Squashed 'third_party/protobuf/' content from commit e35e248

Change-Id: I6cbe123d09fe50fdcad0e51466665daeee7433c7
git-subtree-dir: third_party/protobuf
git-subtree-split: e35e24800fb8d694bdeea5fd63dc7d1b14d68723
diff --git a/src/google/protobuf/util/time_util.cc b/src/google/protobuf/util/time_util.cc
new file mode 100644
index 0000000..c782d69
--- /dev/null
+++ b/src/google/protobuf/util/time_util.cc
@@ -0,0 +1,525 @@
+// Protocol Buffers - Google's data interchange format
+// Copyright 2008 Google Inc.  All rights reserved.
+// https://developers.google.com/protocol-buffers/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+//     * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+//     * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+//     * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include <google/protobuf/util/time_util.h>
+
+#include <google/protobuf/stubs/time.h>
+#include <google/protobuf/stubs/int128.h>
+#include <google/protobuf/stubs/strutil.h>
+#include <google/protobuf/stubs/stringprintf.h>
+#include <google/protobuf/duration.pb.h>
+#include <google/protobuf/timestamp.pb.h>
+
+namespace google {
+namespace protobuf {
+namespace util {
+
+using google::protobuf::Timestamp;
+using google::protobuf::Duration;
+
+namespace {
+static const int kNanosPerSecond = 1000000000;
+static const int kMicrosPerSecond = 1000000;
+static const int kMillisPerSecond = 1000;
+static const int kNanosPerMillisecond = 1000000;
+static const int kMicrosPerMillisecond = 1000;
+static const int kNanosPerMicrosecond = 1000;
+static const int kSecondsPerMinute = 60;  // Note that we ignore leap seconds.
+static const int kSecondsPerHour = 3600;
+static const char kTimestampFormat[] = "%E4Y-%m-%dT%H:%M:%S";
+
+template <typename T>
+T CreateNormalized(int64 seconds, int64 nanos);
+
+template <>
+Timestamp CreateNormalized(int64 seconds, int64 nanos) {
+  // Make sure nanos is in the range.
+  if (nanos <= -kNanosPerSecond || nanos >= kNanosPerSecond) {
+    seconds += nanos / kNanosPerSecond;
+    nanos = nanos % kNanosPerSecond;
+  }
+  // For Timestamp nanos should be in the range [0, 999999999]
+  if (nanos < 0) {
+    seconds -= 1;
+    nanos += kNanosPerSecond;
+  }
+  GOOGLE_DCHECK(seconds >= TimeUtil::kTimestampMinSeconds &&
+         seconds <= TimeUtil::kTimestampMaxSeconds);
+  Timestamp result;
+  result.set_seconds(seconds);
+  result.set_nanos(static_cast<int32>(nanos));
+  return result;
+}
+
+template <>
+Duration CreateNormalized(int64 seconds, int64 nanos) {
+  // Make sure nanos is in the range.
+  if (nanos <= -kNanosPerSecond || nanos >= kNanosPerSecond) {
+    seconds += nanos / kNanosPerSecond;
+    nanos = nanos % kNanosPerSecond;
+  }
+  // nanos should have the same sign as seconds.
+  if (seconds < 0 && nanos > 0) {
+    seconds += 1;
+    nanos -= kNanosPerSecond;
+  } else if (seconds > 0 && nanos < 0) {
+    seconds -= 1;
+    nanos += kNanosPerSecond;
+  }
+  GOOGLE_DCHECK(seconds >= TimeUtil::kDurationMinSeconds &&
+         seconds <= TimeUtil::kDurationMaxSeconds);
+  Duration result;
+  result.set_seconds(seconds);
+  result.set_nanos(static_cast<int32>(nanos));
+  return result;
+}
+
+// Format nanoseconds with either 3, 6, or 9 digits depending on the required
+// precision to represent the exact value.
