blob: 3ea9f11972871578e081bf77dbfb212b53826acc [file] [log] [blame]
Austin Schuh9a24b372018-01-28 16:12:29 -08001/**************************************************************************************************
2* *
3* This file is part of BLASFEO. *
4* *
5* BLASFEO -- BLAS For Embedded Optimization. *
6* Copyright (C) 2016-2017 by Gianluca Frison. *
7* Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl. *
8* All rights reserved. *
9* *
10* HPMPC is free software; you can redistribute it and/or *
11* modify it under the terms of the GNU Lesser General Public *
12* License as published by the Free Software Foundation; either *
13* version 2.1 of the License, or (at your option) any later version. *
14* *
15* HPMPC is distributed in the hope that it will be useful, *
16* but WITHOUT ANY WARRANTY; without even the implied warranty of *
17* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
18* See the GNU Lesser General Public License for more details. *
19* *
20* You should have received a copy of the GNU Lesser General Public *
21* License along with HPMPC; if not, write to the Free Software *
22* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA *
23* *
24* Author: Gianluca Frison, giaf (at) dtu.dk *
25* gianluca.frison (at) imtek.uni-freiburg.de *
26* *
27**************************************************************************************************/
28
29#include <stdlib.h>
30#include <stdio.h>
31#include <sys/time.h>
32
33
34#include "../include/blasfeo_common.h"
35#include "../include/blasfeo_s_aux_ext_dep.h"
36#include "../include/blasfeo_i_aux_ext_dep.h"
37#include "../include/blasfeo_s_aux.h"
38#include "../include/blasfeo_s_kernel.h"
39#include "../include/blasfeo_s_blas.h"
40
41#ifndef S_PS
42#define S_PS 1
43#endif
44#ifndef S_NC
45#define S_NC 1
46#endif
47
48
49
50#if defined(REF_BLAS_OPENBLAS)
51void openblas_set_num_threads(int num_threads);
52#endif
53#if defined(REF_BLAS_BLIS)
54void omp_set_num_threads(int num_threads);
55#endif
56#if defined(REF_BLAS_MKL)
57#include "mkl.h"
58#endif
59
60
61
62#include "cpu_freq.h"
63
64
65
66int main()
67 {
68
69#if defined(REF_BLAS_OPENBLAS)
70 openblas_set_num_threads(1);
71#endif
72#if defined(REF_BLAS_BLIS)
73 omp_set_num_threads(1);
74#endif
75#if defined(REF_BLAS_MKL)
76 mkl_set_num_threads(1);
77#endif
78
79 printf("\n");
80 printf("\n");
81 printf("\n");
82
83 printf("BLAS performance test - float precision\n");
84 printf("\n");
85
86 // maximum frequency of the processor
87 const float GHz_max = GHZ_MAX;
88 printf("Frequency used to compute theoretical peak: %5.1f GHz (edit test_param.h to modify this value).\n", GHz_max);
89 printf("\n");
90
91 // maximum flops per cycle, single precision
92 // maxumum memops (sustained load->store of floats) per cycle, single precision
93#if defined(TARGET_X64_INTEL_HASWELL)
94 const float flops_max = 32; // 2x256 bit fma
95 const float memops_max = 8; // 2x256 bit load + 1x256 bit store
96 printf("Testing BLAS version for AVX2 and FMA instruction sets, 64 bit (optimized for Intel Haswell): theoretical peak %5.1f Gflops\n", flops_max*GHz_max);
97#elif defined(TARGET_X64_INTEL_SANDY_BRIDGE)
98 const float flops_max = 16; // 1x256 bit mul + 1x256 bit add
99 const float memops_max = 4; // 1x256 bit load + 1x128 bit store
100 printf("Testing BLAS version for AVX instruction set, 64 bit (optimized for Intel Sandy Bridge): theoretical peak %5.1f Gflops\n", flops_max*GHz_max);
101#elif defined(TARGET_X64_INTEL_CORE)
102 const float flops_max = 8; // 1x128 bit mul + 1x128 bit add
103 const float memops_max = 4; // 1x128 bit load + 1x128 bit store;
104 printf("Testing BLAS version for SSE3 instruction set, 64 bit (optimized for Intel Core): theoretical peak %5.1f Gflops\n", flops_max*GHz_max);
105#elif defined(TARGET_X64_AMD_BULLDOZER)
106 const float flops_max = 16; // 2x128 bit fma
107 const float memops_max = 4; // 1x256 bit load + 1x128 bit store
108 printf("Testing BLAS version for SSE3 and FMA instruction set, 64 bit (optimized for AMD Bulldozer): theoretical peak %5.1f Gflops\n", flops_max*GHz_max);
109#elif defined(TARGET_ARMV8A_ARM_CORTEX_A57)
110 const float flops_max = 8; // 1x128 bit fma
111 const float memops_max = 4; // ???
