Austin Schuh | 9049e20 | 2022-02-20 17:34:16 -0800 | [diff] [blame^] | 1 | #include "osqp.h" // For OSQP rho update |
| 2 | #include "auxil.h" |
| 3 | #include "proj.h" |
| 4 | #include "lin_alg.h" |
| 5 | #include "constants.h" |
| 6 | #include "scaling.h" |
| 7 | #include "util.h" |
| 8 | |
| 9 | /*********************************************************** |
| 10 | * Auxiliary functions needed to compute ADMM iterations * * |
| 11 | ***********************************************************/ |
| 12 | #if EMBEDDED != 1 |
| 13 | c_float compute_rho_estimate(OSQPWorkspace *work) { |
| 14 | c_int n, m; // Dimensions |
| 15 | c_float pri_res, dua_res; // Primal and dual residuals |
| 16 | c_float pri_res_norm, dua_res_norm; // Normalization for the residuals |
| 17 | c_float temp_res_norm; // Temporary residual norm |
| 18 | c_float rho_estimate; // Rho estimate value |
| 19 | |
| 20 | // Get problem dimensions |
| 21 | n = work->data->n; |
| 22 | m = work->data->m; |
| 23 | |
| 24 | // Get primal and dual residuals |
| 25 | pri_res = vec_norm_inf(work->z_prev, m); |
| 26 | dua_res = vec_norm_inf(work->x_prev, n); |
| 27 | |
| 28 | // Normalize primal residual |
| 29 | pri_res_norm = vec_norm_inf(work->z, m); // ||z|| |
| 30 | temp_res_norm = vec_norm_inf(work->Ax, m); // ||Ax|| |
| 31 | pri_res_norm = c_max(pri_res_norm, temp_res_norm); // max (||z||,||Ax||) |
| 32 | pri_res /= (pri_res_norm + OSQP_DIVISION_TOL); // Normalize primal |
| 33 | // residual (prevent 0 |
| 34 | // division) |
| 35 | |
| 36 | // Normalize dual residual |
| 37 | dua_res_norm = vec_norm_inf(work->data->q, n); // ||q|| |
| 38 | temp_res_norm = vec_norm_inf(work->Aty, n); // ||A' y|| |
| 39 | dua_res_norm = c_max(dua_res_norm, temp_res_norm); |
| 40 | temp_res_norm = vec_norm_inf(work->Px, n); // ||P x|| |
| 41 | dua_res_norm = c_max(dua_res_norm, temp_res_norm); // max(||q||,||A' y||,||P |
| 42 | // x||) |
| 43 | dua_res /= (dua_res_norm + OSQP_DIVISION_TOL); // Normalize dual residual |
| 44 | // (prevent 0 division) |
| 45 | |
| 46 | |
| 47 | // Return rho estimate |
| 48 | rho_estimate = work->settings->rho * c_sqrt(pri_res / dua_res); |
| 49 | rho_estimate = c_min(c_max(rho_estimate, RHO_MIN), RHO_MAX); // Constrain |
| 50 | // rho values |
| 51 | return rho_estimate; |
| 52 | } |
| 53 | |
| 54 | c_int adapt_rho(OSQPWorkspace *work) { |
| 55 | c_int exitflag; // Exitflag |
| 56 | c_float rho_new; // New rho value |
| 57 | |
| 58 | exitflag = 0; // Initialize exitflag to 0 |
| 59 | |
| 60 | // Compute new rho |
| 61 | rho_new = compute_rho_estimate(work); |
| 62 | |
| 63 | // Set rho estimate in info |
| 64 | work->info->rho_estimate = rho_new; |
| 65 | |
| 66 | // Check if the new rho is large or small enough and update it in case |
| 67 | if ((rho_new > work->settings->rho * work->settings->adaptive_rho_tolerance) || |
| 68 | (rho_new < work->settings->rho / work->settings->adaptive_rho_tolerance)) { |
| 69 | exitflag = osqp_update_rho(work, rho_new); |
| 70 | work->info->rho_updates += 1; |
| 71 | } |
| 72 | |
| 73 | return exitflag; |
| 74 | } |
| 75 | |
| 76 | void set_rho_vec(OSQPWorkspace *work) { |
| 77 | c_int i; |
| 78 | |
| 79 | work->settings->rho = c_min(c_max(work->settings->rho, RHO_MIN), RHO_MAX); |
| 80 | |
| 81 | for (i = 0; i < work->data->m; i++) { |
| 82 | if ((work->data->l[i] < -OSQP_INFTY * MIN_SCALING) && |
| 83 | (work->data->u[i] > OSQP_INFTY * MIN_SCALING)) { |
| 84 | // Loose bounds |
| 85 | work->constr_type[i] = -1; |
| 86 | work->rho_vec[i] = RHO_MIN; |
| 87 | } else if (work->data->u[i] - work->data->l[i] < RHO_TOL) { |
| 88 | // Equality constraints |
| 89 | work->constr_type[i] = 1; |
| 90 | work->rho_vec[i] = RHO_EQ_OVER_RHO_INEQ * work->settings->rho; |
| 91 | } else { |
| 92 | // Inequality constraints |
| 93 | work->constr_type[i] = 0; |
| 94 | work->rho_vec[i] = work->settings->rho; |
| 95 | } |
| 96 | work->rho_inv_vec[i] = 1. / work->rho_vec[i]; |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | c_int update_rho_vec(OSQPWorkspace *work) { |
| 101 | c_int i, exitflag, constr_type_changed; |
| 102 | |
| 103 | exitflag = 0; |
| 104 | constr_type_changed = 0; |
| 105 | |
| 106 | for (i = 0; i < work->data->m; i++) { |
| 107 | if ((work->data->l[i] < -OSQP_INFTY * MIN_SCALING) && |
| 108 | (work->data->u[i] > OSQP_INFTY * MIN_SCALING)) { |
| 109 | // Loose bounds |
| 110 | if (work->constr_type[i] != -1) { |
| 111 | work->constr_type[i] = -1; |
| 112 | work->rho_vec[i] = RHO_MIN; |
| 113 | work->rho_inv_vec[i] = 1. / RHO_MIN; |
| 114 | constr_type_changed = 1; |
| 115 | } |
| 116 | } else if (work->data->u[i] - work->data->l[i] < RHO_TOL) { |
| 117 | // Equality constraints |
| 118 | if (work->constr_type[i] != 1) { |