+string FormatNanos(int32 nanos) {
+  if (nanos % kNanosPerMillisecond == 0) {
+    return StringPrintf("%03d", nanos / kNanosPerMillisecond);
+  } else if (nanos % kNanosPerMicrosecond == 0) {
+    return StringPrintf("%06d", nanos / kNanosPerMicrosecond);
+  } else {
+    return StringPrintf("%09d", nanos);
+  }
+}
+
+string FormatTime(int64 seconds, int32 nanos) {
+  return ::google::protobuf::internal::FormatTime(seconds, nanos);
+}
+
+bool ParseTime(const string& value, int64* seconds, int32* nanos) {
+  return ::google::protobuf::internal::ParseTime(value, seconds, nanos);
+}
+
+void CurrentTime(int64* seconds, int32* nanos) {
+  return ::google::protobuf::internal::GetCurrentTime(seconds, nanos);
+}
+
+// Truncates the remainder part after division.
+int64 RoundTowardZero(int64 value, int64 divider) {
+  int64 result = value / divider;
+  int64 remainder = value % divider;
+  // Before C++11, the sign of the remainder is implementation dependent if
+  // any of the operands is negative. Here we try to enforce C++11's "rounded
+  // toward zero" semantics. For example, for (-5) / 2 an implementation may
+  // give -3 as the result with the remainder being 1. This function ensures
+  // we always return -2 (closer to zero) regardless of the implementation.
+  if (result < 0 && remainder > 0) {
+    return result + 1;
+  } else {
+    return result;
+  }
+}
+}  // namespace
+
+string TimeUtil::ToString(const Timestamp& timestamp) {
+  return FormatTime(timestamp.seconds(), timestamp.nanos());
+}
+
+bool TimeUtil::FromString(const string& value, Timestamp* timestamp) {
+  int64 seconds;
+  int32 nanos;
+  if (!ParseTime(value, &seconds, &nanos)) {
+    return false;
+  }
+  *timestamp = CreateNormalized<Timestamp>(seconds, nanos);
+  return true;
+}
+
+Timestamp TimeUtil::GetCurrentTime() {
+  int64 seconds;
+  int32 nanos;
+  CurrentTime(&seconds, &nanos);
+  return CreateNormalized<Timestamp>(seconds, nanos);
+}
+
+Timestamp TimeUtil::GetEpoch() { return Timestamp(); }
+
+string TimeUtil::ToString(const Duration& duration) {
+  string result;
+  int64 seconds = duration.seconds();
+  int32 nanos = duration.nanos();
+  if (seconds < 0 || nanos < 0) {
+    result += "-";
+    seconds = -seconds;
+    nanos = -nanos;
+  }
+  result += StringPrintf("%" GOOGLE_LL_FORMAT "d", seconds);
+  if (nanos != 0) {
+    result += "." + FormatNanos(nanos);
+  }
+  result += "s";
+  return result;
+}
+
+static int64 Pow(int64 x, int y) {
+  int64 result = 1;
+  for (int i = 0; i < y; ++i) {
+    result *= x;
+  }
+  return result;
+}
+
+bool TimeUtil::FromString(const string& value, Duration* duration) {
+  if (value.length() <= 1 || value[value.length() - 1] != 's') {
+    return false;
+  }
+  bool negative = (value[0] == '-');
+  int sign_length = (negative ? 1 : 0);
+  // Parse the duration value as two integers rather than a float value
+  // to avoid precision loss.
+  string seconds_part, nanos_part;
+  size_t pos = value.find_last_of(".");
+  if (pos == string::npos) {
+    seconds_part = value.substr(sign_length, value.length() - 1 - sign_length);
+    nanos_part = "0";
+  } else {
+    seconds_part = value.substr(sign_length, pos - sign_length);
+    nanos_part = value.substr(pos + 1, value.length() - pos - 2);
+  }
+  char* end;
+  int64 seconds = strto64(seconds_part.c_str(), &end, 10);
+  if (end != seconds_part.c_str() + seconds_part.length()) {
+    return false;
+  }
+  int64 nanos = strto64(nanos_part.c_str(), &end, 10);
+  if (end != nanos_part.c_str() + nanos_part.length()) {
+    return false;
+  }
+  nanos = nanos * Pow(10, 9 - nanos_part.length());
+  if (negative) {
+    // If a Duration is negative, both seconds and nanos should be negative.