112 printf("Testing BLAS version for VFPv4 instruction set, 32 bit (optimized for ARM Cortex A15): theoretical peak %5.1f Gflops\n", flops_max*GHz_max);
113#elif defined(TARGET_ARMV7A_ARM_CORTEX_A15)
114 const float flops_max = 8; // 1x128 bit fma
115 const float memops_max = 4; // ???
116 printf("Testing BLAS version for VFPv4 instruction set, 32 bit (optimized for ARM Cortex A15): theoretical peak %5.1f Gflops\n", flops_max*GHz_max);
117#elif defined(TARGET_GENERIC)
118 const float flops_max = 2; // 1x32 bit mul + 1x32 bit add ???
119 const float memops_max = 1; // ???
120 printf("Testing BLAS version for generic scalar instruction set: theoretical peak %5.1f Gflops ???\n", flops_max*GHz_max);
121#endif
122
123// FILE *f;
124// f = fopen("./test_problems/results/test_blas.m", "w"); // a
125
126#if defined(TARGET_X64_INTEL_HASWELL)
127// fprintf(f, "C = 's_x64_intel_haswell';\n");
128// fprintf(f, "\n");
129#elif defined(TARGET_X64_INTEL_SANDY_BRIDGE)
130// fprintf(f, "C = 's_x64_intel_sandybridge';\n");
131// fprintf(f, "\n");
132#elif defined(TARGET_X64_INTEL_CORE)
133// fprintf(f, "C = 's_x64_intel_core';\n");
134// fprintf(f, "\n");
135#elif defined(TARGET_X64_AMD_BULLDOZER)
136// fprintf(f, "C = 's_x64_amd_bulldozer';\n");
137// fprintf(f, "\n");
138#elif defined(TARGET_ARMV8A_ARM_CORTEX_A57)
139// fprintf(f, "C = 's_armv7a_arm_cortex_a15';\n");
140// fprintf(f, "\n");
141#elif defined(TARGET_ARMV7A_ARM_CORTEX_A15)
142// fprintf(f, "C = 's_armv7a_arm_cortex_a15';\n");
143// fprintf(f, "\n");
144#elif defined(TARGET_GENERIC)
145// fprintf(f, "C = 's_generic';\n");
146// fprintf(f, "\n");
147#endif
148
149// fprintf(f, "A = [%f %f];\n", GHz_max, flops_max);
150// fprintf(f, "\n");
151
152// fprintf(f, "B = [\n");
153
154
155
156 int i, j, rep, ll;
157
158 const int bss = S_PS;
159 const int ncs = S_NC;
160
161/* int info = 0;*/
162
163 printf("\nn\t sgemm_blasfeo\t sgemm_blas\n");
164 printf("\nn\t Gflops\t %%\t Gflops\t %%\n\n");
165
166#if 1
167 int nn[] = {4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 272, 276, 280, 284, 288, 292, 296, 300, 304, 308, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 356, 360, 364, 368, 372, 376, 380, 384, 388, 392, 396, 400, 404, 408, 412, 416, 420, 424, 428, 432, 436, 440, 444, 448, 452, 456, 460, 500, 550, 600, 650, 700};
168 int nnrep[] = {10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 400, 400, 400, 400, 400, 200, 200, 200, 200, 200, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 20, 20, 20, 20, 20, 20, 20, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 4, 4, 4, 4, 4};