| 119 | work->constr_type[i] = 1; |
| 120 | work->rho_vec[i] = RHO_EQ_OVER_RHO_INEQ * work->settings->rho; |
| 121 | work->rho_inv_vec[i] = 1. / work->rho_vec[i]; |
| 122 | constr_type_changed = 1; |
| 123 | } |
| 124 | } else { |
| 125 | // Inequality constraints |
| 126 | if (work->constr_type[i] != 0) { |
| 127 | work->constr_type[i] = 0; |
| 128 | work->rho_vec[i] = work->settings->rho; |
| 129 | work->rho_inv_vec[i] = 1. / work->settings->rho; |
| 130 | constr_type_changed = 1; |
| 131 | } |
| 132 | } |
| 133 | } |
| 134 | |
| 135 | // Update rho_vec in KKT matrix if constraints type has changed |
| 136 | if (constr_type_changed == 1) { |
| 137 | exitflag = work->linsys_solver->update_rho_vec(work->linsys_solver, |
| 138 | work->rho_vec); |
| 139 | } |
| 140 | |
| 141 | return exitflag; |
| 142 | } |
| 143 | |
| 144 | #endif // EMBEDDED != 1 |
| 145 | |
| 146 | |
| 147 | void swap_vectors(c_float **a, c_float **b) { |
| 148 | c_float *temp; |
| 149 | |
| 150 | temp = *b; |
| 151 | *b = *a; |
| 152 | *a = temp; |
| 153 | } |
| 154 | |
| 155 | void cold_start(OSQPWorkspace *work) { |
| 156 | vec_set_scalar(work->x, 0., work->data->n); |
| 157 | vec_set_scalar(work->z, 0., work->data->m); |
| 158 | vec_set_scalar(work->y, 0., work->data->m); |
| 159 | } |
| 160 | |
| 161 | static void compute_rhs(OSQPWorkspace *work) { |
| 162 | c_int i; // Index |
| 163 | |
| 164 | for (i = 0; i < work->data->n; i++) { |
| 165 | // Cycle over part related to x variables |
| 166 | work->xz_tilde[i] = work->settings->sigma * work->x_prev[i] - |
| 167 | work->data->q[i]; |
| 168 | } |
| 169 | |
| 170 | for (i = 0; i < work->data->m; i++) { |
| 171 | // Cycle over dual variable in the first step (nu) |
| 172 | work->xz_tilde[i + work->data->n] = work->z_prev[i] - work->rho_inv_vec[i] * |
| 173 | work->y[i]; |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | void update_xz_tilde(OSQPWorkspace *work) { |
| 178 | // Compute right-hand side |
| 179 | compute_rhs(work); |
| 180 | |
| 181 | // Solve linear system |
| 182 | work->linsys_solver->solve(work->linsys_solver, work->xz_tilde); |
| 183 | } |
| 184 | |
| 185 | void update_x(OSQPWorkspace *work) { |
| 186 | c_int i; |
| 187 | |
| 188 | // update x |
| 189 | for (i = 0; i < work->data->n; i++) { |
| 190 | work->x[i] = work->settings->alpha * work->xz_tilde[i] + |
| 191 | ((c_float)1.0 - work->settings->alpha) * work->x_prev[i]; |
| 192 | } |
| 193 | |
| 194 | // update delta_x |
| 195 | for (i = 0; i < work->data->n; i++) { |
| 196 | work->delta_x[i] = work->x[i] - work->x_prev[i]; |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | void update_z(OSQPWorkspace *work) { |
| 201 | c_int i; |
| 202 | |
| 203 | // update z |
| 204 | for (i = 0; i < work->data->m; i++) { |
| 205 | work->z[i] = work->settings->alpha * work->xz_tilde[i + work->data->n] + |
| 206 | ((c_float)1.0 - work->settings->alpha) * work->z_prev[i] + |
| 207 | work->rho_inv_vec[i] * work->y[i]; |
| 208 | } |
| 209 | |
| 210 | // project z |
| 211 | project(work, work->z); |
| 212 | } |
| 213 | |
| 214 | void update_y(OSQPWorkspace *work) { |
| 215 | c_int i; // Index |
| 216 | |
| 217 | for (i = 0; i < work->data->m; i++) { |
| 218 | work->delta_y[i] = work->rho_vec[i] * |
| 219 | (work->settings->alpha * |
| 220 | work->xz_tilde[i + work->data->n] + |
| 221 | ((c_float)1.0 - work->settings->alpha) * work->z_prev[i] - |
| 222 | work->z[i]); |
| 223 | work->y[i] += work->delta_y[i]; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | c_float compute_obj_val(OSQPWorkspace *work, c_float *x) { |
| 228 | c_float obj_val; |
| 229 | |
| 230 | obj_val = quad_form(work->data->P, x) + |
| 231 | vec_prod(work->data->q, x, work->data->n); |
| 232 | |
| 233 | if (work->settings->scaling) { |
| 234 | obj_val *= work->scaling->cinv; |
| 235 | } |
| 236 | |
| 237 | return obj_val; |
| 238 | } |
| 239 | |
| 240 | c_float compute_pri_res(OSQPWorkspace *work, c_float *x, c_float *z) { |
| 241 | // NB: Use z_prev as working vector |
| 242 | // pr = Ax - z |
| 243 | |
| 244 | mat_vec(work->data->A, x, work->Ax, 0); // Ax |
| 245 | vec_add_scaled(work->z_prev, work->Ax, z, work->data->m, -1); |
| 246 | |
| 247 | // If scaling active -> rescale residual |
| 248 | if (work->settings->scaling && !work->settings->scaled_termination) { |
| 249 | return vec_scaled_norm_inf(work->scaling->Einv, work->z_prev, work->data->m); |
| 250 | } |
| 251 | |
| 252 | // Return norm of the residual |
| 253 | return vec_norm_inf(work->z_prev, work->data->m); |
| 254 | } |
| 255 | |
| 256 | c_float compute_pri_tol(OSQPWorkspace *work, c_float eps_abs, c_float eps_rel) { |
| 257 | c_float max_rel_eps, temp_rel_eps; |
| 258 | |
| 259 | // max_rel_eps = max(||z||, ||A x||) |
