blob: a4155a932be1b9948c985fcab7f6c90d7a7fc89e [file] [log] [blame]
/**************************************************************************************************
* *
* This file is part of BLASFEO. *
* *
* BLASFEO -- BLAS For Embedded Optimization. *
* Copyright (C) 2016-2017 by Gianluca Frison. *
* Developed at IMTEK (University of Freiburg) under the supervision of Moritz Diehl. *
* All rights reserved. *
* *
* HPMPC is free software; you can redistribute it and/or *
* modify it under the terms of the GNU Lesser General Public *
* License as published by the Free Software Foundation; either *
* version 2.1 of the License, or (at your option) any later version. *
* *
* HPMPC is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *
* See the GNU Lesser General Public License for more details. *
* *
* You should have received a copy of the GNU Lesser General Public *
* License along with HPMPC; if not, write to the Free Software *
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA *
* *
* Author: Gianluca Frison, giaf (at) dtu.dk *
* gianluca.frison (at) imtek.uni-freiburg.de *
* *
**************************************************************************************************/
#include <stdlib.h>
#include <stdio.h>
#if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE)
#include <mmintrin.h>
#include <xmmintrin.h> // SSE
#include <emmintrin.h> // SSE2
#include <pmmintrin.h> // SSE3
#include <smmintrin.h> // SSE4
#include <immintrin.h> // AVX
#endif
#include "../include/blasfeo_common.h"
#include "../include/blasfeo_d_kernel.h"
#if defined(LA_HIGH_PERFORMANCE)
void daxpy_libstr(int m, double alpha, struct d_strvec *sx, int xi, struct d_strvec *sy, int yi, struct d_strvec *sz, int zi)
{
if(m<=0)
return;
double *x = sx->pa + xi;
double *y = sy->pa + yi;
double *z = sz->pa + zi;
int ii;
#if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE)
__m256d
v_alpha, v_tmp,
v_x0, v_y0,
v_x1, v_y1;
#endif
ii = 0;
#if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE)
v_alpha = _mm256_broadcast_sd( &alpha );
for( ; ii<m-7; ii+=8)
{
v_x0 = _mm256_loadu_pd( &x[ii+0] );
v_x1 = _mm256_loadu_pd( &x[ii+4] );
v_y0 = _mm256_loadu_pd( &y[ii+0] );
v_y1 = _mm256_loadu_pd( &y[ii+4] );
#if defined(TARGET_X64_INTEL_HASWELL)
v_y0 = _mm256_fmadd_pd( v_alpha, v_x0, v_y0 );
v_y1 = _mm256_fmadd_pd( v_alpha, v_x1, v_y1 );
#else // sandy bridge
v_tmp = _mm256_mul_pd( v_alpha, v_x0 );
v_y0 = _mm256_add_pd( v_tmp, v_y0 );
v_tmp = _mm256_mul_pd( v_alpha, v_x1 );
v_y1 = _mm256_add_pd( v_tmp, v_y1 );
#endif
_mm256_storeu_pd( &z[ii+0], v_y0 );
_mm256_storeu_pd( &z[ii+4], v_y1 );
}
for( ; ii<m-3; ii+=4)
{
v_x0 = _mm256_loadu_pd( &x[ii] );
v_y0 = _mm256_loadu_pd( &y[ii] );
#if defined(TARGET_X64_INTEL_HASWELL)
v_y0 = _mm256_fmadd_pd( v_alpha, v_x0, v_y0 );
#else // sandy bridge
v_tmp = _mm256_mul_pd( v_alpha, v_x0 );
v_y0 = _mm256_add_pd( v_tmp, v_y0 );
#endif
_mm256_storeu_pd( &z[ii], v_y0 );
}
#else
for( ; ii<m-3; ii+=4)
{
z[ii+0] = y[ii+0] + alpha*x[ii+0];
z[ii+1] = y[ii+1] + alpha*x[ii+1];
z[ii+2] = y[ii+2] + alpha*x[ii+2];
z[ii+3] = y[ii+3] + alpha*x[ii+3];
}
#endif
for( ; ii<m; ii++)
{
z[ii+0] = y[ii+0] + alpha*x[ii+0];
}
return;
}
