results_[adc][0]; |
| 200 | reconfigure_dma(adc)->DADDR = &ADC(adc)->SC1A; |
| 201 | result_dma(adc)->DOFF = sizeof(uint16_t); |
| 202 | reconfigure_dma(adc)->DOFF = kSC1ABOffset; |
| 203 | { |
| 204 | uint16_t link = 0; |
| 205 | if (next_result_channel != -1) { |
| 206 | link = M_TCD_ELINK | V_TCD_LINKCH(next_result_channel); |
| 207 | } |
| 208 | result_dma(adc)->CITER = result_dma(adc)->BITER = |
| 209 | link | 4 /* 4 minor iterations */; |
| 210 | } |
| 211 | { |
| 212 | uint16_t link = 0; |
| 213 | if (next_reconfigure_channel != -1) { |
| 214 | link = M_TCD_ELINK | V_TCD_LINKCH(next_reconfigure_channel); |
| 215 | } |
| 216 | reconfigure_dma(adc)->CITER = reconfigure_dma(adc)->BITER = |
| 217 | link | 4 /* 4 minor iterations */; |
| 218 | } |
| 219 | result_dma(adc)->DLASTSGA = -(kNumberAdcSamples * sizeof(uint16_t)); |
| 220 | reconfigure_dma(adc)->DLASTSGA = 0; |
| 221 | { |
| 222 | uint16_t link = 0; |
| 223 | if (next_result_channel != -1) { |
| 224 | link = V_TCD_MAJORLINKCH(next_result_channel) | M_TCD_MAJORELINK; |
| 225 | } |
| 226 | result_dma(adc)->CSR = |
| 227 | V_TCD_BWC(0) /* No extra stalls */ | link | |
| 228 | M_TCD_DREQ /* Disable requests after major iteration */; |
| 229 | } |
| 230 | { |
| 231 | uint16_t link = 0; |
| 232 | if (next_reconfigure_channel != -1) { |
| 233 | link = V_TCD_MAJORLINKCH(next_reconfigure_channel) | M_TCD_MAJORELINK; |
| 234 | } |
| 235 | reconfigure_dma(adc)->CSR = |
| 236 | V_TCD_BWC(0) /* No extra stalls */ | link | |
| 237 | M_TCD_DREQ /* Disable requests after major iteration */ | |
| 238 | M_TCD_INTMAJOR; |
| 239 | } |
| 240 | } |
| 241 | } |
| 242 | |
| 243 | void AdcDmaSampler::Reset() { |
| 244 | // Disable the PDB. This both prevents weird interference with what we're |
| 245 | // trying to do and is part of the process to clear its internal |
| 246 | // (unobservable) "locks". If we get out of sync, then the DMA won't read from |
| 247 | // the ADC so the ADC's COCO will stay asserted and the PDB will stay "locked" |
| 248 | // on that channel. Disabling then re-enabling the PDB is the easiest way to |
| 249 | // clear that. See "37.4.1 PDB pre-trigger and trigger outputs" in the |
| 250 | // reference manual for details. |
| 251 | PDB0.SC = 0; |
| 252 | |
| 253 | // Set the initial ADC sample configs. |
| 254 | for (int adc = 0; adc < 2; ++adc) { |
| 255 | // Tell the DMA it should go again. |
| 256 | DMA.CDNE = result_dma_channel(adc); |
| 257 | DMA.CDNE = reconfigure_dma_channel(adc); |
| 258 | |
| 259 | for (int i = 0; i < 2; ++i) { |
| 260 | ADC(adc)->SC1[i] = adc_sc1s_[adc][i]; |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | // Re-enable the first DMA channel (which is the only one triggered by |
| 265 | // hardware, and disables itself once it's done). |
| 266 | DMA.SERQ = result_dma_channel(0); |
| 267 | |
| 268 | // Now re-enable the PDB. |
| 269 | PDB0.SC = pdb_sc(pdb_input_); |
| 270 | // Both channels' S registers are now 0, empirically, regardless of what they |
| 271 | // were before. Reference manual isn't super clear what's supposed to happen. |
| 272 | } |
| 273 | |
| 274 | void AdcDmaSampler::InitializePdbChannel(KINETIS_PDB_CHANNEL_t *channel) { |
| 275 | channel->C1 = V_PDB_BB(2) /* Back-to-back enabled for channel 1 */ | |
| 276 | V_PDB_TOS(2) /* Bypass 0, and 1 doesn't matter (?) */ | |
| 277 | V_PDB_EN(3) /* Enable our two */; |
| 278 | } |
| 279 | |
| 280 | } // namespace teensy |
| 281 | } // namespace frc971 |