| 260 | if (work->settings->scaling && !work->settings->scaled_termination) { |
| 261 | // ||Einv * z|| |
| 262 | max_rel_eps = |
| 263 | vec_scaled_norm_inf(work->scaling->Einv, work->z, work->data->m); |
| 264 | |
| 265 | // ||Einv * A * x|| |
| 266 | temp_rel_eps = vec_scaled_norm_inf(work->scaling->Einv, |
| 267 | work->Ax, |
| 268 | work->data->m); |
| 269 | |
| 270 | // Choose maximum |
| 271 | max_rel_eps = c_max(max_rel_eps, temp_rel_eps); |
| 272 | } else { // No unscaling required |
| 273 | // ||z|| |
| 274 | max_rel_eps = vec_norm_inf(work->z, work->data->m); |
| 275 | |
| 276 | // ||A * x|| |
| 277 | temp_rel_eps = vec_norm_inf(work->Ax, work->data->m); |
| 278 | |
| 279 | // Choose maximum |
| 280 | max_rel_eps = c_max(max_rel_eps, temp_rel_eps); |
| 281 | } |
| 282 | |
| 283 | // eps_prim |
| 284 | return eps_abs + eps_rel * max_rel_eps; |
| 285 | } |
| 286 | |
| 287 | c_float compute_dua_res(OSQPWorkspace *work, c_float *x, c_float *y) { |
| 288 | // NB: Use x_prev as temporary vector |
| 289 | // NB: Only upper triangular part of P is stored. |
| 290 | // dr = q + A'*y + P*x |
| 291 | |
| 292 | // dr = q |
| 293 | prea_vec_copy(work->data->q, work->x_prev, work->data->n); |
| 294 | |
| 295 | // P * x (upper triangular part) |
| 296 | mat_vec(work->data->P, x, work->Px, 0); |
| 297 | |
| 298 | // P' * x (lower triangular part with no diagonal) |
| 299 | mat_tpose_vec(work->data->P, x, work->Px, 1, 1); |
| 300 | |
| 301 | // dr += P * x (full P matrix) |
| 302 | vec_add_scaled(work->x_prev, work->x_prev, work->Px, work->data->n, 1); |
| 303 | |
| 304 | // dr += A' * y |
| 305 | if (work->data->m > 0) { |
| 306 | mat_tpose_vec(work->data->A, y, work->Aty, 0, 0); |
| 307 | vec_add_scaled(work->x_prev, work->x_prev, work->Aty, work->data->n, 1); |
| 308 | } |
| 309 | |
| 310 | // If scaling active -> rescale residual |
| 311 | if (work->settings->scaling && !work->settings->scaled_termination) { |
| 312 | return work->scaling->cinv * vec_scaled_norm_inf(work->scaling->Dinv, |
| 313 | work->x_prev, |
| 314 | work->data->n); |
| 315 | } |
| 316 | |
| 317 | return vec_norm_inf(work->x_prev, work->data->n); |
| 318 | } |
| 319 | |
| 320 | c_float compute_dua_tol(OSQPWorkspace *work, c_float eps_abs, c_float eps_rel) { |
| 321 | c_float max_rel_eps, temp_rel_eps; |
| 322 | |
| 323 | // max_rel_eps = max(||q||, ||A' y|, ||P x||) |
| 324 | if (work->settings->scaling && !work->settings->scaled_termination) { |
| 325 | // || Dinv q|| |
| 326 | max_rel_eps = vec_scaled_norm_inf(work->scaling->Dinv, |
| 327 | work->data->q, |
| 328 | work->data->n); |
| 329 | |
| 330 | // || Dinv A' y || |
| 331 | temp_rel_eps = vec_scaled_norm_inf(work->scaling->Dinv, |
| 332 | work->Aty, |
| 333 | work->data->n); |
| 334 | max_rel_eps = c_max(max_rel_eps, temp_rel_eps); |
| 335 | |
| 336 | // || Dinv P x|| |
| 337 | temp_rel_eps = vec_scaled_norm_inf(work->scaling->Dinv, |
| 338 | work->Px, |
| 339 | work->data->n); |
| 340 | max_rel_eps = c_max(max_rel_eps, temp_rel_eps); |
| 341 | |
| 342 | // Multiply by cinv |
| 343 | max_rel_eps *= work->scaling->cinv; |
| 344 | } else { // No scaling required |
| 345 | // ||q|| |
| 346 | max_rel_eps = vec_norm_inf(work->data->q, work->data->n); |
| 347 | |
| 348 | // ||A'*y|| |
| 349 | temp_rel_eps = vec_norm_inf(work->Aty, work->data->n); |
| 350 | max_rel_eps = c_max(max_rel_eps, temp_rel_eps); |
| 351 | |
| 352 | // ||P*x|| |
| 353 | temp_rel_eps = vec_norm_inf(work->Px, work->data->n); |
| 354 | max_rel_eps = c_max(max_rel_eps, temp_rel_eps); |
| 355 | } |
| 356 | |
| 357 | // eps_dual |
| 358 | return eps_abs + eps_rel * max_rel_eps; |
| 359 | } |
| 360 | |
| 361 | c_int is_primal_infeasible(OSQPWorkspace *work, c_float eps_prim_inf) { |
| 362 | // This function checks for the primal infeasibility termination criteria. |
| 363 | // |
| 364 | // 1) A' * delta_y < eps * ||delta_y|| |
| 365 | // |
| 366 | // 2) u'*max(delta_y, 0) + l'*min(delta_y, 0) < eps * ||delta_y|| |
| 367 | // |
| 368 | |
| 369 | c_int i; // Index for loops |
| 370 | c_float norm_delta_y; |
| 371 | c_float ineq_lhs = 0.0; |
| 372 | |
| 373 | // Project delta_y onto the polar of the recession cone of [l,u] |
| 374 | for (i = 0; i < work->data->m; i++) { |
| 375 | if (work->data->u[i] > OSQP_INFTY * MIN_SCALING) { // Infinite upper bound |
| 376 | if (work->data->l[i] < -OSQP_INFTY * MIN_SCALING) { // Infinite lower bound |
| 377 | // Both bounds infinite |
| 378 | work->delta_y[i] = 0.0; |
| 379 | } else { |
| 380 | // Only upper bound infinite |
| 381 | work->delta_y[i] = c_min(work->delta_y[i], 0.0); |
| 382 | } |
| 383 | } else if (work->data->l[i] < -OSQP_INFTY * MIN_SCALING) { // Infinite lower bound |
