Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 1 | #!/usr/bin/python |
| 2 | |
Campbell Crowley | 9c3ecfd | 2015-12-31 17:04:30 -0800 | [diff] [blame] | 3 | from frc971.control_loops.python import control_loop |
| 4 | from frc971.control_loops.python import controls |
Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 5 | import numpy |
| 6 | import sys |
| 7 | from matplotlib import pylab |
| 8 | |
Campbell Crowley | 9c3ecfd | 2015-12-31 17:04:30 -0800 | [diff] [blame] | 9 | import glog |
Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 10 | |
Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 11 | |
| 12 | class Drivetrain(control_loop.ControlLoop): |
| 13 | def __init__(self, name="Drivetrain", left_low=True, right_low=True): |
| 14 | super(Drivetrain, self).__init__(name) |
| 15 | # Stall Torque in N m |
| 16 | self.stall_torque = 2.42 |
| 17 | # Stall Current in Amps |
| 18 | self.stall_current = 133.0 |
| 19 | # Free Speed in RPM. Used number from last year. |
| 20 | self.free_speed = 4650.0 |
| 21 | # Free Current in Amps |
| 22 | self.free_current = 2.7 |
| 23 | # Moment of inertia of the drivetrain in kg m^2 |
| 24 | # Just borrowed from last year. |
Austin Schuh | 4c6a84d | 2015-09-14 21:34:08 +0000 | [diff] [blame] | 25 | self.J = 10 |
Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 26 | # Mass of the robot, in kg. |
| 27 | self.m = 68 |
| 28 | # Radius of the robot, in meters (from last year). |
| 29 | self.rb = 0.9603 / 2.0 |
| 30 | # Radius of the wheels, in meters. |
Austin Schuh | 511a67b | 2015-09-12 13:47:12 -0700 | [diff] [blame] | 31 | self.r = 0.0508 |
Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 32 | # Resistance of the motor, divided by the number of motors. |
| 33 | self.R = 12.0 / self.stall_current / 2 |
| 34 | # Motor velocity constant |
| 35 | self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| 36 | (12.0 - self.R * self.free_current)) |
| 37 | # Torque constant |
| 38 | self.Kt = self.stall_torque / self.stall_current |
| 39 | # Gear ratios |
Austin Schuh | 511a67b | 2015-09-12 13:47:12 -0700 | [diff] [blame] | 40 | self.G_const = 18.0 / 44.0 * 18.0 / 60.0 |
Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 41 | |
| 42 | self.G_low = self.G_const |
| 43 | self.G_high = self.G_const |
| 44 | |
| 45 | if left_low: |
| 46 | self.Gl = self.G_low |
| 47 | else: |
| 48 | self.Gl = self.G_high |
| 49 | if right_low: |
| 50 | self.Gr = self.G_low |
| 51 | else: |
| 52 | self.Gr = self.G_high |
| 53 | |
| 54 | # Control loop time step |
| 55 | self.dt = 0.005 |
| 56 | |
| 57 | # These describe the way that a given side of a robot will be influenced |
| 58 | # by the other side. Units of 1 / kg. |
| 59 | self.msp = 1.0 / self.m + self.rb * self.rb / self.J |
| 60 | self.msn = 1.0 / self.m - self.rb * self.rb / self.J |
| 61 | # The calculations which we will need for A and B. |
| 62 | self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.R * self.r * self.r) |
| 63 | self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.R * self.r * self.r) |
| 64 | self.mpl = self.Kt / (self.Gl * self.R * self.r) |
| 65 | self.mpr = self.Kt / (self.Gr * self.R * self.r) |
| 66 | |
| 67 | # State feedback matrices |
