Brian Silverman | 9c614bc | 2016-02-15 20:20:02 -0500 | [diff] [blame^] | 1 | // Protocol Buffers - Google's data interchange format |
| 2 | // Copyright 2008 Google Inc. All rights reserved. |
| 3 | // https://developers.google.com/protocol-buffers/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are |
| 7 | // met: |
| 8 | // |
| 9 | // * Redistributions of source code must retain the above copyright |
| 10 | // notice, this list of conditions and the following disclaimer. |
| 11 | // * Redistributions in binary form must reproduce the above |
| 12 | // copyright notice, this list of conditions and the following disclaimer |
| 13 | // in the documentation and/or other materials provided with the |
| 14 | // distribution. |
| 15 | // * Neither the name of Google Inc. nor the names of its |
| 16 | // contributors may be used to endorse or promote products derived from |
| 17 | // this software without specific prior written permission. |
| 18 | // |
| 19 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 20 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 21 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 22 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 23 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 24 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 25 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 26 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 27 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 28 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 29 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 30 | |
| 31 | #include <google/protobuf/util/time_util.h> |
| 32 | |
| 33 | #include <google/protobuf/stubs/time.h> |
| 34 | #include <google/protobuf/stubs/int128.h> |
| 35 | #include <google/protobuf/stubs/strutil.h> |
| 36 | #include <google/protobuf/stubs/stringprintf.h> |
| 37 | #include <google/protobuf/duration.pb.h> |
| 38 | #include <google/protobuf/timestamp.pb.h> |
| 39 | |
| 40 | namespace google { |
| 41 | namespace protobuf { |
| 42 | namespace util { |
| 43 | |
| 44 | using google::protobuf::Timestamp; |
| 45 | using google::protobuf::Duration; |
| 46 | |
| 47 | namespace { |
| 48 | static const int kNanosPerSecond = 1000000000; |
| 49 | static const int kMicrosPerSecond = 1000000; |
| 50 | static const int kMillisPerSecond = 1000; |
| 51 | static const int kNanosPerMillisecond = 1000000; |
| 52 | static const int kMicrosPerMillisecond = 1000; |
| 53 | static const int kNanosPerMicrosecond = 1000; |
| 54 | static const int kSecondsPerMinute = 60; // Note that we ignore leap seconds. |
| 55 | static const int kSecondsPerHour = 3600; |
| 56 | static const char kTimestampFormat[] = "%E4Y-%m-%dT%H:%M:%S"; |
| 57 | |
| 58 | template <typename T> |
| 59 | T CreateNormalized(int64 seconds, int64 nanos); |
| 60 | |
| 61 | template <> |
| 62 | Timestamp CreateNormalized(int64 seconds, int64 nanos) { |
| 63 | // Make sure nanos is in the range. |
| 64 | if (nanos <= -kNanosPerSecond || nanos >= kNanosPerSecond) { |
| 65 | seconds += nanos / kNanosPerSecond; |
| 66 | nanos = nanos % kNanosPerSecond; |
| 67 | } |
| 68 | // For Timestamp nanos should be in the range [0, 999999999] |
| 69 | if (nanos < 0) { |
| 70 | seconds -= 1; |
| 71 | nanos += kNanosPerSecond; |
| 72 | } |
| 73 | GOOGLE_DCHECK(seconds >= TimeUtil::kTimestampMinSeconds && |
| 74 | seconds <= TimeUtil::kTimestampMaxSeconds); |
| 75 | Timestamp result; |
| 76 | result.set_seconds(seconds); |