+    seconds = -seconds;
+    nanos = -nanos;
+  }
+  duration->set_seconds(seconds);
+  duration->set_nanos(static_cast<int32>(nanos));
+  return true;
+}
+
+Duration TimeUtil::NanosecondsToDuration(int64 nanos) {
+  return CreateNormalized<Duration>(nanos / kNanosPerSecond,
+                                    nanos % kNanosPerSecond);
+}
+
+Duration TimeUtil::MicrosecondsToDuration(int64 micros) {
+  return CreateNormalized<Duration>(
+      micros / kMicrosPerSecond,
+      (micros % kMicrosPerSecond) * kNanosPerMicrosecond);
+}
+
+Duration TimeUtil::MillisecondsToDuration(int64 millis) {
+  return CreateNormalized<Duration>(
+      millis / kMillisPerSecond,
+      (millis % kMillisPerSecond) * kNanosPerMillisecond);
+}
+
+Duration TimeUtil::SecondsToDuration(int64 seconds) {
+  return CreateNormalized<Duration>(seconds, 0);
+}
+
+Duration TimeUtil::MinutesToDuration(int64 minutes) {
+  return CreateNormalized<Duration>(minutes * kSecondsPerMinute, 0);
+}
+
+Duration TimeUtil::HoursToDuration(int64 hours) {
+  return CreateNormalized<Duration>(hours * kSecondsPerHour, 0);
+}
+
+int64 TimeUtil::DurationToNanoseconds(const Duration& duration) {
+  return duration.seconds() * kNanosPerSecond + duration.nanos();
+}
+
+int64 TimeUtil::DurationToMicroseconds(const Duration& duration) {
+  return duration.seconds() * kMicrosPerSecond +
+         RoundTowardZero(duration.nanos(), kNanosPerMicrosecond);
+}
+
+int64 TimeUtil::DurationToMilliseconds(const Duration& duration) {
+  return duration.seconds() * kMillisPerSecond +
+         RoundTowardZero(duration.nanos(), kNanosPerMillisecond);
+}
+
+int64 TimeUtil::DurationToSeconds(const Duration& duration) {
+  return duration.seconds();
+}
+
+int64 TimeUtil::DurationToMinutes(const Duration& duration) {
+  return RoundTowardZero(duration.seconds(), kSecondsPerMinute);
+}
+
+int64 TimeUtil::DurationToHours(const Duration& duration) {
+  return RoundTowardZero(duration.seconds(), kSecondsPerHour);
+}
+
+Timestamp TimeUtil::NanosecondsToTimestamp(int64 nanos) {
+  return CreateNormalized<Timestamp>(nanos / kNanosPerSecond,
+                                     nanos % kNanosPerSecond);
+}
+
+Timestamp TimeUtil::MicrosecondsToTimestamp(int64 micros) {
+  return CreateNormalized<Timestamp>(
+      micros / kMicrosPerSecond,
+      micros % kMicrosPerSecond * kNanosPerMicrosecond);
+}
+
+Timestamp TimeUtil::MillisecondsToTimestamp(int64 millis) {
+  return CreateNormalized<Timestamp>(
+      millis / kMillisPerSecond,
+      millis % kMillisPerSecond * kNanosPerMillisecond);
+}
+
+Timestamp TimeUtil::SecondsToTimestamp(int64 seconds) {
+  return CreateNormalized<Timestamp>(seconds, 0);
+}
+
+int64 TimeUtil::TimestampToNanoseconds(const Timestamp& timestamp) {
+  return timestamp.seconds() * kNanosPerSecond + timestamp.nanos();
+}
+
+int64 TimeUtil::TimestampToMicroseconds(const Timestamp& timestamp) {
+  return timestamp.seconds() * kMicrosPerSecond +
+         RoundTowardZero(timestamp.nanos(), kNanosPerMicrosecond);
+}
+
+int64 TimeUtil::TimestampToMilliseconds(const Timestamp& timestamp) {
+  return timestamp.seconds() * kMillisPerSecond +
+         RoundTowardZero(timestamp.nanos(), kNanosPerMillisecond);
+}
+
+int64 TimeUtil::TimestampToSeconds(const Timestamp& timestamp) {