169
170// for(ll=0; ll<24; ll++)
171 for(ll=0; ll<75; ll++)
172// for(ll=0; ll<115; ll++)
173// for(ll=0; ll<120; ll++)
174
175 {
176
177 int n = nn[ll];
178 int nrep = nnrep[ll];
179// int n = ll+1;
180// int nrep = nnrep[0];
181// n = n<16 ? 16 : n;
182
183 int n2 = n*n;
184
185#else
186 int nn[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24};
187
188 for(ll=0; ll<24; ll++)
189
190 {
191
192 int n = nn[ll];
193 int nrep = 40000; //nnrep[ll];
194#endif
195
196 float *A; s_zeros(&A, n, n);
197 float *B; s_zeros(&B, n, n);
198 float *C; s_zeros(&C, n, n);
199 float *M; s_zeros(&M, n, n);
200
201 char c_n = 'n';
202 char c_l = 'l';
203 char c_r = 'r';
204 char c_t = 't';
205 char c_u = 'u';
206 int i_1 = 1;
207 int i_t;
208 float d_1 = 1;
209 float d_0 = 0;
210
211 for(i=0; i<n*n; i++)
212 A[i] = i;
213
214 for(i=0; i<n; i++)
215 B[i*(n+1)] = 1;
216
217 for(i=0; i<n*n; i++)
218 M[i] = 1;
219
220 float *B2; s_zeros(&B2, n, n);
221 for(i=0; i<n*n; i++)
222 B2[i] = 1e-15;
223 for(i=0; i<n; i++)
224 B2[i*(n+1)] = 1;
225
226 float *x; s_zeros(&x, n, 1);
227 float *y; s_zeros(&y, n, 1);
228 float *x2; s_zeros(&x2, n, 1);
229 float *y2; s_zeros(&y2, n, 1);
230 float *diag; s_zeros(&diag, n, 1);
231 int *ipiv; int_zeros(&ipiv, n, 1);
232
233// for(i=0; i<n; i++) x[i] = 1;
234// for(i=0; i<n; i++) x2[i] = 1;
235
236 // matrix struct
237#if 0
238 struct s_strmat sA; s_allocate_strmat(n+4, n+4, &sA);
239 struct s_strmat sB; s_allocate_strmat(n+4, n+4, &sB);
240 struct s_strmat sC; s_allocate_strmat(n+4, n+4, &sC);
241 struct s_strmat sD; s_allocate_strmat(n+4, n+4, &sD);
242 struct s_strmat sE; s_allocate_strmat(n+4, n+4, &sE);
243#else
244 struct s_strmat sA; s_allocate_strmat(n, n, &sA);
245 struct s_strmat sB; s_allocate_strmat(n, n, &sB);
246 struct s_strmat sC; s_allocate_strmat(n, n, &sC);
247 struct s_strmat sD; s_allocate_strmat(n, n, &sD);
248 struct s_strmat sE; s_allocate_strmat(n, n, &sE);
249#endif
250 struct s_strvec sx; s_allocate_strvec(n, &sx);
251 struct s_strvec sy; s_allocate_strvec(n, &sy);
252 struct s_strvec sz; s_allocate_strvec(n, &sz);
253
254 s_cvt_mat2strmat(n, n, A, n, &sA, 0, 0);
255 s_cvt_mat2strmat(n, n, B, n, &sB, 0, 0);
256 s_cvt_vec2strvec(n, x, &sx, 0);
257
258
259 // create matrix to pivot all the time
260// sgemm_nt_libstr(n, n, n, 1.0, &sA, 0, 0, &sA, 0, 0, 1.0, &sB, 0, 0, &sD, 0, 0);
261
262 float *dummy;
263
264 int info;
265
266 /* timing */
267 struct timeval tvm1, tv0, tv1, tv2, tv3, tv4, tv5, tv6, tv7, tv8, tv9, tv10, tv11, tv12, tv13, tv14, tv15, tv16;
268
269 /* warm up */
270 for(rep=0; rep<nrep; rep++)