| 77 | result.set_nanos(static_cast<int32>(nanos)); |
| 78 | return result; |
| 79 | } |
| 80 | |
| 81 | template <> |
| 82 | Duration CreateNormalized(int64 seconds, int64 nanos) { |
| 83 | // Make sure nanos is in the range. |
| 84 | if (nanos <= -kNanosPerSecond || nanos >= kNanosPerSecond) { |
| 85 | seconds += nanos / kNanosPerSecond; |
| 86 | nanos = nanos % kNanosPerSecond; |
| 87 | } |
| 88 | // nanos should have the same sign as seconds. |
| 89 | if (seconds < 0 && nanos > 0) { |
| 90 | seconds += 1; |
| 91 | nanos -= kNanosPerSecond; |
| 92 | } else if (seconds > 0 && nanos < 0) { |
| 93 | seconds -= 1; |
| 94 | nanos += kNanosPerSecond; |
| 95 | } |
| 96 | GOOGLE_DCHECK(seconds >= TimeUtil::kDurationMinSeconds && |
| 97 | seconds <= TimeUtil::kDurationMaxSeconds); |
| 98 | Duration result; |
| 99 | result.set_seconds(seconds); |
| 100 | result.set_nanos(static_cast<int32>(nanos)); |
| 101 | return result; |
| 102 | } |
| 103 | |
| 104 | // Format nanoseconds with either 3, 6, or 9 digits depending on the required |
| 105 | // precision to represent the exact value. |
| 106 | string FormatNanos(int32 nanos) { |
| 107 | if (nanos % kNanosPerMillisecond == 0) { |
| 108 | return StringPrintf("%03d", nanos / kNanosPerMillisecond); |
| 109 | } else if (nanos % kNanosPerMicrosecond == 0) { |
| 110 | return StringPrintf("%06d", nanos / kNanosPerMicrosecond); |
| 111 | } else { |
| 112 | return StringPrintf("%09d", nanos); |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | string FormatTime(int64 seconds, int32 nanos) { |
| 117 | return ::google::protobuf::internal::FormatTime(seconds, nanos); |
| 118 | } |
| 119 | |
| 120 | bool ParseTime(const string& value, int64* seconds, int32* nanos) { |
| 121 | return ::google::protobuf::internal::ParseTime(value, seconds, nanos); |
| 122 | } |
| 123 | |
| 124 | void CurrentTime(int64* seconds, int32* nanos) { |
| 125 | return ::google::protobuf::internal::GetCurrentTime(seconds, nanos); |
| 126 | } |
| 127 | |
| 128 | // Truncates the remainder part after division. |
| 129 | int64 RoundTowardZero(int64 value, int64 divider) { |
| 130 | int64 result = value / divider; |
| 131 | int64 remainder = value % divider; |
| 132 | // Before C++11, the sign of the remainder is implementation dependent if |
| 133 | // any of the operands is negative. Here we try to enforce C++11's "rounded |
| 134 | // toward zero" semantics. For example, for (-5) / 2 an implementation may |
| 135 | // give -3 as the result with the remainder being 1. This function ensures |
| 136 | // we always return -2 (closer to zero) regardless of the implementation. |
| 137 | if (result < 0 && remainder > 0) { |
| 138 | return result + 1; |
| 139 | } else { |
| 140 | return result; |
| 141 | } |
| 142 | } |
| 143 | } // namespace |
| 144 | |
| 145 | string TimeUtil::ToString(const Timestamp& timestamp) { |
| 146 | return FormatTime(timestamp.seconds(), timestamp.nanos()); |
| 147 | } |
| 148 | |
| 149 | bool TimeUtil::FromString(const string& value, Timestamp* timestamp) { |
| 150 | int64 seconds; |
| 151 | int32 nanos; |
| 152 | if (!ParseTime(value, &seconds, &nanos)) { |
| 153 | return false; |
| 154 | } |
| 155 | *timestamp = CreateNormalized<Timestamp>(seconds, nanos); |
| 156 | return true; |
| 157 | } |
| 158 | |
| 159 | Timestamp TimeUtil::GetCurrentTime() { |
| 160 | int64 seconds; |
| 161 | int32 nanos; |
| 162 | CurrentTime(&seconds, &nanos); |
| 163 | return CreateNormalized<Timestamp>(seconds, nanos); |
