blob: bdd84d6e2242f81ca8619d14d0997c81e24bab67 [file] [log] [blame]
#include "motors/peripheral/adc_dma.h"
#include <assert.h>
// Design notes:
// * Want to grab 3 differential-pair captures in rapid succession (aka 3 pairs
// each containing 2 differential ADC input values)
// * Use hardware triggering to allow triggering captures on both ADCs at the
// exact same time
// * Need to use both A and B channels within each ADC because writing to SC1n
// while it's doing a capture (like to set up the next one) aborts the capture
// * Can't use alternate (non-PDB) ADC triggers, because we want to use both A
// and B channels within each ADC, and only the PDB triggers know how to use
// two pre-triggers to choose which ADC channel to trigger
// * Back-to-back connections aren't directly helpful because they're only
// set up to go ADC0.A, ADC0.B, ADC1.A, ADC1.B, in a loop
// * Setup:
// * Set ADC0 and ADC1 for hardware triggering
// * Write to ADC0_SC1A and ADC1_SC1A (with CPU) with initial values
// * PDB:
// * One-shot mode
// * A output bypassed (so it goes right after the trigger)
// * Triggered by FTM trigger outputs (twice per cycle)
// * B output in back-to-back mode
// * Delays don't matter
// * A doesn't re-trigger off of B, so PDB+ADC by themselves stop after
// doing two samples
// * FTM triggers it at the appropriate points in the cycle (using two
// otherwise-unused FTM channels)
// * DMA:
// * One result triggers off of ADC.COCO (either one)
// * SOFF moves between RA and RB
// * 1 minor loop = reading Rn from one ADC
// * Trigger other result channel or first reconfigure channel after
// (link on both major and minor completion)
// * SMOD wraps back to RB after RA
// * One major iteration is all four samples
// * Can't use SOFF and SMOD to read all results with one channel because
// SOFF is too small
// * Same idea for two reconfigure channels
// * Use DREQ so disabled after doing all four for CPU to read results
// * Configure to reset everything after the major iteration so CPU just
// has to re-enable
// * Desired sequence:
// 1. Trigger ADC0.A and ADC1.A
// 2. [Reading ADC0.RB and ADC1.RB would be OK]
// 3. Wait for ADC0.A and ADC1.A to finish
// 4. Trigger ADC0.B and ADC0.B
// 5. Read ADC0.RA and ADC1.RA
// 6. Wait for ADC0.B and ADC1.B to finish
// 7. Trigger ADC0.A and ADC0.A
// 8. Read ADC0.RB and ADC1.RB
// 9. Go back to step #3
namespace frc971 {
namespace teensy {
namespace {
constexpr uint32_t pdb_sc(int pdb_input) {
return V_PDB_LDMOD(0) /* Load immediately after LDOK */ |
V_PDB_PRESCALER(0) /* Doesn't matter */ | V_PDB_TRGSEL(pdb_input) |
M_PDB_PDBEN /* Enable it */ | V_PDB_MULT(0) /* Doesn't matter */ |
M_PDB_LDOK /* Load new values now */;
}
} // namespace
AdcDmaSampler::AdcDmaSampler(int counts_per_cycle) : counts_per_cycle_(counts_per_cycle) {
for (int adc = 0; adc < 2; ++adc) {
for (int i = 0; i < 2; ++i) {
adc_sc1s_[adc][kNumberAdcSamples + i] = ADC_SC1_ADCH(0x1f);
}
}
}
void AdcDmaSampler::set_adc0_samples(
const ::std::array<uint32_t, kNumberAdcSamples> &adc0_samples) {
for (int i = 0; i < kNumberAdcSamples; ++i) {
adc_sc1s_[0][i] = adc0_samples[i] | ADC_SC1_AIEN;
}
}
void AdcDmaSampler::set_adc1_samples(
const ::std::array<uint32_t, kNumberAdcSamples> &adc1_samples) {
for (int i = 0; i < kNumberAdcSamples; ++i) {
adc_sc1s_[1][i] = adc1_samples[i] | ADC_SC1_AIEN;
}
}
void AdcDmaSampler::Initialize() {
// TODO(Brian): Put this somewhere better?
SIM_SCGC6 |= SIM_SCGC6_DMAMUX | SIM_SCGC6_PDB;
assert(ftm_delays_[0] != nullptr);
assert(ftm_delays_[1] != nullptr);
{
// See "Figure 33-92. Conversion time equation" for details on this math.