// multiply two vectors and compute dot product
double dvecmuldot_libstr(int m, struct d_strvec *sx, int xi, struct d_strvec *sy, int yi, struct d_strvec *sz, int zi)
{
if(m<=0)
return 0.0;
double *x = sx->pa + xi;
double *y = sy->pa + yi;
double *z = sz->pa + zi;
int ii;
double dot = 0.0;
#if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE)
__m128d
u_tmp, u_dot;
__m256d
v_tmp,
v_x0, v_y0, v_z0;
v_tmp = _mm256_setzero_pd();
#endif
ii = 0;
#if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE)
for(; ii<m-3; ii+=4)
{
v_x0 = _mm256_loadu_pd( &x[ii+0] );
v_y0 = _mm256_loadu_pd( &y[ii+0] );
v_z0 = _mm256_mul_pd( v_x0, v_y0 );
_mm256_storeu_pd( &z[ii+0], v_z0 );
v_tmp = _mm256_add_pd( v_tmp, v_z0 );
}
#endif
for(; ii<m; ii++)
{
z[ii+0] = x[ii+0] * y[ii+0];
dot += z[ii+0];
}
#if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE)
// dot product
u_tmp = _mm_add_pd( _mm256_castpd256_pd128( v_tmp ), _mm256_extractf128_pd( v_tmp, 0x1 ) );
u_tmp = _mm_hadd_pd( u_tmp, u_tmp);
u_dot = _mm_load_sd( &dot );
u_dot = _mm_add_sd( u_dot, u_tmp );
_mm_store_sd( &dot, u_dot );
#endif
return dot;
}
// compute dot product of two vectors
double ddot_libstr(int m, struct d_strvec *sx, int xi, struct d_strvec *sy, int yi)
{
if(m<=0)
return 0.0;
double *x = sx->pa + xi;
double *y = sy->pa + yi;
int ii;
double dot = 0.0;
#if defined(TARGET_X64_INTEL_HASWELL) || defined(TARGET_X64_INTEL_SANDY_BRIDGE)
__m128d
u_dot0, u_x0, u_y0, u_tmp;
__m256d
v_dot0, v_dot1, v_x0, v_x1, v_y0, v_y1, v_tmp;
v_dot0 = _mm256_setzero_pd();
v_dot1 = _mm256_setzero_pd();
u_dot0 = _mm_setzero_pd();
ii = 0;
for(; ii<m-7; ii+=8)
{
v_x0 = _mm256_loadu_pd( &x[ii+0] );
v_x1 = _mm256_loadu_pd( &x[ii+4] );
v_y0 = _mm256_loadu_pd( &y[ii+0] );
v_y1 = _mm256_loadu_pd( &y[ii+4] );
#if defined(TARGET_X64_INTEL_HASWELL)
v_dot0 = _mm256_fmadd_pd( v_x0, v_y0, v_dot0 );
v_dot1 = _mm256_fmadd_pd( v_x1, v_y1, v_dot1 );
#else // sandy bridge
v_tmp = _mm256_mul_pd( v_x0, v_y0 );
v_dot0 = _mm256_add_pd( v_dot0, v_tmp );
v_tmp = _mm256_mul_pd( v_x1, v_y1 );
v_dot1 = _mm256_add_pd( v_dot1, v_tmp );
#endif
}
for(; ii<m-3; ii+=4)
{
v_x0 = _mm256_loadu_pd( &x[ii+0] );
v_y0 = _mm256_loadu_pd( &y[ii+0] );
#if defined(TARGET_X64_INTEL_HASWELL)
v_dot0 = _mm256_fmadd_pd( v_x0, v_y0, v_dot0 );
#else // sandy bridge
v_tmp = _mm256_mul_pd( v_x0, v_y0 );
v_dot0 = _mm256_add_pd( v_dot0, v_tmp );
#endif
}
for(; ii<m; ii++)
{
u_x0 = _mm_load_sd( &x[ii+0] );
u_y0 = _mm_load_sd( &y[ii+0] );
#if defined(TARGET_X64_INTEL_HASWELL)
u_dot0 = _mm_fmadd_sd( u_x0, u_y0, u_dot0 );
#else // sandy bridge
u_tmp = _mm_mul_sd( u_x0, u_y0 );
u_dot0 = _mm_add_sd( u_dot0, u_tmp );
#endif
}
// reduce
v_dot0 = _mm256_add_pd( v_dot0, v_dot1 );
u_tmp = _mm_add_pd( _mm256_castpd256_pd128( v_dot0 ), _mm256_extractf128_pd( v_dot0, 0x1 ) );
u_tmp = _mm_hadd_pd( u_tmp, u_tmp);
u_dot0 = _mm_add_sd( u_dot0, u_tmp );
_mm_store_sd( &dot, u_dot0 );
#else // no haswell, no sandy bridge
ii = 0;
for(; ii<m-3; ii+=4)
{
dot += x[ii+0] * y[ii+0];
dot += x[ii+1] * y[ii+1];
dot += x[ii+2] * y[ii+2];
dot += x[ii+3] * y[ii+3];
}
for(; ii<m; ii++)
{
dot += x[ii+0] * y[ii+0];
}
#endif // haswell, sandy bridge
return dot;
}
#else
#error : wrong LA choice
#endif