+  return timestamp.seconds();
+}
+
+Timestamp TimeUtil::TimeTToTimestamp(time_t value) {
+  return CreateNormalized<Timestamp>(static_cast<int64>(value), 0);
+}
+
+time_t TimeUtil::TimestampToTimeT(const Timestamp& value) {
+  return static_cast<time_t>(value.seconds());
+}
+
+Timestamp TimeUtil::TimevalToTimestamp(const timeval& value) {
+  return CreateNormalized<Timestamp>(value.tv_sec,
+                                     value.tv_usec * kNanosPerMicrosecond);
+}
+
+timeval TimeUtil::TimestampToTimeval(const Timestamp& value) {
+  timeval result;
+  result.tv_sec = value.seconds();
+  result.tv_usec = RoundTowardZero(value.nanos(), kNanosPerMicrosecond);
+  return result;
+}
+
+Duration TimeUtil::TimevalToDuration(const timeval& value) {
+  return CreateNormalized<Duration>(value.tv_sec,
+                                    value.tv_usec * kNanosPerMicrosecond);
+}
+
+timeval TimeUtil::DurationToTimeval(const Duration& value) {
+  timeval result;
+  result.tv_sec = value.seconds();
+  result.tv_usec = RoundTowardZero(value.nanos(), kNanosPerMicrosecond);
+  // timeval.tv_usec's range is [0, 1000000)
+  if (result.tv_usec < 0) {
+    result.tv_sec -= 1;
+    result.tv_usec += kMicrosPerSecond;
+  }
+  return result;
+}
+
+}  // namespace util
+}  // namespace protobuf
+
+
+namespace protobuf {
+namespace {
+using google::protobuf::util::kNanosPerSecond;
+using google::protobuf::util::CreateNormalized;
+
+// Convert a Timestamp to uint128.
+void ToUint128(const Timestamp& value, uint128* result, bool* negative) {
+  if (value.seconds() < 0) {
+    *negative = true;
+    *result = static_cast<uint64>(-value.seconds());
+    *result = *result * kNanosPerSecond - static_cast<uint32>(value.nanos());
+  } else {
+    *negative = false;
+    *result = static_cast<uint64>(value.seconds());
+    *result = *result * kNanosPerSecond + static_cast<uint32>(value.nanos());
+  }
+}
+
+// Convert a Duration to uint128.
+void ToUint128(const Duration& value, uint128* result, bool* negative) {
+  if (value.seconds() < 0 || value.nanos() < 0) {
+    *negative = true;
+    *result = static_cast<uint64>(-value.seconds());
+    *result = *result * kNanosPerSecond + static_cast<uint32>(-value.nanos());
+  } else {
+    *negative = false;
+    *result = static_cast<uint64>(value.seconds());
+    *result = *result * kNanosPerSecond + static_cast<uint32>(value.nanos());
+  }
+}
+
+void ToTimestamp(const uint128& value, bool negative, Timestamp* timestamp) {
+  int64 seconds = static_cast<int64>(Uint128Low64(value / kNanosPerSecond));
+  int32 nanos = static_cast<int32>(Uint128Low64(value % kNanosPerSecond));
+  if (negative) {
+    seconds = -seconds;
+    nanos = -nanos;
+    if (nanos < 0) {
+      nanos += kNanosPerSecond;
+      seconds -= 1;
+    }
+  }
+  timestamp->set_seconds(seconds);
+  timestamp->set_nanos(nanos);
+}
+
+void ToDuration(const uint128& value, bool negative, Duration* duration) {
+  int64 seconds = static_cast<int64>(Uint128Low64(value / kNanosPerSecond));
+  int32 nanos = static_cast<int32>(Uint128Low64(value % kNanosPerSecond));
+  if (negative) {
+    seconds = -seconds;
+    nanos = -nanos;
+  }
+  duration->set_seconds(seconds);
+  duration->set_nanos(nanos);
+}
+}  // namespace
+
+Duration& operator+=(Duration& d1, const Duration& d2) {
