Austin Schuh | 9a24b37 | 2018-01-28 16:12:29 -0800 | [diff] [blame^] | 1 | /************************************************************************************************** |
| 2 | * * |
| 3 | * This file is part of BLASFEO. * |
| 4 | * * |
| 5 | * BLASFEO -- BLAS For Embedded Optimization. * |
| 6 | * Copyright (C) 2016-2017 by Gianluca Frison. * |
| 7 | * Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl. * |
| 8 | * All rights reserved. * |
| 9 | * * |
| 10 | * HPMPC is free software; you can redistribute it and/or * |
| 11 | * modify it under the terms of the GNU Lesser General Public * |
| 12 | * License as published by the Free Software Foundation; either * |
| 13 | * version 2.1 of the License, or (at your option) any later version. * |
| 14 | * * |
| 15 | * HPMPC is distributed in the hope that it will be useful, * |
| 16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of * |
| 17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * |
| 18 | * See the GNU Lesser General Public License for more details. * |
| 19 | * * |
| 20 | * You should have received a copy of the GNU Lesser General Public * |
| 21 | * License along with HPMPC; if not, write to the Free Software * |
| 22 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * |
| 23 | * * |
| 24 | * Author: Gianluca Frison, giaf (at) dtu.dk * |
| 25 | * gianluca.frison (at) imtek.uni-freiburg.de * |
| 26 | * * |
| 27 | **************************************************************************************************/ |
| 28 | |
| 29 | #include <stdlib.h> |
| 30 | #include <stdio.h> |
| 31 | |
| 32 | #if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE) |
| 33 | #include <mmintrin.h> |
| 34 | #include <xmmintrin.h> // SSE |
| 35 | #include <emmintrin.h> // SSE2 |
| 36 | #include <pmmintrin.h> // SSE3 |
| 37 | #include <smmintrin.h> // SSE4 |
| 38 | #include <immintrin.h> // AVX |
| 39 | #endif |
| 40 | |
| 41 | #include "../include/blasfeo_common.h" |
| 42 | #include "../include/blasfeo_d_kernel.h" |
| 43 | |
| 44 | |
| 45 | |
| 46 | #if defined(LA_HIGH_PERFORMANCE) |
| 47 | |
| 48 | |
| 49 | |
| 50 | void daxpy_libstr(int m, double alpha, struct d_strvec *sx, int xi, struct d_strvec *sy, int yi, struct d_strvec *sz, int zi) |
| 51 | { |
| 52 | |
| 53 | if(m<=0) |
| 54 | return; |
| 55 | |
| 56 | double *x = sx->pa + xi; |
| 57 | double *y = sy->pa + yi; |
| 58 | double *z = sz->pa + zi; |
| 59 | |
| 60 | int ii; |
| 61 | |
| 62 | #if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE) |
| 63 | __m256d |
| 64 | v_alpha, v_tmp, |
| 65 | v_x0, v_y0, |
| 66 | v_x1, v_y1; |
| 67 | #endif |
| 68 | |
| 69 | ii = 0; |
| 70 | #if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE) |
| 71 | v_alpha = _mm256_broadcast_sd( &alpha ); |
| 72 | for( ; ii<m-7; ii+=8) |
| 73 | { |
| 74 | v_x0 = _mm256_loadu_pd( &x[ii+0] ); |
| 75 | v_x1 = _mm256_loadu_pd( &x[ii+4] ); |
| 76 | v_y0 = _mm256_loadu_pd( &y[ii+0] ); |
| 77 | v_y1 = _mm256_loadu_pd( &y[ii+4] ); |