| 68 | # X will be of the format |
| 69 | # [[positionl], [velocityl], [positionr], velocityr]] |
| 70 | self.A_continuous = numpy.matrix( |
| 71 | [[0, 1, 0, 0], |
| 72 | [0, self.msp * self.tcl, 0, self.msn * self.tcr], |
| 73 | [0, 0, 0, 1], |
| 74 | [0, self.msn * self.tcl, 0, self.msp * self.tcr]]) |
| 75 | self.B_continuous = numpy.matrix( |
| 76 | [[0, 0], |
| 77 | [self.msp * self.mpl, self.msn * self.mpr], |
| 78 | [0, 0], |
| 79 | [self.msn * self.mpl, self.msp * self.mpr]]) |
| 80 | self.C = numpy.matrix([[1, 0, 0, 0], |
| 81 | [0, 0, 1, 0]]) |
| 82 | self.D = numpy.matrix([[0, 0], |
| 83 | [0, 0]]) |
| 84 | |
Campbell Crowley | 9c3ecfd | 2015-12-31 17:04:30 -0800 | [diff] [blame] | 85 | #glog.debug('THE NUMBER I WANT %s', str(numpy.linalg.inv(self.A_continuous) * -self.B_continuous * numpy.matrix([[12.0], [12.0]]))) |
Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 86 | self.A, self.B = self.ContinuousToDiscrete( |
| 87 | self.A_continuous, self.B_continuous, self.dt) |
| 88 | |
| 89 | # Poles from last year. |
| 90 | self.hp = 0.65 |
| 91 | self.lp = 0.83 |
| 92 | self.PlaceControllerPoles([self.hp, self.lp, self.hp, self.lp]) |
Campbell Crowley | 9c3ecfd | 2015-12-31 17:04:30 -0800 | [diff] [blame] | 93 | glog.info('K %s', str(self.K)) |
Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 94 | q_pos = 0.07 |
| 95 | q_vel = 1.0 |
| 96 | self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0], |
| 97 | [0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0], |
| 98 | [0.0, 0.0, (1.0 / (q_pos ** 2.0)), 0.0], |
| 99 | [0.0, 0.0, 0.0, (1.0 / (q_vel ** 2.0))]]) |
| 100 | |
| 101 | self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0], |
| 102 | [0.0, (1.0 / (12.0 ** 2.0))]]) |
| 103 | self.K = controls.dlqr(self.A, self.B, self.Q, self.R) |
Campbell Crowley | 9c3ecfd | 2015-12-31 17:04:30 -0800 | [diff] [blame] | 104 | glog.info('A %s', str(self.A)) |
| 105 | glog.info('B %s', str(self.B)) |
| 106 | glog.info('K %s', str(self.K)) |
| 107 | glog.info('Poles are %s', str(numpy.linalg.eig(self.A - self.B * self.K)[0])) |
Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 108 | |
| 109 | self.hlp = 0.3 |
| 110 | self.llp = 0.4 |
| 111 | self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp]) |
| 112 | |
| 113 | self.U_max = numpy.matrix([[12.0], [12.0]]) |
| 114 | self.U_min = numpy.matrix([[-12.0], [-12.0]]) |
| 115 | self.InitializeState() |
| 116 | |
| 117 | def main(argv): |
| 118 | # Simulate the response of the system to a step input. |
| 119 | drivetrain = Drivetrain() |
| 120 | simulated_left = [] |
| 121 | simulated_right = [] |
| 122 | for _ in xrange(100): |
| 123 | drivetrain.Update(numpy.matrix([[12.0], [12.0]])) |
| 124 | simulated_left.append(drivetrain.X[0, 0]) |
| 125 | simulated_right.append(drivetrain.X[2, 0]) |
| 126 | |
| 127 | #pylab.plot(range(100), simulated_left) |
| 128 | #pylab.plot(range(100), simulated_right) |
| 129 | #pylab.show() |
| 130 | |
| 131 | # Simulate forwards motion. |
| 132 | drivetrain = Drivetrain() |
| 133 | close_loop_left = [] |
| 134 | close_loop_right = [] |
| 135 | R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]]) |
| 136 | for _ in xrange(100): |