| 384 | // Only lower bound infinite |
| 385 | work->delta_y[i] = c_max(work->delta_y[i], 0.0); |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | // Compute infinity norm of delta_y (unscale if necessary) |
| 390 | if (work->settings->scaling && !work->settings->scaled_termination) { |
| 391 | // Use work->Adelta_x as temporary vector |
| 392 | vec_ew_prod(work->scaling->E, work->delta_y, work->Adelta_x, work->data->m); |
| 393 | norm_delta_y = vec_norm_inf(work->Adelta_x, work->data->m); |
| 394 | } else { |
| 395 | norm_delta_y = vec_norm_inf(work->delta_y, work->data->m); |
| 396 | } |
| 397 | |
| 398 | if (norm_delta_y > OSQP_DIVISION_TOL) { |
| 399 | |
| 400 | for (i = 0; i < work->data->m; i++) { |
| 401 | ineq_lhs += work->data->u[i] * c_max(work->delta_y[i], 0) + \ |
| 402 | work->data->l[i] * c_min(work->delta_y[i], 0); |
| 403 | } |
| 404 | |
| 405 | // Check if the condition is satisfied: ineq_lhs < -eps |
| 406 | if (ineq_lhs < eps_prim_inf * norm_delta_y) { |
| 407 | // Compute and return ||A'delta_y|| < eps_prim_inf |
| 408 | mat_tpose_vec(work->data->A, work->delta_y, work->Atdelta_y, 0, 0); |
| 409 | |
| 410 | // Unscale if necessary |
| 411 | if (work->settings->scaling && !work->settings->scaled_termination) { |
| 412 | vec_ew_prod(work->scaling->Dinv, |
| 413 | work->Atdelta_y, |
| 414 | work->Atdelta_y, |
| 415 | work->data->n); |
| 416 | } |
| 417 | |
| 418 | return vec_norm_inf(work->Atdelta_y, work->data->n) < eps_prim_inf * norm_delta_y; |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | // Conditions not satisfied -> not primal infeasible |
| 423 | return 0; |
| 424 | } |
| 425 | |
| 426 | c_int is_dual_infeasible(OSQPWorkspace *work, c_float eps_dual_inf) { |
| 427 | // This function checks for the scaled dual infeasibility termination |
| 428 | // criteria. |
| 429 | // |
| 430 | // 1) q * delta_x < eps * || delta_x || |
| 431 | // |
| 432 | // 2) ||P * delta_x || < eps * || delta_x || |
| 433 | // |
| 434 | // 3) -> (A * delta_x)_i > -eps * || delta_x ||, l_i != -inf |
| 435 | // -> (A * delta_x)_i < eps * || delta_x ||, u_i != inf |
| 436 | // |
| 437 | |
| 438 | |
| 439 | c_int i; // Index for loops |
| 440 | c_float norm_delta_x; |
| 441 | c_float cost_scaling; |
| 442 | |
| 443 | // Compute norm of delta_x |
| 444 | if (work->settings->scaling && !work->settings->scaled_termination) { // Unscale |
| 445 | // if |
| 446 | // necessary |
| 447 | norm_delta_x = vec_scaled_norm_inf(work->scaling->D, |
| 448 | work->delta_x, |
| 449 | work->data->n); |
| 450 | cost_scaling = work->scaling->c; |
| 451 | } else { |
| 452 | norm_delta_x = vec_norm_inf(work->delta_x, work->data->n); |
| 453 | cost_scaling = 1.0; |
| 454 | } |
| 455 | |
| 456 | // Prevent 0 division || delta_x || > 0 |
| 457 | if (norm_delta_x > OSQP_DIVISION_TOL) { |
| 458 | // Normalize delta_x by its norm |
| 459 | |
| 460 | /* vec_mult_scalar(work->delta_x, 1./norm_delta_x, work->data->n); */ |
| 461 | |
| 462 | // Check first if q'*delta_x < 0 |
| 463 | if (vec_prod(work->data->q, work->delta_x, work->data->n) < |
| 464 | cost_scaling * eps_dual_inf * norm_delta_x) { |
| 465 | // Compute product P * delta_x (NB: P is store in upper triangular form) |
| 466 | mat_vec(work->data->P, work->delta_x, work->Pdelta_x, 0); |
| 467 | mat_tpose_vec(work->data->P, work->delta_x, work->Pdelta_x, 1, 1); |
| 468 | |
| 469 | // Scale if necessary |
| 470 | if (work->settings->scaling && !work->settings->scaled_termination) { |
| 471 | vec_ew_prod(work->scaling->Dinv, |
| 472 | work->Pdelta_x, |
| 473 | work->Pdelta_x, |
| 474 | work->data->n); |
| 475 | } |
| 476 | |
| 477 | // Check if || P * delta_x || = 0 |
| 478 | if (vec_norm_inf(work->Pdelta_x, work->data->n) < |
| 479 | cost_scaling * eps_dual_inf * norm_delta_x) { |
| 480 | // Compute A * delta_x |
| 481 | mat_vec(work->data->A, work->delta_x, work->Adelta_x, 0); |
| 482 | |
| 483 | // Scale if necessary |
| 484 | if (work->settings->scaling && !work->settings->scaled_termination) { |
| 485 | vec_ew_prod(work->scaling->Einv, |
| 486 | work->Adelta_x, |
| 487 | work->Adelta_x, |
| 488 | work->data->m); |
| 489 | } |
| 490 | |
| 491 | // De Morgan Law Applied to dual infeasibility conditions for A * x |
| 492 | // NB: Note that MIN_SCALING is used to adjust the infinity value |
| 493 | // in case the problem is scaled. |
| 494 | for (i = 0; i < work->data->m; i++) { |
| 495 | if (((work->data->u[i] < OSQP_INFTY * MIN_SCALING) && |
| 496 | (work->Adelta_x[i] > eps_dual_inf * norm_delta_x)) || |
| 497 | ((work->data->l[i] > -OSQP_INFTY * MIN_SCALING) && |
| 498 | (work->Adelta_x[i] < -eps_dual_inf * norm_delta_x))) { |
| 499 | // At least one condition not satisfied -> not dual infeasible |