| 164 | } |
| 165 | |
| 166 | Timestamp TimeUtil::GetEpoch() { return Timestamp(); } |
| 167 | |
| 168 | string TimeUtil::ToString(const Duration& duration) { |
| 169 | string result; |
| 170 | int64 seconds = duration.seconds(); |
| 171 | int32 nanos = duration.nanos(); |
| 172 | if (seconds < 0 || nanos < 0) { |
| 173 | result += "-"; |
| 174 | seconds = -seconds; |
| 175 | nanos = -nanos; |
| 176 | } |
| 177 | result += StringPrintf("%" GOOGLE_LL_FORMAT "d", seconds); |
| 178 | if (nanos != 0) { |
| 179 | result += "." + FormatNanos(nanos); |
| 180 | } |
| 181 | result += "s"; |
| 182 | return result; |
| 183 | } |
| 184 | |
| 185 | static int64 Pow(int64 x, int y) { |
| 186 | int64 result = 1; |
| 187 | for (int i = 0; i < y; ++i) { |
| 188 | result *= x; |
| 189 | } |
| 190 | return result; |
| 191 | } |
| 192 | |
| 193 | bool TimeUtil::FromString(const string& value, Duration* duration) { |
| 194 | if (value.length() <= 1 || value[value.length() - 1] != 's') { |
| 195 | return false; |
| 196 | } |
| 197 | bool negative = (value[0] == '-'); |
| 198 | int sign_length = (negative ? 1 : 0); |
| 199 | // Parse the duration value as two integers rather than a float value |
| 200 | // to avoid precision loss. |
| 201 | string seconds_part, nanos_part; |
| 202 | size_t pos = value.find_last_of("."); |
| 203 | if (pos == string::npos) { |
| 204 | seconds_part = value.substr(sign_length, value.length() - 1 - sign_length); |
| 205 | nanos_part = "0"; |
| 206 | } else { |
| 207 | seconds_part = value.substr(sign_length, pos - sign_length); |
| 208 | nanos_part = value.substr(pos + 1, value.length() - pos - 2); |
| 209 | } |
| 210 | char* end; |
| 211 | int64 seconds = strto64(seconds_part.c_str(), &end, 10); |
| 212 | if (end != seconds_part.c_str() + seconds_part.length()) { |
| 213 | return false; |
| 214 | } |
| 215 | int64 nanos = strto64(nanos_part.c_str(), &end, 10); |
| 216 | if (end != nanos_part.c_str() + nanos_part.length()) { |
| 217 | return false; |
| 218 | } |
| 219 | nanos = nanos * Pow(10, 9 - nanos_part.length()); |
| 220 | if (negative) { |
| 221 | // If a Duration is negative, both seconds and nanos should be negative. |
| 222 | seconds = -seconds; |
| 223 | nanos = -nanos; |
| 224 | } |
| 225 | duration->set_seconds(seconds); |
| 226 | duration->set_nanos(static_cast<int32>(nanos)); |
| 227 | return true; |
| 228 | } |
| 229 | |
| 230 | Duration TimeUtil::NanosecondsToDuration(int64 nanos) { |
| 231 | return CreateNormalized<Duration>(nanos / kNanosPerSecond, |
| 232 | nanos % kNanosPerSecond); |
| 233 | } |
| 234 | |
| 235 | Duration TimeUtil::MicrosecondsToDuration(int64 micros) { |
| 236 | return CreateNormalized<Duration>( |
| 237 | micros / kMicrosPerSecond, |
| 238 | (micros % kMicrosPerSecond) * kNanosPerMicrosecond); |
| 239 | } |
| 240 | |
| 241 | Duration TimeUtil::MillisecondsToDuration(int64 millis) { |
| 242 | return CreateNormalized<Duration>( |
| 243 | millis / kMillisPerSecond, |
| 244 | (millis % kMillisPerSecond) * kNanosPerMillisecond); |
| 245 | } |
| 246 | |
| 247 | Duration TimeUtil::SecondsToDuration(int64 seconds) { |
| 248 | return CreateNormalized<Duration>(seconds, 0); |
| 249 | } |
| 250 | |
| 251 | Duration TimeUtil::MinutesToDuration(int64 minutes) { |
| 252 | return CreateNormalized<Duration>(minutes * kSecondsPerMinute, 0); |
| 253 | } |
| 254 | |
| 255 | Duration TimeUtil::HoursToDuration(int64 hours) { |
| 256 | return CreateNormalized<Duration>(hours * kSecondsPerHour, 0); |
