blob: 56adb7e44999158bb8fb1a880dde5020d3a175d1 [file] [log] [blame]
Austin Schuh9049e202022-02-20 17:34:16 -08001Least-squares
2=============
3
4Consider the following constrained least-squares problem
5
6.. math::
7 \begin{array}{ll}
8 \mbox{minimize} & \frac{1}{2} \|Ax - b\|_2^2 \\
9 \mbox{subject to} & 0 \leq x \leq 1
10 \end{array}
11
12The problem has the following equivalent form
13
14.. math::
15 \begin{array}{ll}
16 \mbox{minimize} & \frac{1}{2} y^T y \\
17 \mbox{subject to} & y = A x - b \\
18 & 0 \le x \le 1
19 \end{array}
20
21
22
23Python
24------
25
26.. code:: python
27
28 import osqp
29 import numpy as np
30 import scipy as sp
31 from scipy import sparse
32
33 # Generate problem data
34 sp.random.seed(1)
35 m = 30
36 n = 20
37 Ad = sparse.random(m, n, density=0.7, format='csc')
38 b = np.random.randn(m)
39
40 # OSQP data
41 P = sparse.block_diag([sparse.csc_matrix((n, n)), sparse.eye(m)], format='csc')
42 q = np.zeros(n+m)
43 A = sparse.vstack([
44 sparse.hstack([Ad, -sparse.eye(m)]),
45 sparse.hstack([sparse.eye(n), sparse.csc_matrix((n, m))])], format='csc')
46 l = np.hstack([b, np.zeros(n)])
47 u = np.hstack([b, np.ones(n)])
48
49 # Create an OSQP object
50 prob = osqp.OSQP()
51
52 # Setup workspace
53 prob.setup(P, q, A, l, u)
54
55 # Solve problem
56 res = prob.solve()
57
58
59
60Matlab
61------
62
63.. code:: matlab
64
65 % Generate problem data
66 rng(1)
67 m = 30;
68 n = 20;
69 Ad = sprandn(m, n, 0.7);
70 b = randn(m, 1);
71
72 % OSQP data
73 P = blkdiag(sparse(n, n), speye(m));
74 q = zeros(n+m, 1);
75 A = [Ad, -speye(m);
76 speye(n), sparse(n, m)];
77 l = [b; zeros(n, 1)];
78 u = [b; ones(n, 1)];
79
80 % Create an OSQP object
81 prob = osqp;
82
83 % Setup workspace
84 prob.setup(P, q, A, l, u);
85
86 % Solve problem
87 res = prob.solve();
88
89
90
91CVXPY
92-----
93
94.. code:: python
95
96 from cvxpy import *
97 import numpy as np
98 import scipy as sp
99 from scipy import sparse
100
101 # Generate problem data
102 sp.random.seed(1)
103 m = 30
104 n = 20
105 A = sparse.random(m, n, density=0.7, format='csc')
106 b = np.random.randn(m)
107
108 # Define problem
109 x = Variable(n)
110 objective = 0.5*sum_squares(A*x - b)
111 constraints = [x >= 0, x <= 1]
112
113 # Solve with OSQP
114 Problem(Minimize(objective), constraints).solve(solver=OSQP)
115
116
117
118YALMIP
119------
120
121.. code:: matlab
122
123 % Generate data
124 rng(1)
125 m = 30;
126 n = 20;
127 A = sprandn(m, n, 0.7);
128 b = randn(m, 1);
129
130 % Define problem
131 x = sdpvar(n, 1);
132 objective = 0.5*norm(A*x - b)^2;
133 constraints = [ 0 <= x <= 1];
134
135 % Solve with OSQP
136 options = sdpsettings('solver','osqp');
137 optimize(constraints, objective, options);
138