| 500 | return 0; |
| 501 | } |
| 502 | } |
| 503 | |
| 504 | // All conditions passed -> dual infeasible |
| 505 | return 1; |
| 506 | } |
| 507 | } |
| 508 | } |
| 509 | |
| 510 | // Conditions not satisfied -> not dual infeasible |
| 511 | return 0; |
| 512 | } |
| 513 | |
| 514 | c_int has_solution(OSQPInfo * info){ |
| 515 | |
| 516 | return ((info->status_val != OSQP_PRIMAL_INFEASIBLE) && |
| 517 | (info->status_val != OSQP_PRIMAL_INFEASIBLE_INACCURATE) && |
| 518 | (info->status_val != OSQP_DUAL_INFEASIBLE) && |
| 519 | (info->status_val != OSQP_DUAL_INFEASIBLE_INACCURATE) && |
| 520 | (info->status_val != OSQP_NON_CVX)); |
| 521 | |
| 522 | } |
| 523 | |
| 524 | void store_solution(OSQPWorkspace *work) { |
| 525 | #ifndef EMBEDDED |
| 526 | c_float norm_vec; |
| 527 | #endif /* ifndef EMBEDDED */ |
| 528 | |
| 529 | if (has_solution(work->info)) { |
| 530 | prea_vec_copy(work->x, work->solution->x, work->data->n); // primal |
| 531 | prea_vec_copy(work->y, work->solution->y, work->data->m); // dual |
| 532 | |
| 533 | // Unscale solution if scaling has been performed |
| 534 | if (work->settings->scaling) |
| 535 | unscale_solution(work); |
| 536 | } else { |
| 537 | // No solution present. Solution is NaN |
| 538 | vec_set_scalar(work->solution->x, OSQP_NAN, work->data->n); |
| 539 | vec_set_scalar(work->solution->y, OSQP_NAN, work->data->m); |
| 540 | |
| 541 | #ifndef EMBEDDED |
| 542 | |
| 543 | // Normalize infeasibility certificates if embedded is off |
| 544 | // NB: It requires a division |
| 545 | if ((work->info->status_val == OSQP_PRIMAL_INFEASIBLE) || |
| 546 | ((work->info->status_val == OSQP_PRIMAL_INFEASIBLE_INACCURATE))) { |
| 547 | norm_vec = vec_norm_inf(work->delta_y, work->data->m); |
| 548 | vec_mult_scalar(work->delta_y, 1. / norm_vec, work->data->m); |
| 549 | } |
| 550 | |
| 551 | if ((work->info->status_val == OSQP_DUAL_INFEASIBLE) || |
| 552 | ((work->info->status_val == OSQP_DUAL_INFEASIBLE_INACCURATE))) { |
| 553 | norm_vec = vec_norm_inf(work->delta_x, work->data->n); |
| 554 | vec_mult_scalar(work->delta_x, 1. / norm_vec, work->data->n); |
| 555 | } |
| 556 | |
| 557 | #endif /* ifndef EMBEDDED */ |
| 558 | |
| 559 | // Cold start iterates to 0 for next runs (they cannot start from NaN) |
| 560 | cold_start(work); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | void update_info(OSQPWorkspace *work, |
| 565 | c_int iter, |
| 566 | c_int compute_objective, |
| 567 | c_int polish) { |
| 568 | c_float *x, *z, *y; // Allocate pointers to variables |
| 569 | c_float *obj_val, *pri_res, *dua_res; // objective value, residuals |
| 570 | |
| 571 | #ifdef PROFILING |
| 572 | c_float *run_time; // Execution time |
| 573 | #endif /* ifdef PROFILING */ |
| 574 | |
| 575 | #ifndef EMBEDDED |
| 576 | |
| 577 | if (polish) { |
| 578 | x = work->pol->x; |
| 579 | y = work->pol->y; |
| 580 | z = work->pol->z; |
| 581 | obj_val = &work->pol->obj_val; |
| 582 | pri_res = &work->pol->pri_res; |
| 583 | dua_res = &work->pol->dua_res; |
| 584 | # ifdef PROFILING |
| 585 | run_time = &work->info->polish_time; |
| 586 | # endif /* ifdef PROFILING */ |
| 587 | } else { |
| 588 | #endif // EMBEDDED |
| 589 | x = work->x; |
| 590 | y = work->y; |
| 591 | z = work->z; |
| 592 | obj_val = &work->info->obj_val; |
| 593 | pri_res = &work->info->pri_res; |
| 594 | dua_res = &work->info->dua_res; |
| 595 | work->info->iter = iter; // Update iteration number |
| 596 | #ifdef PROFILING |
| 597 | run_time = &work->info->solve_time; |
| 598 | #endif /* ifdef PROFILING */ |
| 599 | #ifndef EMBEDDED |
| 600 | } |
| 601 | |
| 602 | #endif /* ifndef EMBEDDED */ |
| 603 | |
| 604 | |
| 605 | // Compute the objective if needed |
| 606 | if (compute_objective) { |
| 607 | *obj_val = compute_obj_val(work, x); |
| 608 | } |
| 609 | |
| 610 | // Compute primal residual |
| 611 | if (work->data->m == 0) { |
| 612 | // No constraints -> Always primal feasible |
| 613 | *pri_res = 0.; |
| 614 | } else { |
| 615 | *pri_res = compute_pri_res(work, x, z); |
| 616 | } |
| 617 | |
| 618 | // Compute dual residual |
| 619 | *dua_res = compute_dua_res(work, x, y); |
| 620 | |
| 621 | // Update timing |
| 622 | #ifdef PROFILING |
| 623 | *run_time = osqp_toc(work->timer); |
| 624 | #endif /* ifdef PROFILING */ |
| 625 | |
| 626 | #ifdef PRINTING |
| 627 | work->summary_printed = 0; // The just updated info have not been printed |
| 628 | #endif /* ifdef PRINTING */ |
| 629 | } |
| 630 | |
| 631 | |
| 632 | void reset_info(OSQPInfo *info) { |
| 633 | #ifdef PROFILING |
| 634 | |
| 635 | // Initialize info values. |
| 636 | info->solve_time = 0.0; // Solve time to zero |
| 637 | # ifndef EMBEDDED |
| 638 | info->polish_time = 0.0; // Polish time to zero |