| 257 | } |
| 258 | |
| 259 | int64 TimeUtil::DurationToNanoseconds(const Duration& duration) { |
| 260 | return duration.seconds() * kNanosPerSecond + duration.nanos(); |
| 261 | } |
| 262 | |
| 263 | int64 TimeUtil::DurationToMicroseconds(const Duration& duration) { |
| 264 | return duration.seconds() * kMicrosPerSecond + |
| 265 | RoundTowardZero(duration.nanos(), kNanosPerMicrosecond); |
| 266 | } |
| 267 | |
| 268 | int64 TimeUtil::DurationToMilliseconds(const Duration& duration) { |
| 269 | return duration.seconds() * kMillisPerSecond + |
| 270 | RoundTowardZero(duration.nanos(), kNanosPerMillisecond); |
| 271 | } |
| 272 | |
| 273 | int64 TimeUtil::DurationToSeconds(const Duration& duration) { |
| 274 | return duration.seconds(); |
| 275 | } |
| 276 | |
| 277 | int64 TimeUtil::DurationToMinutes(const Duration& duration) { |
| 278 | return RoundTowardZero(duration.seconds(), kSecondsPerMinute); |
| 279 | } |
| 280 | |
| 281 | int64 TimeUtil::DurationToHours(const Duration& duration) { |
| 282 | return RoundTowardZero(duration.seconds(), kSecondsPerHour); |
| 283 | } |
| 284 | |
| 285 | Timestamp TimeUtil::NanosecondsToTimestamp(int64 nanos) { |
| 286 | return CreateNormalized<Timestamp>(nanos / kNanosPerSecond, |
| 287 | nanos % kNanosPerSecond); |
| 288 | } |
| 289 | |
| 290 | Timestamp TimeUtil::MicrosecondsToTimestamp(int64 micros) { |
| 291 | return CreateNormalized<Timestamp>( |
| 292 | micros / kMicrosPerSecond, |
| 293 | micros % kMicrosPerSecond * kNanosPerMicrosecond); |
| 294 | } |
| 295 | |
| 296 | Timestamp TimeUtil::MillisecondsToTimestamp(int64 millis) { |
| 297 | return CreateNormalized<Timestamp>( |
| 298 | millis / kMillisPerSecond, |
| 299 | millis % kMillisPerSecond * kNanosPerMillisecond); |
| 300 | } |
| 301 | |
| 302 | Timestamp TimeUtil::SecondsToTimestamp(int64 seconds) { |
| 303 | return CreateNormalized<Timestamp>(seconds, 0); |
| 304 | } |
| 305 | |
| 306 | int64 TimeUtil::TimestampToNanoseconds(const Timestamp& timestamp) { |
| 307 | return timestamp.seconds() * kNanosPerSecond + timestamp.nanos(); |
| 308 | } |
| 309 | |
| 310 | int64 TimeUtil::TimestampToMicroseconds(const Timestamp& timestamp) { |
| 311 | return timestamp.seconds() * kMicrosPerSecond + |
| 312 | RoundTowardZero(timestamp.nanos(), kNanosPerMicrosecond); |
| 313 | } |
| 314 | |
| 315 | int64 TimeUtil::TimestampToMilliseconds(const Timestamp& timestamp) { |
| 316 | return timestamp.seconds() * kMillisPerSecond + |
| 317 | RoundTowardZero(timestamp.nanos(), kNanosPerMillisecond); |
| 318 | } |
| 319 | |
| 320 | int64 TimeUtil::TimestampToSeconds(const Timestamp& timestamp) { |
| 321 | return timestamp.seconds(); |
| 322 | } |
| 323 | |
| 324 | Timestamp TimeUtil::TimeTToTimestamp(time_t value) { |
| 325 | return CreateNormalized<Timestamp>(static_cast<int64>(value), 0); |
| 326 | } |
| 327 | |
| 328 | time_t TimeUtil::TimestampToTimeT(const Timestamp& value) { |
| 329 | return static_cast<time_t>(value.seconds()); |
| 330 | } |
| 331 | |
| 332 | Timestamp TimeUtil::TimevalToTimestamp(const timeval& value) { |
| 333 | return CreateNormalized<Timestamp>(value.tv_sec, |
| 334 | value.tv_usec * kNanosPerMicrosecond); |
| 335 | } |
| 336 | |
| 337 | timeval TimeUtil::TimestampToTimeval(const Timestamp& value) { |
| 338 | timeval result; |
| 339 | result.tv_sec = value.seconds(); |
| 340 | result.tv_usec = RoundTowardZero(value.nanos(), kNanosPerMicrosecond); |
| 341 | return result; |
| 342 | } |
| 343 | |
