blob: 3ea9f11972871578e081bf77dbfb212b53826acc [file] [log] [blame]
/**************************************************************************************************
* *
* This file is part of BLASFEO. *
* *
* BLASFEO -- BLAS For Embedded Optimization. *
* Copyright (C) 2016-2017 by Gianluca Frison. *
* Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl. *
* All rights reserved. *
* *
* HPMPC is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Lesser General Public *
* License as published by the Free Software Foundation; either *
* version 2.1 of the License, or (at your option) any later version. *
* *
* HPMPC is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
* See the GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with HPMPC; if not, write to the Free Software *
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA *
* *
* Author: Gianluca Frison, giaf (at) dtu.dk *
* gianluca.frison (at) imtek.uni-freiburg.de *
* *
**************************************************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <sys/time.h>
#include "../include/blasfeo_common.h"
#include "../include/blasfeo_s_aux_ext_dep.h"
#include "../include/blasfeo_i_aux_ext_dep.h"
#include "../include/blasfeo_s_aux.h"
#include "../include/blasfeo_s_kernel.h"
#include "../include/blasfeo_s_blas.h"
#ifndef S_PS
#define S_PS 1
#endif
#ifndef S_NC
#define S_NC 1
#endif
#if defined(REF_BLAS_OPENBLAS)
void openblas_set_num_threads(int num_threads);
#endif
#if defined(REF_BLAS_BLIS)
void omp_set_num_threads(int num_threads);
#endif
#if defined(REF_BLAS_MKL)
#include "mkl.h"
#endif
#include "cpu_freq.h"
int main()
{
#if defined(REF_BLAS_OPENBLAS)
openblas_set_num_threads(1);
#endif
#if defined(REF_BLAS_BLIS)
omp_set_num_threads(1);
#endif
#if defined(REF_BLAS_MKL)
mkl_set_num_threads(1);
#endif
printf("\n");
printf("\n");
printf("\n");
printf("BLAS performance test - float precision\n");
printf("\n");
// maximum frequency of the processor
const float GHz_max = GHZ_MAX;
printf("Frequency used to compute theoretical peak: %5.1f GHz (edit test_param.h to modify this value).\n", GHz_max);
printf("\n");
// maximum flops per cycle, single precision
// maxumum memops (sustained load->store of floats) per cycle, single precision
#if defined(TARGET_X64_INTEL_HASWELL)
const float flops_max = 32; // 2x256 bit fma
const float memops_max = 8; // 2x256 bit load + 1x256 bit store
printf("Testing BLAS version for AVX2 and FMA instruction sets, 64 bit (optimized for Intel Haswell): theoretical peak %5.1f Gflops\n", flops_max*GHz_max);
#elif defined(TARGET_X64_INTEL_SANDY_BRIDGE)
const float flops_max = 16; // 1x256 bit mul + 1x256 bit add
const float memops_max = 4; // 1x256 bit load + 1x128 bit store
printf("Testing BLAS version for AVX instruction set, 64 bit (optimized for Intel Sandy Bridge): theoretical peak %5.1f Gflops\n", flops_max*GHz_max);
#elif defined(TARGET_X64_INTEL_CORE)
const float flops_max = 8; // 1x128 bit mul + 1x128 bit add
const float memops_max = 4; // 1x128 bit load + 1x128 bit store;
printf("Testing BLAS version for SSE3 instruction set, 64 bit (optimized for Intel Core): theoretical peak %5.1f Gflops\n", flops_max*GHz_max);
#elif defined(TARGET_X64_AMD_BULLDOZER)
const float flops_max = 16; // 2x128 bit fma
const float memops_max = 4; // 1x256 bit load + 1x128 bit store
printf("Testing BLAS version for SSE3 and FMA instruction set, 64 bit (optimized for AMD Bulldozer): theoretical peak %5.1f Gflops\n", flops_max*GHz_max);
#elif defined(TARGET_ARMV8A_ARM_CORTEX_A57)
const float flops_max = 8; // 1x128 bit fma
const float memops_max = 4; // ???