// All the math is in bus clock cycles, until being divided into FTM
// clock cycles at the end.
// Divider from bus clock to FTM clock.
// TODO(Brian): Make it so this can actually change.
const int ftm_clock_divider = 1;
// Divider from bus clock to ADC clock.
// TODO(Brian): Make sure this stays in sync with what adc.cc actually
// configures.
static constexpr int kAdcClockDivider = 4;
static constexpr int kSfcAdder = 5 * kAdcClockDivider + 5;
// 12-bit single-ended is only 20, but waiting a bit too long for some of
// the samples doesn't hurt anything.
static constexpr int kBct = 30 /* 13-bit differential */ * kAdcClockDivider;
static constexpr int kLstAdder = 0 * kAdcClockDivider;
static constexpr int kHscAdder = 2 * kAdcClockDivider;
static constexpr int kConversionTime =
kSfcAdder + 1 /* AverageNum */ * (kBct + kLstAdder + kHscAdder);
// Sampling takes 8 ADCK cycles according to
// "33.4.4.5 Sample time and total conversion time". This means we want 0
// (the start of the cycle) to be 4 ADCK cycles into the second of our four
// samples.
const int delay_before_cycle =
(kConversionTime -
4 /* Clocks before middle of sample */ * kAdcClockDivider +
ftm_clock_divider - 1) /
ftm_clock_divider;
const int ftm_delay =
(kConversionTime * 2 /* 2 ADC samples */ + ftm_clock_divider - 1) /
ftm_clock_divider;
*ftm_delays_[0] = counts_per_cycle_ - delay_before_cycle;
*ftm_delays_[1] = ftm_delay - delay_before_cycle;
}
InitializePdbChannel(&PDB0.CH[0]);
InitializePdbChannel(&PDB0.CH[1]);
PDB0.MOD = 1 /* Doesn't matter */;
PDB0.SC = pdb_sc(pdb_input_);
DMAMUX0.CHCFG[result_dma_channel(0)] = M_DMAMUX_ENBL | DMAMUX_SOURCE_ADC0;
DMAMUX0.CHCFG[result_dma_channel(1)] = 0;
DMAMUX0.CHCFG[reconfigure_dma_channel(0)] = 0;
DMAMUX0.CHCFG[reconfigure_dma_channel(1)] = 0;
static constexpr ssize_t kResultABOffset =
static_cast<ssize_t>(offsetof(KINETIS_ADC_t, RB)) -
static_cast<ssize_t>(offsetof(KINETIS_ADC_t, RA));
static_assert(kResultABOffset > 0, "Offset is backwards");
static constexpr ssize_t kResultOffsetBits =
ConstexprLog2(kResultABOffset * 2);
static constexpr ssize_t kSC1ABOffset =
static_cast<ssize_t>(offsetof(KINETIS_ADC_t, SC1B)) -
static_cast<ssize_t>(offsetof(KINETIS_ADC_t, SC1A));
static_assert(kSC1ABOffset > 0, "Offset is backwards");
static constexpr ssize_t kSC1OffsetBits = ConstexprLog2(kSC1ABOffset * 2);
for (int adc = 0; adc < 2; ++adc) {
// Make sure we can actually write to all the fields in the DMA channels.
DMA.CDNE = result_dma_channel(adc);
DMA.CDNE = reconfigure_dma_channel(adc);
DMA.CERQ = result_dma_channel(adc);
DMA.CERQ = reconfigure_dma_channel(adc);
ADC(adc)
->SC2 |= ADC_SC2_ADTRG /* Use hardware triggering */ |
ADC_SC2_DMAEN /* Enable DMA triggers */;
int next_result_channel, next_reconfigure_channel;
if (adc == 0) {
next_result_channel = result_dma_channel(1);
next_reconfigure_channel = reconfigure_dma_channel(1);
} else {
next_result_channel = reconfigure_dma_channel(0);
#if 0
// TODO(Brian): Use this once we're actually doing encoder captures.