| 639 | # endif /* ifndef EMBEDDED */ |
| 640 | |
| 641 | // NB: We do not reset the setup_time because it is performed only once |
| 642 | #endif /* ifdef PROFILING */ |
| 643 | |
| 644 | update_status(info, OSQP_UNSOLVED); // Problem is unsolved |
| 645 | |
| 646 | #if EMBEDDED != 1 |
| 647 | info->rho_updates = 0; // Rho updates are now 0 |
| 648 | #endif /* if EMBEDDED != 1 */ |
| 649 | } |
| 650 | |
| 651 | void update_status(OSQPInfo *info, c_int status_val) { |
| 652 | // Update status value |
| 653 | info->status_val = status_val; |
| 654 | |
| 655 | // Update status string depending on status val |
| 656 | if (status_val == OSQP_SOLVED) c_strcpy(info->status, "solved"); |
| 657 | |
| 658 | if (status_val == OSQP_SOLVED_INACCURATE) c_strcpy(info->status, |
| 659 | "solved inaccurate"); |
| 660 | else if (status_val == OSQP_PRIMAL_INFEASIBLE) c_strcpy(info->status, |
| 661 | "primal infeasible"); |
| 662 | else if (status_val == OSQP_PRIMAL_INFEASIBLE_INACCURATE) c_strcpy(info->status, |
| 663 | "primal infeasible inaccurate"); |
| 664 | else if (status_val == OSQP_UNSOLVED) c_strcpy(info->status, "unsolved"); |
| 665 | else if (status_val == OSQP_DUAL_INFEASIBLE) c_strcpy(info->status, |
| 666 | "dual infeasible"); |
| 667 | else if (status_val == OSQP_DUAL_INFEASIBLE_INACCURATE) c_strcpy(info->status, |
| 668 | "dual infeasible inaccurate"); |
| 669 | else if (status_val == OSQP_MAX_ITER_REACHED) c_strcpy(info->status, |
| 670 | "maximum iterations reached"); |
| 671 | #ifdef PROFILING |
| 672 | else if (status_val == OSQP_TIME_LIMIT_REACHED) c_strcpy(info->status, |
| 673 | "run time limit reached"); |
| 674 | #endif /* ifdef PROFILING */ |
| 675 | else if (status_val == OSQP_SIGINT) c_strcpy(info->status, "interrupted"); |
| 676 | |
| 677 | else if (status_val == OSQP_NON_CVX) c_strcpy(info->status, "problem non convex"); |
| 678 | |
| 679 | } |
| 680 | |
| 681 | c_int check_termination(OSQPWorkspace *work, c_int approximate) { |
| 682 | c_float eps_prim, eps_dual, eps_prim_inf, eps_dual_inf; |
| 683 | c_int exitflag; |
| 684 | c_int prim_res_check, dual_res_check, prim_inf_check, dual_inf_check; |
| 685 | c_float eps_abs, eps_rel; |
| 686 | |
| 687 | // Initialize variables to 0 |
| 688 | exitflag = 0; |
| 689 | prim_res_check = 0; dual_res_check = 0; |
| 690 | prim_inf_check = 0; dual_inf_check = 0; |
| 691 | |
| 692 | // Initialize tolerances |
| 693 | eps_abs = work->settings->eps_abs; |
| 694 | eps_rel = work->settings->eps_rel; |
| 695 | eps_prim_inf = work->settings->eps_prim_inf; |
| 696 | eps_dual_inf = work->settings->eps_dual_inf; |
| 697 | |
| 698 | // If residuals are too large, the problem is probably non convex |
| 699 | if ((work->info->pri_res > OSQP_INFTY) || |
| 700 | (work->info->dua_res > OSQP_INFTY)){ |
| 701 | // Looks like residuals are diverging. Probably the problem is non convex! |
| 702 | // Terminate and report it |
| 703 | update_status(work->info, OSQP_NON_CVX); |
| 704 | work->info->obj_val = OSQP_NAN; |
| 705 | return 1; |
| 706 | } |
| 707 | |
| 708 | // If approximate solution required, increase tolerances by 10 |
| 709 | if (approximate) { |
| 710 | eps_abs *= 10; |
| 711 | eps_rel *= 10; |
| 712 | eps_prim_inf *= 10; |
| 713 | eps_dual_inf *= 10; |
| 714 | } |
| 715 | |
| 716 | // Check residuals |
| 717 | if (work->data->m == 0) { |
| 718 | prim_res_check = 1; // No constraints -> Primal feasibility always satisfied |
| 719 | } |
| 720 | else { |
| 721 | // Compute primal tolerance |
| 722 | eps_prim = compute_pri_tol(work, eps_abs, eps_rel); |
| 723 | |
| 724 | // Primal feasibility check |
| 725 | if (work->info->pri_res < eps_prim) { |
| 726 | prim_res_check = 1; |
| 727 | } else { |
| 728 | // Primal infeasibility check |
| 729 | prim_inf_check = is_primal_infeasible(work, eps_prim_inf); |
| 730 | } |
| 731 | } // End check if m == 0 |
| 732 | |
| 733 | // Compute dual tolerance |
| 734 | eps_dual = compute_dua_tol(work, eps_abs, eps_rel); |
| 735 | |
| 736 | // Dual feasibility check |
| 737 | if (work->info->dua_res < eps_dual) { |
| 738 | dual_res_check = 1; |
| 739 | } else { |
| 740 | // Check dual infeasibility |
| 741 | dual_inf_check = is_dual_infeasible(work, eps_dual_inf); |
| 742 | } |
| 743 | |
| 744 | // Compare checks to determine solver status |
| 745 | if (prim_res_check && dual_res_check) { |
| 746 | // Update final information |
| 747 | if (approximate) { |
| 748 | update_status(work->info, OSQP_SOLVED_INACCURATE); |
| 749 | } else { |
| 750 | update_status(work->info, OSQP_SOLVED); |
| 751 | } |
| 752 | exitflag = 1; |
| 753 | } |
| 754 | else if (prim_inf_check) { |
| 755 | // Update final information |
| 756 | if (approximate) { |