printf("Testing BLAS version for VFPv4 instruction set, 32 bit (optimized for ARM Cortex A15): theoretical peak %5.1f Gflops\n", flops_max*GHz_max);
#elif defined(TARGET_ARMV7A_ARM_CORTEX_A15)
const float flops_max = 8; // 1x128 bit fma
const float memops_max = 4; // ???
printf("Testing BLAS version for VFPv4 instruction set, 32 bit (optimized for ARM Cortex A15): theoretical peak %5.1f Gflops\n", flops_max*GHz_max);
#elif defined(TARGET_GENERIC)
const float flops_max = 2; // 1x32 bit mul + 1x32 bit add ???
const float memops_max = 1; // ???
printf("Testing BLAS version for generic scalar instruction set: theoretical peak %5.1f Gflops ???\n", flops_max*GHz_max);
#endif
// FILE *f;
// f = fopen("./test_problems/results/test_blas.m", "w"); // a
#if defined(TARGET_X64_INTEL_HASWELL)
// fprintf(f, "C = 's_x64_intel_haswell';\n");
// fprintf(f, "\n");
#elif defined(TARGET_X64_INTEL_SANDY_BRIDGE)
// fprintf(f, "C = 's_x64_intel_sandybridge';\n");
// fprintf(f, "\n");
#elif defined(TARGET_X64_INTEL_CORE)
// fprintf(f, "C = 's_x64_intel_core';\n");
// fprintf(f, "\n");
#elif defined(TARGET_X64_AMD_BULLDOZER)
// fprintf(f, "C = 's_x64_amd_bulldozer';\n");
// fprintf(f, "\n");
#elif defined(TARGET_ARMV8A_ARM_CORTEX_A57)
// fprintf(f, "C = 's_armv7a_arm_cortex_a15';\n");
// fprintf(f, "\n");
#elif defined(TARGET_ARMV7A_ARM_CORTEX_A15)
// fprintf(f, "C = 's_armv7a_arm_cortex_a15';\n");
// fprintf(f, "\n");
#elif defined(TARGET_GENERIC)
// fprintf(f, "C = 's_generic';\n");
// fprintf(f, "\n");
#endif
// fprintf(f, "A = [%f %f];\n", GHz_max, flops_max);
// fprintf(f, "\n");
// fprintf(f, "B = [\n");
int i, j, rep, ll;
const int bss = S_PS;
const int ncs = S_NC;
/* int info = 0;*/
printf("\nn\t sgemm_blasfeo\t sgemm_blas\n");
printf("\nn\t Gflops\t %%\t Gflops\t %%\n\n");
#if 1
int nn[] = {4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 272, 276, 280, 284, 288, 292, 296, 300, 304, 308, 312, 316, 320, 324, 328, 332, 336, 340, 344, 348, 352, 356, 360, 364, 368, 372, 376, 380, 384, 388, 392, 396, 400, 404, 408, 412, 416, 420, 424, 428, 432, 436, 440, 444, 448, 452, 456, 460, 500, 550, 600, 650, 700};
int nnrep[] = {10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 400, 400, 400, 400, 400, 200, 200, 200, 200, 200, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 20, 20, 20, 20, 20, 20, 20, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 4, 4, 4, 4, 4};