| 78 | #if defined(TARGET_X64_INTEL_HASWELL) |
| 79 | v_y0 = _mm256_fmadd_pd( v_alpha, v_x0, v_y0 ); |
| 80 | v_y1 = _mm256_fmadd_pd( v_alpha, v_x1, v_y1 ); |
| 81 | #else // sandy bridge |
| 82 | v_tmp = _mm256_mul_pd( v_alpha, v_x0 ); |
| 83 | v_y0 = _mm256_add_pd( v_tmp, v_y0 ); |
| 84 | v_tmp = _mm256_mul_pd( v_alpha, v_x1 ); |
| 85 | v_y1 = _mm256_add_pd( v_tmp, v_y1 ); |
| 86 | #endif |
| 87 | _mm256_storeu_pd( &z[ii+0], v_y0 ); |
| 88 | _mm256_storeu_pd( &z[ii+4], v_y1 ); |
| 89 | } |
| 90 | for( ; ii<m-3; ii+=4) |
| 91 | { |
| 92 | v_x0 = _mm256_loadu_pd( &x[ii] ); |
| 93 | v_y0 = _mm256_loadu_pd( &y[ii] ); |
| 94 | #if defined(TARGET_X64_INTEL_HASWELL) |
| 95 | v_y0 = _mm256_fmadd_pd( v_alpha, v_x0, v_y0 ); |
| 96 | #else // sandy bridge |
| 97 | v_tmp = _mm256_mul_pd( v_alpha, v_x0 ); |
| 98 | v_y0 = _mm256_add_pd( v_tmp, v_y0 ); |
| 99 | #endif |
| 100 | _mm256_storeu_pd( &z[ii], v_y0 ); |
| 101 | } |
| 102 | #else |
| 103 | for( ; ii<m-3; ii+=4) |
| 104 | { |
| 105 | z[ii+0] = y[ii+0] + alpha*x[ii+0]; |
| 106 | z[ii+1] = y[ii+1] + alpha*x[ii+1]; |
| 107 | z[ii+2] = y[ii+2] + alpha*x[ii+2]; |
| 108 | z[ii+3] = y[ii+3] + alpha*x[ii+3]; |
| 109 | } |
| 110 | #endif |
| 111 | for( ; ii<m; ii++) |
| 112 | { |
| 113 | z[ii+0] = y[ii+0] + alpha*x[ii+0]; |
| 114 | } |
| 115 | |
| 116 | return; |
| 117 | } |
| 118 | |
| 119 | |
| 120 | |
| 121 | // multiply two vectors and compute dot product |
| 122 | double dvecmuldot_libstr(int m, struct d_strvec *sx, int xi, struct d_strvec *sy, int yi, struct d_strvec *sz, int zi) |
| 123 | { |
| 124 | |
| 125 | if(m<=0) |
| 126 | return 0.0; |
| 127 | |
| 128 | double *x = sx->pa + xi; |
| 129 | double *y = sy->pa + yi; |
| 130 | double *z = sz->pa + zi; |
| 131 | int ii; |
| 132 | double dot = 0.0; |
| 133 | #if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE) |
| 134 | __m128d |
| 135 | u_tmp, u_dot; |
| 136 | __m256d |
| 137 | v_tmp, |
| 138 | v_x0, v_y0, v_z0; |
| 139 | |
| 140 | v_tmp = _mm256_setzero_pd(); |
| 141 | #endif |
| 142 | |
| 143 | ii = 0; |
| 144 | |
| 145 | #if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE) |
| 146 | for(; ii<m-3; ii+=4) |
| 147 | { |
| 148 | v_x0 = _mm256_loadu_pd( &x[ii+0] ); |
| 149 | v_y0 = _mm256_loadu_pd( &y[ii+0] ); |
| 150 | v_z0 = _mm256_mul_pd( v_x0, v_y0 ); |
| 151 | _mm256_storeu_pd( &z[ii+0], v_z0 ); |
| 152 | v_tmp = _mm256_add_pd( v_tmp, v_z0 ); |
| 153 | } |
| 154 | #endif |
| 155 | for(; ii<m; ii++) |
| 156 | { |
| 157 | z[ii+0] = x[ii+0] * y[ii+0]; |
| 158 | dot += z[ii+0]; |
| 159 | } |
| 160 | #if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE) |
| 161 | // dot product |
| 162 | u_tmp = _mm_add_pd( _mm256_castpd256_pd128( v_tmp ), _mm256_extractf128_pd( v_tmp, 0x1 ) ); |
| 163 | u_tmp = _mm_hadd_pd( u_tmp, u_tmp); |
| 164 | u_dot = _mm_load_sd( &dot ); |
| 165 | u_dot = _mm_add_sd( u_dot, u_tmp ); |
| 166 | _mm_store_sd( &dot, u_dot ); |
| 167 | #endif |
| 168 | return dot; |
| 169 | } |
| 170 | |
| 171 | |
| 172 | |