| 344 | Duration TimeUtil::TimevalToDuration(const timeval& value) { |
| 345 | return CreateNormalized<Duration>(value.tv_sec, |
| 346 | value.tv_usec * kNanosPerMicrosecond); |
| 347 | } |
| 348 | |
| 349 | timeval TimeUtil::DurationToTimeval(const Duration& value) { |
| 350 | timeval result; |
| 351 | result.tv_sec = value.seconds(); |
| 352 | result.tv_usec = RoundTowardZero(value.nanos(), kNanosPerMicrosecond); |
| 353 | // timeval.tv_usec's range is [0, 1000000) |
| 354 | if (result.tv_usec < 0) { |
| 355 | result.tv_sec -= 1; |
| 356 | result.tv_usec += kMicrosPerSecond; |
| 357 | } |
| 358 | return result; |
| 359 | } |
| 360 | |
| 361 | } // namespace util |
| 362 | } // namespace protobuf |
| 363 | |
| 364 | |
| 365 | namespace protobuf { |
| 366 | namespace { |
| 367 | using google::protobuf::util::kNanosPerSecond; |
| 368 | using google::protobuf::util::CreateNormalized; |
| 369 | |
| 370 | // Convert a Timestamp to uint128. |
| 371 | void ToUint128(const Timestamp& value, uint128* result, bool* negative) { |
| 372 | if (value.seconds() < 0) { |
| 373 | *negative = true; |
| 374 | *result = static_cast<uint64>(-value.seconds()); |
| 375 | *result = *result * kNanosPerSecond - static_cast<uint32>(value.nanos()); |
| 376 | } else { |
| 377 | *negative = false; |
| 378 | *result = static_cast<uint64>(value.seconds()); |
| 379 | *result = *result * kNanosPerSecond + static_cast<uint32>(value.nanos()); |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | // Convert a Duration to uint128. |
| 384 | void ToUint128(const Duration& value, uint128* result, bool* negative) { |
| 385 | if (value.seconds() < 0 || value.nanos() < 0) { |
| 386 | *negative = true; |
| 387 | *result = static_cast<uint64>(-value.seconds()); |
| 388 | *result = *result * kNanosPerSecond + static_cast<uint32>(-value.nanos()); |
| 389 | } else { |
| 390 | *negative = false; |
| 391 | *result = static_cast<uint64>(value.seconds()); |
| 392 | *result = *result * kNanosPerSecond + static_cast<uint32>(value.nanos()); |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | void ToTimestamp(const uint128& value, bool negative, Timestamp* timestamp) { |
| 397 | int64 seconds = static_cast<int64>(Uint128Low64(value / kNanosPerSecond)); |
| 398 | int32 nanos = static_cast<int32>(Uint128Low64(value % kNanosPerSecond)); |
| 399 | if (negative) { |
| 400 | seconds = -seconds; |
| 401 | nanos = -nanos; |
| 402 | if (nanos < 0) { |
| 403 | nanos += kNanosPerSecond; |
| 404 | seconds -= 1; |
| 405 | } |
| 406 | } |
| 407 | timestamp->set_seconds(seconds); |
| 408 | timestamp->set_nanos(nanos); |
| 409 | } |
| 410 | |
| 411 | void ToDuration(const uint128& value, bool negative, Duration* duration) { |
| 412 | int64 seconds = static_cast<int64>(Uint128Low64(value / kNanosPerSecond)); |
| 413 | int32 nanos = static_cast<int32>(Uint128Low64(value % kNanosPerSecond)); |
| 414 | if (negative) { |
| 415 | seconds = -seconds; |
| 416 | nanos = -nanos; |
| 417 | } |
| 418 | duration->set_seconds(seconds); |
| 419 | duration->set_nanos(nanos); |
| 420 | } |
| 421 | } // namespace |
| 422 | |
| 423 | Duration& operator+=(Duration& d1, const Duration& d2) { |
| 424 | d1 = CreateNormalized<Duration>(d1.seconds() + d2.seconds(), |
| 425 | d1.nanos() + d2.nanos()); |
| 426 | return d1; |
| 427 | } |
| 428 | |
| 429 | Duration& operator-=(Duration& d1, const Duration& d2) { // NOLINT |
| 430 | d1 = CreateNormalized<Duration>(d1.seconds() - d2.seconds(), |
| 431 | d1.nanos() - d2.nanos()); |
| 432 | return d1; |