// for(ll=0; ll<24; ll++)
for(ll=0; ll<75; ll++)
// for(ll=0; ll<115; ll++)
// for(ll=0; ll<120; ll++)
{
int n = nn[ll];
int nrep = nnrep[ll];
// int n = ll+1;
// int nrep = nnrep[0];
// n = n<16 ? 16 : n;
int n2 = n*n;
#else
int nn[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24};
for(ll=0; ll<24; ll++)
{
int n = nn[ll];
int nrep = 40000; //nnrep[ll];
#endif
float *A; s_zeros(&A, n, n);
float *B; s_zeros(&B, n, n);
float *C; s_zeros(&C, n, n);
float *M; s_zeros(&M, n, n);
char c_n = 'n';
char c_l = 'l';
char c_r = 'r';
char c_t = 't';
char c_u = 'u';
int i_1 = 1;
int i_t;
float d_1 = 1;
float d_0 = 0;
for(i=0; i<n*n; i++)
A[i] = i;
for(i=0; i<n; i++)
B[i*(n+1)] = 1;
for(i=0; i<n*n; i++)
M[i] = 1;
float *B2; s_zeros(&B2, n, n);
for(i=0; i<n*n; i++)
B2[i] = 1e-15;
for(i=0; i<n; i++)
B2[i*(n+1)] = 1;
float *x; s_zeros(&x, n, 1);
float *y; s_zeros(&y, n, 1);
float *x2; s_zeros(&x2, n, 1);
float *y2; s_zeros(&y2, n, 1);
float *diag; s_zeros(&diag, n, 1);
int *ipiv; int_zeros(&ipiv, n, 1);
// for(i=0; i<n; i++) x[i] = 1;
// for(i=0; i<n; i++) x2[i] = 1;
// matrix struct
#if 0
struct s_strmat sA; s_allocate_strmat(n+4, n+4, &sA);
struct s_strmat sB; s_allocate_strmat(n+4, n+4, &sB);
struct s_strmat sC; s_allocate_strmat(n+4, n+4, &sC);
struct s_strmat sD; s_allocate_strmat(n+4, n+4, &sD);
struct s_strmat sE; s_allocate_strmat(n+4, n+4, &sE);
#else
struct s_strmat sA; s_allocate_strmat(n, n, &sA);
struct s_strmat sB; s_allocate_strmat(n, n, &sB);
struct s_strmat sC; s_allocate_strmat(n, n, &sC);
struct s_strmat sD; s_allocate_strmat(n, n, &sD);
struct s_strmat sE; s_allocate_strmat(n, n, &sE);
#endif
struct s_strvec sx; s_allocate_strvec(n, &sx);
struct s_strvec sy; s_allocate_strvec(n, &sy);
struct s_strvec sz; s_allocate_strvec(n, &sz);
s_cvt_mat2strmat(n, n, A, n, &sA, 0, 0);
s_cvt_mat2strmat(n, n, B, n, &sB, 0, 0);
s_cvt_vec2strvec(n, x, &sx, 0);
// create matrix to pivot all the time
// sgemm_nt_libstr(n, n, n, 1.0, &sA, 0, 0, &sA, 0, 0, 1.0, &sB, 0, 0, &sD, 0, 0);
float *dummy;
int info;
/* timing */
struct timeval tvm1, tv0, tv1, tv2, tv3, tv4, tv5, tv6, tv7, tv8, tv9, tv10, tv11, tv12, tv13, tv14, tv15, tv16;
/* warm up */
for(rep=0; rep<nrep; rep++)
{
sgemm_nt_libstr(n, n, n, 1.0, &sA, 0, 0, &sB, 0, 0, 0.0, &sC, 0, 0, &sD, 0, 0);