| 757 | update_status(work->info, OSQP_PRIMAL_INFEASIBLE_INACCURATE); |
| 758 | } else { |
| 759 | update_status(work->info, OSQP_PRIMAL_INFEASIBLE); |
| 760 | } |
| 761 | |
| 762 | if (work->settings->scaling && !work->settings->scaled_termination) { |
| 763 | // Update infeasibility certificate |
| 764 | vec_ew_prod(work->scaling->E, work->delta_y, work->delta_y, work->data->m); |
| 765 | } |
| 766 | work->info->obj_val = OSQP_INFTY; |
| 767 | exitflag = 1; |
| 768 | } |
| 769 | else if (dual_inf_check) { |
| 770 | // Update final information |
| 771 | if (approximate) { |
| 772 | update_status(work->info, OSQP_DUAL_INFEASIBLE_INACCURATE); |
| 773 | } else { |
| 774 | update_status(work->info, OSQP_DUAL_INFEASIBLE); |
| 775 | } |
| 776 | |
| 777 | if (work->settings->scaling && !work->settings->scaled_termination) { |
| 778 | // Update infeasibility certificate |
| 779 | vec_ew_prod(work->scaling->D, work->delta_x, work->delta_x, work->data->n); |
| 780 | } |
| 781 | work->info->obj_val = -OSQP_INFTY; |
| 782 | exitflag = 1; |
| 783 | } |
| 784 | |
| 785 | return exitflag; |
| 786 | } |
| 787 | |
| 788 | |
| 789 | #ifndef EMBEDDED |
| 790 | |
| 791 | c_int validate_data(const OSQPData *data) { |
| 792 | c_int j, ptr; |
| 793 | |
| 794 | if (!data) { |
| 795 | # ifdef PRINTING |
| 796 | c_eprint("Missing data"); |
| 797 | # endif |
| 798 | return 1; |
| 799 | } |
| 800 | |
| 801 | if (!(data->P)) { |
| 802 | # ifdef PRINTING |
| 803 | c_eprint("Missing matrix P"); |
| 804 | # endif |
| 805 | return 1; |
| 806 | } |
| 807 | |
| 808 | if (!(data->A)) { |
| 809 | # ifdef PRINTING |
| 810 | c_eprint("Missing matrix A"); |
| 811 | # endif |
| 812 | return 1; |
| 813 | } |
| 814 | |
| 815 | if (!(data->q)) { |
| 816 | # ifdef PRINTING |
| 817 | c_eprint("Missing vector q"); |
| 818 | # endif |
| 819 | return 1; |
| 820 | } |
| 821 | |
| 822 | // General dimensions Tests |
| 823 | if ((data->n <= 0) || (data->m < 0)) { |
| 824 | # ifdef PRINTING |
| 825 | c_eprint("n must be positive and m nonnegative; n = %i, m = %i", |
| 826 | (int)data->n, (int)data->m); |
| 827 | # endif /* ifdef PRINTING */ |
| 828 | return 1; |
| 829 | } |
| 830 | |
| 831 | // Matrix P |
| 832 | if (data->P->m != data->n) { |
| 833 | # ifdef PRINTING |
| 834 | c_eprint("P does not have dimension n x n with n = %i", (int)data->n); |
| 835 | # endif /* ifdef PRINTING */ |
| 836 | return 1; |
| 837 | } |
| 838 | |
| 839 | if (data->P->m != data->P->n) { |
| 840 | # ifdef PRINTING |
| 841 | c_eprint("P is not square"); |
| 842 | # endif /* ifdef PRINTING */ |
| 843 | return 1; |
| 844 | } |
| 845 | |
| 846 | for (j = 0; j < data->n; j++) { // COLUMN |
| 847 | for (ptr = data->P->p[j]; ptr < data->P->p[j + 1]; ptr++) { |
| 848 | if (data->P->i[ptr] > j) { // if ROW > COLUMN |
| 849 | # ifdef PRINTING |
| 850 | c_eprint("P is not upper triangular"); |
| 851 | # endif /* ifdef PRINTING */ |
| 852 | return 1; |
| 853 | } |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | // Matrix A |
| 858 | if ((data->A->m != data->m) || (data->A->n != data->n)) { |
| 859 | # ifdef PRINTING |
| 860 | c_eprint("A does not have dimension %i x %i", (int)data->m, (int)data->n); |
| 861 | # endif /* ifdef PRINTING */ |
| 862 | return 1; |
| 863 | } |
| 864 | |
| 865 | // Lower and upper bounds |
| 866 | for (j = 0; j < data->m; j++) { |
| 867 | if (data->l[j] > data->u[j]) { |
| 868 | # ifdef PRINTING |
| 869 | c_eprint("Lower bound at index %d is greater than upper bound: %.4e > %.4e", |
| 870 | (int)j, data->l[j], data->u[j]); |
| 871 | # endif /* ifdef PRINTING */ |
| 872 | return 1; |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | // TODO: Complete with other checks |
| 877 | |
| 878 | return 0; |
| 879 | } |
| 880 | |
| 881 | c_int validate_linsys_solver(c_int linsys_solver) { |
| 882 | if ((linsys_solver != QDLDL_SOLVER) && |
| 883 | (linsys_solver != MKL_PARDISO_SOLVER)) { |
| 884 | return 1; |
| 885 | } |
| 886 | |
| 887 | // TODO: Add more solvers in case |
| 888 | |
| 889 | // Valid solver |
| 890 | return 0; |
| 891 | } |
| 892 | |
| 893 | c_int validate_settings(const OSQPSettings *settings) { |
| 894 | if (!settings) { |
| 895 | # ifdef PRINTING |
| 896 | c_eprint("Missing settings!"); |
| 897 | # endif /* ifdef PRINTING */ |
| 898 | return 1; |
| 899 | } |
| 900 | |
| 901 | if (settings->scaling < 0) { |
| 902 | # ifdef PRINTING |
| 903 | c_eprint("scaling must be nonnegative"); |
| 904 | # endif /* ifdef PRINTING */ |
| 905 | return 1; |
| 906 | } |
| 907 | |
| 908 | if ((settings->adaptive_rho != 0) && (settings->adaptive_rho != 1)) { |
| 909 | # ifdef PRINTING |
| 910 | c_eprint("adaptive_rho must be either 0 or 1"); |
| 911 | # endif /* ifdef PRINTING */ |
| 912 | return 1; |