271 {
272 sgemm_nt_libstr(n, n, n, 1.0, &sA, 0, 0, &sB, 0, 0, 0.0, &sC, 0, 0, &sD, 0, 0);
273 }
274
275 float alpha = 1.0;
276 float beta = 0.0;
277
278 gettimeofday(&tv0, NULL); // stop
279
280 gettimeofday(&tv1, NULL); // stop
281
282 for(rep=0; rep<nrep; rep++)
283 {
284// kernel_sgemm_nt_24x4_lib8(n, &alpha, sA.pA, sA.cn, sB.pA, &beta, sD.pA, sD.cn, sD.pA, sD.cn);
285// kernel_sgemm_nt_16x4_lib8(n, &alpha, sA.pA, sA.cn, sB.pA, &beta, sD.pA, sD.cn, sD.pA, sD.cn);
286// kernel_sgemm_nt_8x8_lib8(n, &alpha, sA.pA, sB.pA, &beta, sD.pA, sD.pA);
287// kernel_sgemm_nt_8x4_lib8(n, &alpha, sA.pA, sB.pA, &beta, sD.pA, sD.pA);
288// kernel_sgemm_nt_4x8_gen_lib8(n, &alpha, sA.pA, sB.pA, &beta, 0, sD.pA, sD.cn, 0, sD.pA, sD.cn, 0, 4, 0, 8);
289// kernel_sgemm_nt_4x8_vs_lib8(n, &alpha, sA.pA, sB.pA, &beta, sD.pA, sD.pA, 4, 8);
290// kernel_sgemm_nt_4x8_lib8(n, &alpha, sA.pA, sB.pA, &beta, sD.pA, sD.pA);
291// kernel_sgemm_nt_12x4_lib4(n, &alpha, sA.pA, sA.cn, sB.pA, &beta, sD.pA, sD.cn, sD.pA, sD.cn);
292// kernel_sgemm_nt_8x4_lib4(n, &alpha, sA.pA, sA.cn, sB.pA, &beta, sD.pA, sD.cn, sD.pA, sD.cn);
293// kernel_sgemm_nt_4x4_lib4(n, &alpha, sA.pA, sB.pA, &beta, sD.pA, sD.pA);
294// kernel_sgemm_nn_16x4_lib8(n, &alpha, sA.pA, sA.cn, 0, sB.pA, sB.cn, &beta, sD.pA, sD.cn, sD.pA, sD.cn);
295// kernel_sgemm_nn_8x8_lib8(n, &alpha, sA.pA, 0, sB.pA, sB.cn, &beta, sD.pA, sD.pA);
296// kernel_sgemm_nn_8x4_lib8(n, &alpha, sA.pA, 0, sB.pA, sB.cn, &beta, sD.pA, sD.pA);
297
298// sgemm_nt_libstr(n, n, n, 1.0, &sA, 0, 0, &sB, 0, 0, 0.0, &sC, 0, 0, &sD, 0, 0);
299// sgemm_nn_libstr(n, n, n, 1.0, &sA, 0, 0, &sB, 0, 0, 0.0, &sC, 0, 0, &sD, 0, 0);
300// ssyrk_ln_libstr(n, n, 1.0, &sA, 0, 0, &sA, 0, 0, 0.0, &sC, 0, 0, &sD, 0, 0);
301// spotrf_l_mn_libstr(n, n, &sB, 0, 0, &sB, 0, 0);
302 spotrf_l_libstr(n, &sB, 0, 0, &sB, 0, 0);
303// sgetr_libstr(n, n, &sA, 0, 0, &sB, 0, 0);
304// sgetrf_nopivot_libstr(n, n, &sB, 0, 0, &sB, 0, 0);
305// sgetrf_libstr(n, n, &sB, 0, 0, &sB, 0, 0, ipiv);
306// strmm_rlnn_libstr(n, n, 1.0, &sA, 0, 0, &sB, 0, 0, &sD, 0, 0);
307// strmm_rutn_libstr(n, n, 1.0, &sA, 0, 0, &sB, 0, 0, &sD, 0, 0);
308// strsm_llnu_libstr(n, n, 1.0, &sD, 0, 0, &sB, 0, 0, &sB, 0, 0);
309// strsm_lunn_libstr(n, n, 1.0, &sD, 0, 0, &sB, 0, 0, &sB, 0, 0);
310// strsm_rltn_libstr(n, n, 1.0, &sB, 0, 0, &sD, 0, 0, &sD, 0, 0);
311// strsm_rltu_libstr(n, n, 1.0, &sD, 0, 0, &sB, 0, 0, &sB, 0, 0);
312// strsm_rutn_libstr(n, n, 1.0, &sD, 0, 0, &sB, 0, 0, &sB, 0, 0);
313// sgemv_n_libstr(n, n, 1.0, &sA, 0, 0, &sx, 0, 0.0, &sy, 0, &sz, 0);