}
float alpha = 1.0;
float beta = 0.0;
gettimeofday(&tv0, NULL); // stop
gettimeofday(&tv1, NULL); // stop
for(rep=0; rep<nrep; rep++)
{
// kernel_sgemm_nt_24x4_lib8(n, &alpha, sA.pA, sA.cn, sB.pA, &beta, sD.pA, sD.cn, sD.pA, sD.cn);
// kernel_sgemm_nt_16x4_lib8(n, &alpha, sA.pA, sA.cn, sB.pA, &beta, sD.pA, sD.cn, sD.pA, sD.cn);
// kernel_sgemm_nt_8x8_lib8(n, &alpha, sA.pA, sB.pA, &beta, sD.pA, sD.pA);
// kernel_sgemm_nt_8x4_lib8(n, &alpha, sA.pA, sB.pA, &beta, sD.pA, sD.pA);
// kernel_sgemm_nt_4x8_gen_lib8(n, &alpha, sA.pA, sB.pA, &beta, 0, sD.pA, sD.cn, 0, sD.pA, sD.cn, 0, 4, 0, 8);
// kernel_sgemm_nt_4x8_vs_lib8(n, &alpha, sA.pA, sB.pA, &beta, sD.pA, sD.pA, 4, 8);
// kernel_sgemm_nt_4x8_lib8(n, &alpha, sA.pA, sB.pA, &beta, sD.pA, sD.pA);
// kernel_sgemm_nt_12x4_lib4(n, &alpha, sA.pA, sA.cn, sB.pA, &beta, sD.pA, sD.cn, sD.pA, sD.cn);
// kernel_sgemm_nt_8x4_lib4(n, &alpha, sA.pA, sA.cn, sB.pA, &beta, sD.pA, sD.cn, sD.pA, sD.cn);
// kernel_sgemm_nt_4x4_lib4(n, &alpha, sA.pA, sB.pA, &beta, sD.pA, sD.pA);
// kernel_sgemm_nn_16x4_lib8(n, &alpha, sA.pA, sA.cn, 0, sB.pA, sB.cn, &beta, sD.pA, sD.cn, sD.pA, sD.cn);
// kernel_sgemm_nn_8x8_lib8(n, &alpha, sA.pA, 0, sB.pA, sB.cn, &beta, sD.pA, sD.pA);
// kernel_sgemm_nn_8x4_lib8(n, &alpha, sA.pA, 0, sB.pA, sB.cn, &beta, sD.pA, sD.pA);
// sgemm_nt_libstr(n, n, n, 1.0, &sA, 0, 0, &sB, 0, 0, 0.0, &sC, 0, 0, &sD, 0, 0);
// sgemm_nn_libstr(n, n, n, 1.0, &sA, 0, 0, &sB, 0, 0, 0.0, &sC, 0, 0, &sD, 0, 0);
// ssyrk_ln_libstr(n, n, 1.0, &sA, 0, 0, &sA, 0, 0, 0.0, &sC, 0, 0, &sD, 0, 0);
// spotrf_l_mn_libstr(n, n, &sB, 0, 0, &sB, 0, 0);
spotrf_l_libstr(n, &sB, 0, 0, &sB, 0, 0);
// sgetr_libstr(n, n, &sA, 0, 0, &sB, 0, 0);
// sgetrf_nopivot_libstr(n, n, &sB, 0, 0, &sB, 0, 0);
// sgetrf_libstr(n, n, &sB, 0, 0, &sB, 0, 0, ipiv);
// strmm_rlnn_libstr(n, n, 1.0, &sA, 0, 0, &sB, 0, 0, &sD, 0, 0);
// strmm_rutn_libstr(n, n, 1.0, &sA, 0, 0, &sB, 0, 0, &sD, 0, 0);
// strsm_llnu_libstr(n, n, 1.0, &sD, 0, 0, &sB, 0, 0, &sB, 0, 0);
// strsm_lunn_libstr(n, n, 1.0, &sD, 0, 0, &sB, 0, 0, &sB, 0, 0);
// strsm_rltn_libstr(n, n, 1.0, &sB, 0, 0, &sD, 0, 0, &sD, 0, 0);
// strsm_rltu_libstr(n, n, 1.0, &sD, 0, 0, &sB, 0, 0, &sB, 0, 0);
// strsm_rutn_libstr(n, n, 1.0, &sD, 0, 0, &sB, 0, 0, &sB, 0, 0);
// sgemv_n_libstr(n, n, 1.0, &sA, 0, 0, &sx, 0, 0.0, &sy, 0, &sz, 0);
