Austin Schuh | 9049e20 | 2022-02-20 17:34:16 -0800 | [diff] [blame^] | 1 | Portfolio optimization |
| 2 | ====================== |
| 3 | |
| 4 | |
| 5 | Portfolio optimization seeks to allocate assets in a way that maximizes the risk adjusted return, |
| 6 | |
| 7 | |
| 8 | .. math:: |
| 9 | \begin{array}{ll} |
| 10 | \mbox{maximize} & \mu^T x - \gamma \left( x^T \Sigma x \right) \\ |
| 11 | \mbox{subject to} & \boldsymbol{1}^T x = 1 \\ |
| 12 | & x \ge 0 |
| 13 | \end{array} |
| 14 | |
| 15 | |
| 16 | where :math:`x \in \mathbf{R}^{n}` represents the portfolio, :math:`\mu \in \mathbf{R}^{n}` the vector of expected returns, :math:`\gamma > 0` the risk aversion parameter, and :math:`\Sigma \in \mathbf{S}^{n}_{+}` the risk model covariance matrix. |
| 17 | The risk model is usually assumed to be the sum of a diagonal and a rank :math:`k < n` matrix, |
| 18 | |
| 19 | |
| 20 | .. math:: |
| 21 | \Sigma = F F^T + D, |
| 22 | |
| 23 | |
| 24 | where :math:`F \in \mathbf{R}^{n \times k}` is the factor loading matrix and :math:`D \in \mathbf{S}^{n}_{+}` is a diagonal matrix describing the asset-specific risk. |
| 25 | The resulting problem has the following equivalent form, |
| 26 | |
| 27 | .. math:: |
| 28 | \begin{array}{ll} |
| 29 | \mbox{minimize} & \frac{1}{2} x^T D x + \frac{1}{2} y^T y - \frac{1}{2\gamma}\mu^T x \\ |
| 30 | \mbox{subject to} & y = F^T x \\ |
| 31 | & \boldsymbol{1}^T x = 1 \\ |
| 32 | & x \ge 0 |
| 33 | \end{array} |
| 34 | |
| 35 | |
| 36 | |
| 37 | Python |
| 38 | ------ |
| 39 | |
| 40 | .. code:: python |
| 41 | |
| 42 | import osqp |
| 43 | import numpy as np |
| 44 | import scipy as sp |
| 45 | from scipy import sparse |
| 46 | |
| 47 | # Generate problem data |
| 48 | sp.random.seed(1) |
| 49 | n = 100 |
| 50 | k = 10 |
| 51 | F = sparse.random(n, k, density=0.7, format='csc') |
| 52 | D = sparse.diags(np.random.rand(n) * np.sqrt(k), format='csc') |
| 53 | mu = np.random.randn(n) |
| 54 | gamma = 1 |
| 55 | |
| 56 | # OSQP data |
| 57 | P = sparse.block_diag([D, sparse.eye(k)], format='csc') |
| 58 | q = np.hstack([-mu / (2*gamma), np.zeros(k)]) |
| 59 | A = sparse.vstack([ |
| 60 | sparse.hstack([F.T, -sparse.eye(k)]), |
| 61 | sparse.hstack([sparse.csc_matrix(np.ones((1, n))), sparse.csc_matrix((1, k))]), |
| 62 | sparse.hstack((sparse.eye(n), sparse.csc_matrix((n, k)))) |
| 63 | ], format='csc') |
| 64 | l = np.hstack([np.zeros(k), 1., np.zeros(n)]) |
| 65 | u = np.hstack([np.zeros(k), 1., np.ones(n)]) |
| 66 | |
| 67 | # Create an OSQP object |
| 68 | prob = osqp.OSQP() |
| 69 | |
| 70 | # Setup workspace |
| 71 | prob.setup(P, q, A, l, u) |
| 72 | |
| 73 | # Solve problem |
| 74 | res = prob.solve() |
| 75 | |
| 76 | |
| 77 | |
| 78 | Matlab |
| 79 | ------ |
| 80 | |
| 81 | .. code:: matlab |
| 82 | |
| 83 | % Generate problem data |
| 84 | rng(1) |
| 85 | n = 100; |
| 86 | k = 10; |
| 87 | F = sprandn(n, k, 0.7); |
| 88 | D = sparse(diag( sqrt(k)*rand(n,1) )); |
| 89 | mu = randn(n, 1); |
| 90 | gamma = 1; |
| 91 | |
| 92 | % OSQP data |
| 93 | P = blkdiag(D, speye(k)); |
| 94 | q = [-mu/(2*gamma); zeros(k, 1)]; |
| 95 | A = [F', -speye(k); |
| 96 | ones(1, n), zeros(1, k); |
| 97 | speye(n), sparse(n, k)]; |
| 98 | l = [zeros(k, 1); 1; zeros(n, 1)]; |
| 99 | u = [zeros(k, 1); 1; ones(n, 1)]; |
| 100 | |
| 101 | % Create an OSQP object |
| 102 | prob = osqp; |
| 103 | |
| 104 | % Setup workspace |
| 105 | prob.setup(P, q, A, l, u); |
| 106 | |
| 107 | % Solve problem |
| 108 | res = prob.solve(); |
| 109 | |
| 110 | |
| 111 | |
| 112 | CVXPY |
| 113 | ----- |
| 114 | |
| 115 | .. code:: python |
| 116 | |
| 117 | from cvxpy import * |
| 118 | import numpy as np |
| 119 | import scipy as sp |
| 120 | from scipy import sparse |
| 121 | |
| 122 | # Generate problem data |
| 123 | sp.random.seed(1) |
| 124 | n = 100 |
| 125 | k = 10 |
| 126 | F = sparse.random(n, k, density=0.7, format='csc') |
| 127 | D = sparse.diags(np.random.rand(n) * np.sqrt(k), format='csc') |
| 128 | mu = np.random.randn(n) |
| 129 | gamma = 1 |
| 130 | Sigma = F*F.T + D |
| 131 | |
| 132 | # Define problem |
| 133 | x = Variable(n) |
| 134 | objective = mu.T*x - gamma*quad_form(x, Sigma) |
| 135 | constraints = [sum(x) == 1, x >= 0] |
| 136 | |
| 137 | # Solve with OSQP |
| 138 | Problem(Maximize(objective), constraints).solve(solver=OSQP) |
| 139 | |
| 140 | |
| 141 | |
| 142 | YALMIP |
| 143 | ------ |
| 144 | |
| 145 | .. code:: matlab |
| 146 | |
| 147 | % Generate problem data |
| 148 | rng(1) |
| 149 | n = 100; |
| 150 | k = 10; |
| 151 | F = sprandn(n, k, 0.7); |
| 152 | D = sparse(diag( sqrt(k)*rand(n,1) )); |
| 153 | mu = randn(n, 1); |
| 154 | gamma = 1; |
| 155 | Sigma = F*F' + D; |
| 156 | |
| 157 | % Define problem |
| 158 | x = sdpvar(n, 1); |
| 159 | objective = gamma * (x'*Sigma*x) - mu'*x; |
| 160 | constraints = [sum(x) == 1, x >= 0]; |
| 161 | |
| 162 | % Solve with OSQP |
| 163 | options = sdpsettings('solver', 'osqp'); |
| 164 | optimize(constraints, objective, options); |
| 165 | |