next_reconfigure_channel = encoder_value_dma_channel();
#else
next_reconfigure_channel = -1;
#endif
}
result_dma(adc)->SOFF = kResultABOffset;
reconfigure_dma(adc)->SOFF = sizeof(uint32_t);
result_dma(adc)->SADDR = &ADC(adc)->RA;
reconfigure_dma(adc)->SADDR = &adc_sc1s_[adc][2];
result_dma(adc)->ATTR =
V_TCD_SMOD(kResultOffsetBits) | V_TCD_SSIZE(TCD_SIZE_16BIT) |
V_TCD_DMOD(0) /* No DMOD */ | V_TCD_DSIZE(TCD_SIZE_16BIT);
reconfigure_dma(adc)->ATTR =
V_TCD_SMOD(0) /* No SMOD */ | V_TCD_SSIZE(TCD_SIZE_32BIT) |
V_TCD_DMOD(kSC1OffsetBits) | V_TCD_DSIZE(TCD_SIZE_32BIT);
result_dma(adc)->NBYTES = sizeof(uint16_t);
reconfigure_dma(adc)->NBYTES = sizeof(uint32_t);
result_dma(adc)->SLAST = 0;
reconfigure_dma(adc)->SLAST = -(kNumberAdcSamples * sizeof(uint32_t));
result_dma(adc)->DADDR = &adc_results_[adc][0];
reconfigure_dma(adc)->DADDR = &ADC(adc)->SC1A;
result_dma(adc)->DOFF = sizeof(uint16_t);
reconfigure_dma(adc)->DOFF = kSC1ABOffset;
{
uint16_t link = 0;
if (next_result_channel != -1) {
link = M_TCD_ELINK | V_TCD_LINKCH(next_result_channel);
}
result_dma(adc)->CITER = result_dma(adc)->BITER =
link | 4 /* 4 minor iterations */;
}
{
uint16_t link = 0;
if (next_reconfigure_channel != -1) {
link = M_TCD_ELINK | V_TCD_LINKCH(next_reconfigure_channel);
}
reconfigure_dma(adc)->CITER = reconfigure_dma(adc)->BITER =
link | 4 /* 4 minor iterations */;
}
result_dma(adc)->DLASTSGA = -(kNumberAdcSamples * sizeof(uint16_t));
reconfigure_dma(adc)->DLASTSGA = 0;
{
uint16_t link = 0;
if (next_result_channel != -1) {
link = V_TCD_MAJORLINKCH(next_result_channel) | M_TCD_MAJORELINK;
}
result_dma(adc)->CSR =
V_TCD_BWC(0) /* No extra stalls */ | link |
M_TCD_DREQ /* Disable requests after major iteration */;
}
{
uint16_t link = 0;
if (next_reconfigure_channel != -1) {
link = V_TCD_MAJORLINKCH(next_reconfigure_channel) | M_TCD_MAJORELINK;
}
reconfigure_dma(adc)->CSR =
V_TCD_BWC(0) /* No extra stalls */ | link |
M_TCD_DREQ /* Disable requests after major iteration */ |
M_TCD_INTMAJOR;
}
}
}
void AdcDmaSampler::Reset() {
// Disable the PDB. This both prevents weird interference with what we're
// trying to do and is part of the process to clear its internal
// (unobservable) "locks". If we get out of sync, then the DMA won't read from
// the ADC so the ADC's COCO will stay asserted and the PDB will stay "locked"
// on that channel. Disabling then re-enabling the PDB is the easiest way to
// clear that. See "37.4.1 PDB pre-trigger and trigger outputs" in the
// reference manual for details.
PDB0.SC = 0;
// Set the initial ADC sample configs.
for (int adc = 0; adc < 2; ++adc) {
// Tell the DMA it should go again.
DMA.CDNE = result_dma_channel(adc);
DMA.CDNE = reconfigure_dma_channel(adc);
for (int i = 0; i < 2; ++i) {
ADC(adc)->SC1[i] = adc_sc1s_[adc][i];
}
}
// Re-enable the first DMA channel (which is the only one triggered by
// hardware, and disables itself once it's done).
DMA.SERQ = result_dma_channel(0);
// Now re-enable the PDB.
PDB0.SC = pdb_sc(pdb_input_);
// Both channels' S registers are now 0, empirically, regardless of what they
// were before. Reference manual isn't super clear what's supposed to happen.
}
void AdcDmaSampler::InitializePdbChannel(KINETIS_PDB_CHANNEL_t *channel) {
channel->C1 = V_PDB_BB(2) /* Back-to-back enabled for channel 1 */ |
V_PDB_TOS(2) /* Bypass 0, and 1 doesn't matter (?) */ |
V_PDB_EN(3) /* Enable our two */;
}
} // namespace teensy
} // namespace frc971