// sgemv_t_libstr(n, n, 1.0, &sA, 0, 0, &sx, 0, 0.0, &sy, 0, &sz, 0);
// ssymv_l_libstr(n, n, 1.0, &sA, 0, 0, &sx, 0, 0.0, &sy, 0, &sz, 0);
// sgemv_nt_libstr(n, n, 1.0, 1.0, &sA, 0, 0, &sx, 0, &sx, 0, 0.0, 0.0, &sy, 0, &sy, 0, &sz, 0, &sz, 0);
}
// d_print_strmat(n, n, &sD, 0, 0);
gettimeofday(&tv2, NULL); // stop
for(rep=0; rep<nrep; rep++)
{
#if defined(REF_BLAS_OPENBLAS) || defined(REF_BLAS_NETLIB) || defined(REF_BLAS_MKL)
// sgemm_(&c_n, &c_t, &n, &n, &n, &d_1, A, &n, M, &n, &d_0, C, &n);
// sgemm_(&c_n, &c_n, &n, &n, &n, &d_1, A, &n, M, &n, &d_0, C, &n);
// scopy_(&n2, A, &i_1, B, &i_1);
// ssyrk_(&c_l, &c_n, &n, &n, &d_1, A, &n, &d_0, C, &n);
// strmm_(&c_r, &c_u, &c_t, &c_n, &n, &n, &d_1, A, &n, C, &n);
// spotrf_(&c_l, &n, B2, &n, &info);
// sgetrf_(&n, &n, B2, &n, ipiv, &info);
// strsm_(&c_l, &c_l, &c_n, &c_u, &n, &n, &d_1, B2, &n, B, &n);
// strsm_(&c_l, &c_u, &c_n, &c_n, &n, &n, &d_1, B2, &n, B, &n);
// strtri_(&c_l, &c_n, &n, B2, &n, &info);
// slauum_(&c_l, &n, B, &n, &info);
// sgemv_(&c_n, &n, &n, &d_1, A, &n, x, &i_1, &d_0, y, &i_1);
// sgemv_(&c_t, &n, &n, &d_1, A, &n, x2, &i_1, &d_0, y2, &i_1);
// strmv_(&c_l, &c_n, &c_n, &n, B, &n, x, &i_1);
// strsv_(&c_l, &c_n, &c_n, &n, B, &n, x, &i_1);
// ssymv_(&c_l, &n, &d_1, A, &n, x, &i_1, &d_0, y, &i_1);
// for(i=0; i<n; i++)
// {
// i_t = n-i;
// scopy_(&i_t, &B[i*(n+1)], &i_1, &C[i*(n+1)], &i_1);
// }
// ssyrk_(&c_l, &c_n, &n, &n, &d_1, A, &n, &d_1, C, &n);
// spotrf_(&c_l, &n, C, &n, &info);
#endif
#if defined(REF_BLAS_BLIS)
// sgemm_(&c_n, &c_t, &n77, &n77, &n77, &d_1, A, &n77, B, &n77, &d_0, C, &n77);
// sgemm_(&c_n, &c_n, &n77, &n77, &n77, &d_1, A, &n77, B, &n77, &d_0, C, &n77);
// ssyrk_(&c_l, &c_n, &n77, &n77, &d_1, A, &n77, &d_0, C, &n77);
// strmm_(&c_r, &c_u, &c_t, &c_n, &n77, &n77, &d_1, A, &n77, C, &n77);
// spotrf_(&c_l, &n77, B, &n77, &info);
// strtri_(&c_l, &c_n, &n77, B, &n77, &info);
// slauum_(&c_l, &n77, B, &n77, &info);
#endif
}
gettimeofday(&tv3, NULL); // stop
// flops
if(1)
{
float Gflops_max = flops_max * GHz_max;
// float flop_operation = 6*16.0*2*n; // kernel 24x4
// float flop_operation = 4*16.0*2*n; // kernel 16x4
// float flop_operation = 3*16.0*2*n; // kernel 12x4
// float flop_operation = 2*16.0*2*n; // kernel 8x4
// float flop_operation = 1*16.0*2*n; // kernel 4x4
// float flop_operation = 2.0*n*n*n; // dgemm