| 433 | } |
| 434 | |
| 435 | Duration& operator*=(Duration& d, int64 r) { // NOLINT |
| 436 | bool negative; |
| 437 | uint128 value; |
| 438 | ToUint128(d, &value, &negative); |
| 439 | if (r > 0) { |
| 440 | value *= static_cast<uint64>(r); |
| 441 | } else { |
| 442 | negative = !negative; |
| 443 | value *= static_cast<uint64>(-r); |
| 444 | } |
| 445 | ToDuration(value, negative, &d); |
| 446 | return d; |
| 447 | } |
| 448 | |
| 449 | Duration& operator*=(Duration& d, double r) { // NOLINT |
| 450 | double result = (d.seconds() * 1.0 + 1.0 * d.nanos() / kNanosPerSecond) * r; |
| 451 | int64 seconds = static_cast<int64>(result); |
| 452 | int32 nanos = static_cast<int32>((result - seconds) * kNanosPerSecond); |
| 453 | // Note that we normalize here not just because nanos can have a different |
| 454 | // sign from seconds but also that nanos can be any arbitrary value when |
| 455 | // overflow happens (i.e., the result is a much larger value than what |
| 456 | // int64 can represent). |
| 457 | d = CreateNormalized<Duration>(seconds, nanos); |
| 458 | return d; |
| 459 | } |
| 460 | |
| 461 | Duration& operator/=(Duration& d, int64 r) { // NOLINT |
| 462 | bool negative; |
| 463 | uint128 value; |
| 464 | ToUint128(d, &value, &negative); |
| 465 | if (r > 0) { |
| 466 | value /= static_cast<uint64>(r); |
| 467 | } else { |
| 468 | negative = !negative; |
| 469 | value /= static_cast<uint64>(-r); |
| 470 | } |
| 471 | ToDuration(value, negative, &d); |
| 472 | return d; |
| 473 | } |
| 474 | |
| 475 | Duration& operator/=(Duration& d, double r) { // NOLINT |
| 476 | return d *= 1.0 / r; |
| 477 | } |
| 478 | |
| 479 | Duration& operator%=(Duration& d1, const Duration& d2) { // NOLINT |
| 480 | bool negative1, negative2; |
| 481 | uint128 value1, value2; |
| 482 | ToUint128(d1, &value1, &negative1); |
| 483 | ToUint128(d2, &value2, &negative2); |
| 484 | uint128 result = value1 % value2; |
| 485 | // When negative values are involved in division, we round the division |
| 486 | // result towards zero. With this semantics, sign of the remainder is the |
| 487 | // same as the dividend. For example: |
| 488 | // -5 / 10 = 0, -5 % 10 = -5 |
| 489 | // -5 / (-10) = 0, -5 % (-10) = -5 |
| 490 | // 5 / (-10) = 0, 5 % (-10) = 5 |
| 491 | ToDuration(result, negative1, &d1); |
| 492 | return d1; |
| 493 | } |
| 494 | |
| 495 | int64 operator/(const Duration& d1, const Duration& d2) { |
| 496 | bool negative1, negative2; |
| 497 | uint128 value1, value2; |
| 498 | ToUint128(d1, &value1, &negative1); |
| 499 | ToUint128(d2, &value2, &negative2); |
| 500 | int64 result = Uint128Low64(value1 / value2); |
| 501 | if (negative1 != negative2) { |
| 502 | result = -result; |
| 503 | } |
| 504 | return result; |
| 505 | } |
| 506 | |
| 507 | Timestamp& operator+=(Timestamp& t, const Duration& d) { // NOLINT |
| 508 | t = CreateNormalized<Timestamp>(t.seconds() + d.seconds(), |
| 509 | t.nanos() + d.nanos()); |
| 510 | return t; |
| 511 | } |
| 512 | |
| 513 | Timestamp& operator-=(Timestamp& t, const Duration& d) { // NOLINT |
| 514 | t = CreateNormalized<Timestamp>(t.seconds() - d.seconds(), |
| 515 | t.nanos() - d.nanos()); |
| 516 | return t; |
| 517 | } |
| 518 | |
| 519 | Duration operator-(const Timestamp& t1, const Timestamp& t2) { |
| 520 | return CreateNormalized<Duration>(t1.seconds() - t2.seconds(), |
| 521 | t1.nanos() - t2.nanos()); |
| 522 | } |
| 523 | } // namespace protobuf |
| 524 | |
| 525 | } // namespace google |