| 913 | } |
| 914 | |
| 915 | if (settings->adaptive_rho_interval < 0) { |
| 916 | # ifdef PRINTING |
| 917 | c_eprint("adaptive_rho_interval must be nonnegative"); |
| 918 | # endif /* ifdef PRINTING */ |
| 919 | return 1; |
| 920 | } |
| 921 | # ifdef PROFILING |
| 922 | |
| 923 | if (settings->adaptive_rho_fraction <= 0) { |
| 924 | # ifdef PRINTING |
| 925 | c_eprint("adaptive_rho_fraction must be positive"); |
| 926 | # endif /* ifdef PRINTING */ |
| 927 | return 1; |
| 928 | } |
| 929 | # endif /* ifdef PROFILING */ |
| 930 | |
| 931 | if (settings->adaptive_rho_tolerance < 1.0) { |
| 932 | # ifdef PRINTING |
| 933 | c_eprint("adaptive_rho_tolerance must be >= 1"); |
| 934 | # endif /* ifdef PRINTING */ |
| 935 | return 1; |
| 936 | } |
| 937 | |
| 938 | if (settings->polish_refine_iter < 0) { |
| 939 | # ifdef PRINTING |
| 940 | c_eprint("polish_refine_iter must be nonnegative"); |
| 941 | # endif /* ifdef PRINTING */ |
| 942 | return 1; |
| 943 | } |
| 944 | |
| 945 | if (settings->rho <= 0.0) { |
| 946 | # ifdef PRINTING |
| 947 | c_eprint("rho must be positive"); |
| 948 | # endif /* ifdef PRINTING */ |
| 949 | return 1; |
| 950 | } |
| 951 | |
| 952 | if (settings->sigma <= 0.0) { |
| 953 | # ifdef PRINTING |
| 954 | c_eprint("sigma must be positive"); |
| 955 | # endif /* ifdef PRINTING */ |
| 956 | return 1; |
| 957 | } |
| 958 | |
| 959 | if (settings->delta <= 0.0) { |
| 960 | # ifdef PRINTING |
| 961 | c_eprint("delta must be positive"); |
| 962 | # endif /* ifdef PRINTING */ |
| 963 | return 1; |
| 964 | } |
| 965 | |
| 966 | if (settings->max_iter <= 0) { |
| 967 | # ifdef PRINTING |
| 968 | c_eprint("max_iter must be positive"); |
| 969 | # endif /* ifdef PRINTING */ |
| 970 | return 1; |
| 971 | } |
| 972 | |
| 973 | if (settings->eps_abs < 0.0) { |
| 974 | # ifdef PRINTING |
| 975 | c_eprint("eps_abs must be nonnegative"); |
| 976 | # endif /* ifdef PRINTING */ |
| 977 | return 1; |
| 978 | } |
| 979 | |
| 980 | if (settings->eps_rel < 0.0) { |
| 981 | # ifdef PRINTING |
| 982 | c_eprint("eps_rel must be nonnegative"); |
| 983 | # endif /* ifdef PRINTING */ |
| 984 | return 1; |
| 985 | } |
| 986 | |
| 987 | if ((settings->eps_rel == 0.0) && |
| 988 | (settings->eps_abs == 0.0)) { |
| 989 | # ifdef PRINTING |
| 990 | c_eprint("at least one of eps_abs and eps_rel must be positive"); |
| 991 | # endif /* ifdef PRINTING */ |
| 992 | return 1; |
| 993 | } |
| 994 | |
| 995 | if (settings->eps_prim_inf <= 0.0) { |
| 996 | # ifdef PRINTING |
| 997 | c_eprint("eps_prim_inf must be positive"); |
| 998 | # endif /* ifdef PRINTING */ |
| 999 | return 1; |
| 1000 | } |
| 1001 | |
| 1002 | if (settings->eps_dual_inf <= 0.0) { |
| 1003 | # ifdef PRINTING |
| 1004 | c_eprint("eps_dual_inf must be positive"); |
| 1005 | # endif /* ifdef PRINTING */ |
| 1006 | return 1; |
| 1007 | } |
| 1008 | |
| 1009 | if ((settings->alpha <= 0.0) || |
| 1010 | (settings->alpha >= 2.0)) { |
| 1011 | # ifdef PRINTING |
| 1012 | c_eprint("alpha must be strictly between 0 and 2"); |
| 1013 | # endif /* ifdef PRINTING */ |
| 1014 | return 1; |
| 1015 | } |
| 1016 | |
| 1017 | if (validate_linsys_solver(settings->linsys_solver)) { |
| 1018 | # ifdef PRINTING |
| 1019 | c_eprint("linsys_solver not recognized"); |
| 1020 | # endif /* ifdef PRINTING */ |
| 1021 | return 1; |
| 1022 | } |
| 1023 | |
| 1024 | if ((settings->verbose != 0) && |
| 1025 | (settings->verbose != 1)) { |
| 1026 | # ifdef PRINTING |
| 1027 | c_eprint("verbose must be either 0 or 1"); |
| 1028 | # endif /* ifdef PRINTING */ |
| 1029 | return 1; |
| 1030 | } |
| 1031 | |
| 1032 | if ((settings->scaled_termination != 0) && |
| 1033 | (settings->scaled_termination != 1)) { |
| 1034 | # ifdef PRINTING |
| 1035 | c_eprint("scaled_termination must be either 0 or 1"); |
| 1036 | # endif /* ifdef PRINTING */ |
| 1037 | return 1; |
| 1038 | } |
| 1039 | |
| 1040 | if (settings->check_termination < 0) { |
| 1041 | # ifdef PRINTING |
| 1042 | c_eprint("check_termination must be nonnegative"); |
| 1043 | # endif /* ifdef PRINTING */ |
| 1044 | return 1; |
| 1045 | } |
| 1046 | |
| 1047 | if ((settings->warm_start != 0) && |
| 1048 | (settings->warm_start != 1)) { |
| 1049 | # ifdef PRINTING |
| 1050 | c_eprint("warm_start must be either 0 or 1"); |
| 1051 | # endif /* ifdef PRINTING */ |
| 1052 | return 1; |
| 1053 | } |
| 1054 | # ifdef PROFILING |
| 1055 | |
| 1056 | if (settings->time_limit < 0.0) { |
| 1057 | # ifdef PRINTING |
| 1058 | c_eprint("time_limit must be nonnegative\n"); |
| 1059 | # endif /* ifdef PRINTING */ |
| 1060 | return 1; |
| 1061 | } |
| 1062 | # endif /* ifdef PROFILING */ |
| 1063 | |
| 1064 | return 0; |
| 1065 | } |
| 1066 | |
| 1067 | #endif // #ifndef EMBEDDED |