// float flop_operation = 1.0*n*n*n; // dsyrk dtrmm dtrsm
float flop_operation = 1.0/3.0*n*n*n; // dpotrf dtrtri
// float flop_operation = 2.0/3.0*n*n*n; // dgetrf
// float flop_operation = 2.0*n*n; // dgemv dsymv
// float flop_operation = 1.0*n*n; // dtrmv dtrsv
// float flop_operation = 4.0*n*n; // dgemv_nt
// float flop_operation = 3*16.0*2*n; // kernel 12x4
// float flop_operation = 4.0/3.0*n*n*n; // dsyrk+dpotrf
float time_hpmpc = (float) (tv1.tv_sec-tv0.tv_sec)/(nrep+0.0)+(tv1.tv_usec-tv0.tv_usec)/(nrep*1e6);
float time_blasfeo = (float) (tv2.tv_sec-tv1.tv_sec)/(nrep+0.0)+(tv2.tv_usec-tv1.tv_usec)/(nrep*1e6);
float time_blas = (float) (tv3.tv_sec-tv2.tv_sec)/(nrep+0.0)+(tv3.tv_usec-tv2.tv_usec)/(nrep*1e6);
float Gflops_hpmpc = 1e-9*flop_operation/time_hpmpc;
float Gflops_blasfeo = 1e-9*flop_operation/time_blasfeo;
float Gflops_blas = 1e-9*flop_operation/time_blas;
printf("%d\t%7.2f\t%7.2f\t%7.2f\t%7.2f\n", n, Gflops_blasfeo, 100.0*Gflops_blasfeo/Gflops_max, Gflops_blas, 100.0*Gflops_blas/Gflops_max);
// fprintf(f, "%d\t%7.2f\t%7.2f\t%7.2f\t%7.2f\n", n, Gflops_blasfeo, 100.0*Gflops_blasfeo/Gflops_max, Gflops_blas, 100.0*Gflops_blas/Gflops_max);
}
// memops
else
{
float Gmemops_max = memops_max * GHz_max;
float memop_operation = 1.0*n*n; // dgecp
float time_hpmpc = (float) (tv1.tv_sec-tv0.tv_sec)/(nrep+0.0)+(tv1.tv_usec-tv0.tv_usec)/(nrep*1e6);
float time_blasfeo = (float) (tv2.tv_sec-tv1.tv_sec)/(nrep+0.0)+(tv2.tv_usec-tv1.tv_usec)/(nrep*1e6);
float time_blas = (float) (tv3.tv_sec-tv2.tv_sec)/(nrep+0.0)+(tv3.tv_usec-tv2.tv_usec)/(nrep*1e6);
float Gmemops_hpmpc = 1e-9*memop_operation/time_hpmpc;
float Gmemops_blasfeo = 1e-9*memop_operation/time_blasfeo;
float Gmemops_blas = 1e-9*memop_operation/time_blas;
printf("%d\t%7.2f\t%7.2f\t%7.2f\t%7.2f\n", n, Gmemops_blasfeo, 100.0*Gmemops_blasfeo/Gmemops_max, Gmemops_blas, 100.0*Gmemops_blas/Gmemops_max);
// fprintf(f, "%d\t%7.2f\t%7.2f\t%7.2f\t%7.2f\n", n, Gmemops_blasfeo, 100.0*Gmemops_blasfeo/Gmemops_max, Gmemops_blas, 100.0*Gmemops_blas/Gmemops_max);
}
free(A);
free(B);
free(B2);
free(M);
free(x);
free(y);
free(x2);
free(y2);
free(ipiv);
s_free_strmat(&sA);
s_free_strmat(&sB);
s_free_strmat(&sC);
s_free_strmat(&sD);
s_free_strmat(&sE);
s_free_strvec(&sx);
s_free_strvec(&sy);
s_free_strvec(&sz);
}
printf("\n");
// fprintf(f, "];\n");
// fclose(f);
return 0;
}