314// sgemv_t_libstr(n, n, 1.0, &sA, 0, 0, &sx, 0, 0.0, &sy, 0, &sz, 0);
315// ssymv_l_libstr(n, n, 1.0, &sA, 0, 0, &sx, 0, 0.0, &sy, 0, &sz, 0);
316// sgemv_nt_libstr(n, n, 1.0, 1.0, &sA, 0, 0, &sx, 0, &sx, 0, 0.0, 0.0, &sy, 0, &sy, 0, &sz, 0, &sz, 0);
317 }
318
319// d_print_strmat(n, n, &sD, 0, 0);
320
321 gettimeofday(&tv2, NULL); // stop
322
323 for(rep=0; rep<nrep; rep++)
324 {
325#if defined(REF_BLAS_OPENBLAS) || defined(REF_BLAS_NETLIB) || defined(REF_BLAS_MKL)
326// sgemm_(&c_n, &c_t, &n, &n, &n, &d_1, A, &n, M, &n, &d_0, C, &n);
327// sgemm_(&c_n, &c_n, &n, &n, &n, &d_1, A, &n, M, &n, &d_0, C, &n);
328// scopy_(&n2, A, &i_1, B, &i_1);
329// ssyrk_(&c_l, &c_n, &n, &n, &d_1, A, &n, &d_0, C, &n);
330// strmm_(&c_r, &c_u, &c_t, &c_n, &n, &n, &d_1, A, &n, C, &n);
331// spotrf_(&c_l, &n, B2, &n, &info);
332// sgetrf_(&n, &n, B2, &n, ipiv, &info);
333// strsm_(&c_l, &c_l, &c_n, &c_u, &n, &n, &d_1, B2, &n, B, &n);
334// strsm_(&c_l, &c_u, &c_n, &c_n, &n, &n, &d_1, B2, &n, B, &n);
335// strtri_(&c_l, &c_n, &n, B2, &n, &info);
336// slauum_(&c_l, &n, B, &n, &info);
337// sgemv_(&c_n, &n, &n, &d_1, A, &n, x, &i_1, &d_0, y, &i_1);
338// sgemv_(&c_t, &n, &n, &d_1, A, &n, x2, &i_1, &d_0, y2, &i_1);
339// strmv_(&c_l, &c_n, &c_n, &n, B, &n, x, &i_1);
340// strsv_(&c_l, &c_n, &c_n, &n, B, &n, x, &i_1);
341// ssymv_(&c_l, &n, &d_1, A, &n, x, &i_1, &d_0, y, &i_1);
342
343// for(i=0; i<n; i++)
344// {
345// i_t = n-i;
346// scopy_(&i_t, &B[i*(n+1)], &i_1, &C[i*(n+1)], &i_1);
347// }
348// ssyrk_(&c_l, &c_n, &n, &n, &d_1, A, &n, &d_1, C, &n);
349// spotrf_(&c_l, &n, C, &n, &info);
350
351#endif
352
353#if defined(REF_BLAS_BLIS)
354// sgemm_(&c_n, &c_t, &n77, &n77, &n77, &d_1, A, &n77, B, &n77, &d_0, C, &n77);
355// sgemm_(&c_n, &c_n, &n77, &n77, &n77, &d_1, A, &n77, B, &n77, &d_0, C, &n77);
356// ssyrk_(&c_l, &c_n, &n77, &n77, &d_1, A, &n77, &d_0, C, &n77);
357// strmm_(&c_r, &c_u, &c_t, &c_n, &n77, &n77, &d_1, A, &n77, C, &n77);
358// spotrf_(&c_l, &n77, B, &n77, &info);
359// strtri_(&c_l, &c_n, &n77, B, &n77, &info);
360// slauum_(&c_l, &n77, B, &n77, &info);
361#endif
362 }
363
364 gettimeofday(&tv3, NULL); // stop
365
366 // flops
367 if(1)
368 {
369
370 float Gflops_max = flops_max * GHz_max;
371
372// float flop_operation = 6*16.0*2*n; // kernel 24x4
373// float flop_operation = 4*16.0*2*n; // kernel 16x4
374// float flop_operation = 3*16.0*2*n; // kernel 12x4
375// float flop_operation = 2*16.0*2*n; // kernel 8x4
376// float flop_operation = 1*16.0*2*n; // kernel 4x4
377
378// float flop_operation = 2.0*n*n*n; // dgemm
379// float flop_operation = 1.0*n*n*n; // dsyrk dtrmm dtrsm