| 173 | // compute dot product of two vectors |
| 174 | double ddot_libstr(int m, struct d_strvec *sx, int xi, struct d_strvec *sy, int yi) |
| 175 | { |
| 176 | |
| 177 | if(m<=0) |
| 178 | return 0.0; |
| 179 | |
| 180 | double *x = sx->pa + xi; |
| 181 | double *y = sy->pa + yi; |
| 182 | int ii; |
| 183 | double dot = 0.0; |
| 184 | |
| 185 | #if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE) |
| 186 | __m128d |
| 187 | u_dot0, u_x0, u_y0, u_tmp; |
| 188 | __m256d |
| 189 | v_dot0, v_dot1, v_x0, v_x1, v_y0, v_y1, v_tmp; |
| 190 | |
| 191 | v_dot0 = _mm256_setzero_pd(); |
| 192 | v_dot1 = _mm256_setzero_pd(); |
| 193 | u_dot0 = _mm_setzero_pd(); |
| 194 | |
| 195 | ii = 0; |
| 196 | for(; ii<m-7; ii+=8) |
| 197 | { |
| 198 | v_x0 = _mm256_loadu_pd( &x[ii+0] ); |
| 199 | v_x1 = _mm256_loadu_pd( &x[ii+4] ); |
| 200 | v_y0 = _mm256_loadu_pd( &y[ii+0] ); |
| 201 | v_y1 = _mm256_loadu_pd( &y[ii+4] ); |
| 202 | #if defined(TARGET_X64_INTEL_HASWELL) |
| 203 | v_dot0 = _mm256_fmadd_pd( v_x0, v_y0, v_dot0 ); |
| 204 | v_dot1 = _mm256_fmadd_pd( v_x1, v_y1, v_dot1 ); |
| 205 | #else // sandy bridge |
| 206 | v_tmp = _mm256_mul_pd( v_x0, v_y0 ); |
| 207 | v_dot0 = _mm256_add_pd( v_dot0, v_tmp ); |
| 208 | v_tmp = _mm256_mul_pd( v_x1, v_y1 ); |
| 209 | v_dot1 = _mm256_add_pd( v_dot1, v_tmp ); |
| 210 | #endif |
| 211 | } |
| 212 | for(; ii<m-3; ii+=4) |
| 213 | { |
| 214 | v_x0 = _mm256_loadu_pd( &x[ii+0] ); |
| 215 | v_y0 = _mm256_loadu_pd( &y[ii+0] ); |
| 216 | #if defined(TARGET_X64_INTEL_HASWELL) |
| 217 | v_dot0 = _mm256_fmadd_pd( v_x0, v_y0, v_dot0 ); |
| 218 | #else // sandy bridge |
| 219 | v_tmp = _mm256_mul_pd( v_x0, v_y0 ); |
| 220 | v_dot0 = _mm256_add_pd( v_dot0, v_tmp ); |
| 221 | #endif |
| 222 | } |
| 223 | for(; ii<m; ii++) |
| 224 | { |
| 225 | u_x0 = _mm_load_sd( &x[ii+0] ); |
| 226 | u_y0 = _mm_load_sd( &y[ii+0] ); |
| 227 | #if defined(TARGET_X64_INTEL_HASWELL) |
| 228 | u_dot0 = _mm_fmadd_sd( u_x0, u_y0, u_dot0 ); |
| 229 | #else // sandy bridge |
| 230 | u_tmp = _mm_mul_sd( u_x0, u_y0 ); |
| 231 | u_dot0 = _mm_add_sd( u_dot0, u_tmp ); |
| 232 | #endif |
| 233 | } |
| 234 | // reduce |
| 235 | v_dot0 = _mm256_add_pd( v_dot0, v_dot1 ); |
| 236 | u_tmp = _mm_add_pd( _mm256_castpd256_pd128( v_dot0 ), _mm256_extractf128_pd( v_dot0, 0x1 ) ); |
| 237 | u_tmp = _mm_hadd_pd( u_tmp, u_tmp); |
| 238 | u_dot0 = _mm_add_sd( u_dot0, u_tmp ); |
| 239 | _mm_store_sd( &dot, u_dot0 ); |
| 240 | #else // no haswell, no sandy bridge |
| 241 | ii = 0; |
| 242 | for(; ii<m-3; ii+=4) |
| 243 | { |
| 244 | dot += x[ii+0] * y[ii+0]; |
| 245 | dot += x[ii+1] * y[ii+1]; |
| 246 | dot += x[ii+2] * y[ii+2]; |
| 247 | dot += x[ii+3] * y[ii+3]; |
| 248 | } |
| 249 | for(; ii<m; ii++) |
| 250 | { |
| 251 | dot += x[ii+0] * y[ii+0]; |
| 252 | } |
| 253 | #endif // haswell, sandy bridge |
| 254 | return dot; |
| 255 | } |
| 256 | |
| 257 | |
| 258 | |
| 259 | #else |
| 260 | |
| 261 | #error : wrong LA choice |
| 262 | |
| 263 | #endif |