+  d1 = CreateNormalized<Duration>(d1.seconds() + d2.seconds(),
+                                  d1.nanos() + d2.nanos());
+  return d1;
+}
+
+Duration& operator-=(Duration& d1, const Duration& d2) {  // NOLINT
+  d1 = CreateNormalized<Duration>(d1.seconds() - d2.seconds(),
+                                  d1.nanos() - d2.nanos());
+  return d1;
+}
+
+Duration& operator*=(Duration& d, int64 r) {  // NOLINT
+  bool negative;
+  uint128 value;
+  ToUint128(d, &value, &negative);
+  if (r > 0) {
+    value *= static_cast<uint64>(r);
+  } else {
+    negative = !negative;
+    value *= static_cast<uint64>(-r);
+  }
+  ToDuration(value, negative, &d);
+  return d;
+}
+
+Duration& operator*=(Duration& d, double r) {  // NOLINT
+  double result = (d.seconds() * 1.0 + 1.0 * d.nanos() / kNanosPerSecond) * r;
+  int64 seconds = static_cast<int64>(result);
+  int32 nanos = static_cast<int32>((result - seconds) * kNanosPerSecond);
+  // Note that we normalize here not just because nanos can have a different
+  // sign from seconds but also that nanos can be any arbitrary value when
+  // overflow happens (i.e., the result is a much larger value than what
+  // int64 can represent).
+  d = CreateNormalized<Duration>(seconds, nanos);
+  return d;
+}
+
+Duration& operator/=(Duration& d, int64 r) {  // NOLINT
+  bool negative;
+  uint128 value;
+  ToUint128(d, &value, &negative);
+  if (r > 0) {
+    value /= static_cast<uint64>(r);
+  } else {
+    negative = !negative;
+    value /= static_cast<uint64>(-r);
+  }
+  ToDuration(value, negative, &d);
+  return d;
+}
+
+Duration& operator/=(Duration& d, double r) {  // NOLINT
+  return d *= 1.0 / r;
+}
+
+Duration& operator%=(Duration& d1, const Duration& d2) {  // NOLINT
+  bool negative1, negative2;
+  uint128 value1, value2;
+  ToUint128(d1, &value1, &negative1);
+  ToUint128(d2, &value2, &negative2);
+  uint128 result = value1 % value2;
+  // When negative values are involved in division, we round the division
+  // result towards zero. With this semantics, sign of the remainder is the
+  // same as the dividend. For example:
+  //     -5 / 10    = 0, -5 % 10    = -5
+  //     -5 / (-10) = 0, -5 % (-10) = -5
+  //      5 / (-10) = 0,  5 % (-10) = 5
+  ToDuration(result, negative1, &d1);
+  return d1;
+}
+
+int64 operator/(const Duration& d1, const Duration& d2) {
+  bool negative1, negative2;
+  uint128 value1, value2;
+  ToUint128(d1, &value1, &negative1);
+  ToUint128(d2, &value2, &negative2);
+  int64 result = Uint128Low64(value1 / value2);
+  if (negative1 != negative2) {
+    result = -result;
+  }
+  return result;
+}
+
+Timestamp& operator+=(Timestamp& t, const Duration& d) {  // NOLINT
+  t = CreateNormalized<Timestamp>(t.seconds() + d.seconds(),
+                                  t.nanos() + d.nanos());
+  return t;
+}
+
+Timestamp& operator-=(Timestamp& t, const Duration& d) {  // NOLINT
+  t = CreateNormalized<Timestamp>(t.seconds() - d.seconds(),
+                                  t.nanos() - d.nanos());
+  return t;
+}
+
+Duration operator-(const Timestamp& t1, const Timestamp& t2) {
+  return CreateNormalized<Duration>(t1.seconds() - t2.seconds(),
+                                    t1.nanos() - t2.nanos());
+}
+}  // namespace protobuf
+
+}  // namespace google