| 137 | U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), |
| 138 | drivetrain.U_min, drivetrain.U_max) |
| 139 | drivetrain.UpdateObserver(U) |
| 140 | drivetrain.Update(U) |
| 141 | close_loop_left.append(drivetrain.X[0, 0]) |
| 142 | close_loop_right.append(drivetrain.X[2, 0]) |
| 143 | |
| 144 | #pylab.plot(range(100), close_loop_left) |
| 145 | #pylab.plot(range(100), close_loop_right) |
| 146 | #pylab.show() |
| 147 | |
| 148 | # Try turning in place |
| 149 | drivetrain = Drivetrain() |
| 150 | close_loop_left = [] |
| 151 | close_loop_right = [] |
| 152 | R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]]) |
| 153 | for _ in xrange(100): |
| 154 | U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), |
| 155 | drivetrain.U_min, drivetrain.U_max) |
| 156 | drivetrain.UpdateObserver(U) |
| 157 | drivetrain.Update(U) |
| 158 | close_loop_left.append(drivetrain.X[0, 0]) |
| 159 | close_loop_right.append(drivetrain.X[2, 0]) |
| 160 | |
| 161 | #pylab.plot(range(100), close_loop_left) |
| 162 | #pylab.plot(range(100), close_loop_right) |
| 163 | #pylab.show() |
| 164 | |
| 165 | # Try turning just one side. |
| 166 | drivetrain = Drivetrain() |
| 167 | close_loop_left = [] |
| 168 | close_loop_right = [] |
| 169 | R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]]) |
| 170 | for _ in xrange(100): |
| 171 | U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), |
| 172 | drivetrain.U_min, drivetrain.U_max) |
| 173 | drivetrain.UpdateObserver(U) |
| 174 | drivetrain.Update(U) |
| 175 | close_loop_left.append(drivetrain.X[0, 0]) |
| 176 | close_loop_right.append(drivetrain.X[2, 0]) |
| 177 | |
| 178 | #pylab.plot(range(100), close_loop_left) |
| 179 | #pylab.plot(range(100), close_loop_right) |
| 180 | #pylab.show() |
| 181 | |
| 182 | # Write the generated constants out to a file. |
Campbell Crowley | 9c3ecfd | 2015-12-31 17:04:30 -0800 | [diff] [blame] | 183 | glog.info('Output one') |
Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 184 | drivetrain_low_low = Drivetrain(name="DrivetrainLowLow", left_low=True, right_low=True) |
| 185 | drivetrain_low_high = Drivetrain(name="DrivetrainLowHigh", left_low=True, right_low=False) |
| 186 | drivetrain_high_low = Drivetrain(name="DrivetrainHighLow", left_low=False, right_low=True) |
| 187 | drivetrain_high_high = Drivetrain(name="DrivetrainHighHigh", left_low=False, right_low=False) |
| 188 | |
Campbell Crowley | 9c3ecfd | 2015-12-31 17:04:30 -0800 | [diff] [blame] | 189 | if len(argv) != 3: |
| 190 | glog.fatal('Expected .h file name and .cc file name %s', str(len(argv))) |
Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 191 | else: |
| 192 | dog_loop_writer = control_loop.ControlLoopWriter( |
| 193 | "Drivetrain", [drivetrain_low_low, drivetrain_low_high, |
Jasmine Zhou | dde7a77 | 2015-09-11 23:08:52 -0700 | [diff] [blame] | 194 | drivetrain_high_low, drivetrain_high_high], |
Campbell Crowley | 9c3ecfd | 2015-12-31 17:04:30 -0800 | [diff] [blame] | 195 | namespaces=['y2015_bot3', 'control_loops', 'drivetrain']) |
| 196 | dog_loop_writer.Write(argv[1], argv[2]) |
Comran Morshed | 0d6cf9b | 2015-06-17 19:29:57 +0000 | [diff] [blame] | 197 | |
| 198 | if __name__ == '__main__': |
| 199 | sys.exit(main(sys.argv)) |