380 float flop_operation = 1.0/3.0*n*n*n; // dpotrf dtrtri
381// float flop_operation = 2.0/3.0*n*n*n; // dgetrf
382// float flop_operation = 2.0*n*n; // dgemv dsymv
383// float flop_operation = 1.0*n*n; // dtrmv dtrsv
384// float flop_operation = 4.0*n*n; // dgemv_nt
385// float flop_operation = 3*16.0*2*n; // kernel 12x4
386
387// float flop_operation = 4.0/3.0*n*n*n; // dsyrk+dpotrf
388
389 float time_hpmpc = (float) (tv1.tv_sec-tv0.tv_sec)/(nrep+0.0)+(tv1.tv_usec-tv0.tv_usec)/(nrep*1e6);
390 float time_blasfeo = (float) (tv2.tv_sec-tv1.tv_sec)/(nrep+0.0)+(tv2.tv_usec-tv1.tv_usec)/(nrep*1e6);
391 float time_blas = (float) (tv3.tv_sec-tv2.tv_sec)/(nrep+0.0)+(tv3.tv_usec-tv2.tv_usec)/(nrep*1e6);
392
393 float Gflops_hpmpc = 1e-9*flop_operation/time_hpmpc;
394 float Gflops_blasfeo = 1e-9*flop_operation/time_blasfeo;
395 float Gflops_blas = 1e-9*flop_operation/time_blas;
396
397
398 printf("%d\t%7.2f\t%7.2f\t%7.2f\t%7.2f\n", n, Gflops_blasfeo, 100.0*Gflops_blasfeo/Gflops_max, Gflops_blas, 100.0*Gflops_blas/Gflops_max);
399// fprintf(f, "%d\t%7.2f\t%7.2f\t%7.2f\t%7.2f\n", n, Gflops_blasfeo, 100.0*Gflops_blasfeo/Gflops_max, Gflops_blas, 100.0*Gflops_blas/Gflops_max);
400
401 }
402 // memops
403 else
404 {
405
406 float Gmemops_max = memops_max * GHz_max;
407
408 float memop_operation = 1.0*n*n; // dgecp
409
410 float time_hpmpc = (float) (tv1.tv_sec-tv0.tv_sec)/(nrep+0.0)+(tv1.tv_usec-tv0.tv_usec)/(nrep*1e6);
411 float time_blasfeo = (float) (tv2.tv_sec-tv1.tv_sec)/(nrep+0.0)+(tv2.tv_usec-tv1.tv_usec)/(nrep*1e6);
412 float time_blas = (float) (tv3.tv_sec-tv2.tv_sec)/(nrep+0.0)+(tv3.tv_usec-tv2.tv_usec)/(nrep*1e6);
413
414 float Gmemops_hpmpc = 1e-9*memop_operation/time_hpmpc;
415 float Gmemops_blasfeo = 1e-9*memop_operation/time_blasfeo;
416 float Gmemops_blas = 1e-9*memop_operation/time_blas;
417
418
419 printf("%d\t%7.2f\t%7.2f\t%7.2f\t%7.2f\n", n, Gmemops_blasfeo, 100.0*Gmemops_blasfeo/Gmemops_max, Gmemops_blas, 100.0*Gmemops_blas/Gmemops_max);
420// fprintf(f, "%d\t%7.2f\t%7.2f\t%7.2f\t%7.2f\n", n, Gmemops_blasfeo, 100.0*Gmemops_blasfeo/Gmemops_max, Gmemops_blas, 100.0*Gmemops_blas/Gmemops_max);
421
422 }
423
424
425 free(A);
426 free(B);
427 free(B2);
428 free(M);
429 free(x);
430 free(y);
431 free(x2);
432 free(y2);
433 free(ipiv);
434
435 s_free_strmat(&sA);
436 s_free_strmat(&sB);
437 s_free_strmat(&sC);
438 s_free_strmat(&sD);
439 s_free_strmat(&sE);
440 s_free_strvec(&sx);
441 s_free_strvec(&sy);
442 s_free_strvec(&sz);
443
444 }
445
446 printf("\n");
447
448// fprintf(f, "];\n");
449// fclose(f);
450
451 return 0;
452
453 }
454