blob: 27ecc160ba393266e6446ddec4c7da22b6f81729 [file] [log] [blame]
James Kuszmaulcdd033e2013-03-02 15:10:43 -08001#!/usr/bin/python
2
3import numpy
4import sys
5from matplotlib import pylab
6import control_loop
James Kuszmaul1a8f3e62013-11-05 19:17:53 -08007import slycot
James Kuszmaulcdd033e2013-03-02 15:10:43 -08008
9class Shooter(control_loop.ControlLoop):
10 def __init__(self):
11 super(Shooter, self).__init__("Shooter")
12 # Stall Torque in N m
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080013 self.stall_torque = 2.42211227883219
James Kuszmaulcdd033e2013-03-02 15:10:43 -080014 # Stall Current in Amps
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080015 self.stall_current = 133
James Kuszmaulcdd033e2013-03-02 15:10:43 -080016 # Free Speed in RPM
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080017 self.free_speed = 4650.0
James Kuszmaulcdd033e2013-03-02 15:10:43 -080018 # Free Current in Amps
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080019 self.free_current = 2.7
James Kuszmaulcdd033e2013-03-02 15:10:43 -080020 # Moment of inertia of the shooter wheel in kg m^2
Austin Schuhe3490622013-03-13 01:24:30 -070021 self.J = 0.0032
James Kuszmaulcdd033e2013-03-02 15:10:43 -080022 # Resistance of the motor, divided by 2 to account for the 2 motors
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080023 self.R = 12.0 / self.stall_current
James Kuszmaulcdd033e2013-03-02 15:10:43 -080024 # Motor velocity constant
Austin Schuh0e38a5d2013-03-03 03:53:35 -080025 self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
James Kuszmaulcdd033e2013-03-02 15:10:43 -080026 (12.0 - self.R * self.free_current))
27 # Torque constant
28 self.Kt = self.stall_torque / self.stall_current
29 # Gear ratio
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080030 self.G = 40.0 / 34.0
James Kuszmaulcdd033e2013-03-02 15:10:43 -080031 # Control loop time step
32 self.dt = 0.01
33
34 # State feedback matrices
Austin Schuh0e38a5d2013-03-03 03:53:35 -080035 self.A_continuous = numpy.matrix(
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080036 [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
Austin Schuh0e38a5d2013-03-03 03:53:35 -080037 self.B_continuous = numpy.matrix(
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080038 [[self.Kt / (self.J * self.G * self.R)]])
39 self.C = numpy.matrix([[1]])
Austin Schuh0e38a5d2013-03-03 03:53:35 -080040 self.D = numpy.matrix([[0]])
James Kuszmaulcdd033e2013-03-02 15:10:43 -080041
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080042 self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
43 self.dt)
James Kuszmaulcdd033e2013-03-02 15:10:43 -080044
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080045 self.InitializeState()
James Kuszmaulcdd033e2013-03-02 15:10:43 -080046
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080047 self.PlaceControllerPoles([.8])
48 # LQR stuff for optimization, if needed.
49 #print self.K
50 #self.R_LQR = numpy.matrix([[1.5]])
51 #self.P = slycot.sb02od(1, 1, self.A, self.B, self.C * self.C.T, self.R, 'D')[0]
52 #self.K = (numpy.linalg.inv(self.R_LQR + self.B.T * self.P * self.B)
53 # * self.B.T * self.P * self.A)
54 #print numpy.linalg.eig(self.A - self.B * self.K)
55
56
57 self.PlaceObserverPoles([0.45])
James Kuszmaulcdd033e2013-03-02 15:10:43 -080058
59 self.U_max = numpy.matrix([[12.0]])
60 self.U_min = numpy.matrix([[-12.0]])
61
62
63def main(argv):
64 # Simulate the response of the system to a step input.
Austin Schuh383878f2013-03-10 01:34:34 -080065 shooter_data = numpy.genfromtxt('shooter/shooter_data.csv', delimiter=',')
James Kuszmaulcdd033e2013-03-02 15:10:43 -080066 shooter = Shooter()
67 simulated_x = []
Austin Schuh383878f2013-03-10 01:34:34 -080068 real_x = []
69 x_vel = []
70 initial_x = shooter_data[0, 2]
71 last_x = initial_x
72 for i in xrange(shooter_data.shape[0]):
73 shooter.Update(numpy.matrix([[shooter_data[i, 1]]]))
James Kuszmaulcdd033e2013-03-02 15:10:43 -080074 simulated_x.append(shooter.X[0, 0])
Austin Schuh383878f2013-03-10 01:34:34 -080075 x_offset = shooter_data[i, 2] - initial_x
Austin Schuhe052d8a2013-03-10 18:58:18 -070076 real_x.append(x_offset)
77 x_vel.append((shooter_data[i, 2] - last_x) * 100.0)
Austin Schuh383878f2013-03-10 01:34:34 -080078 last_x = shooter_data[i, 2]
James Kuszmaulcdd033e2013-03-02 15:10:43 -080079
Austin Schuh383878f2013-03-10 01:34:34 -080080 sim_delay = 1
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080081# pylab.plot(range(sim_delay, shooter_data.shape[0] + sim_delay),
82# simulated_x, label='Simulation')
83# pylab.plot(range(shooter_data.shape[0]), real_x, label='Reality')
84# pylab.plot(range(shooter_data.shape[0]), x_vel, label='Velocity')
85# pylab.legend()
86# pylab.show()
James Kuszmaulcdd033e2013-03-02 15:10:43 -080087
88 # Simulate the closed loop response of the system to a step input.
89 shooter = Shooter()
90 close_loop_x = []
91 close_loop_U = []
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080092 velocity_goal = 400
93 R = numpy.matrix([[velocity_goal]])
94 goal = False
95 for i in pylab.linspace(0,1.99,200):
James Kuszmaulcdd033e2013-03-02 15:10:43 -080096 # Iterate the position up.
James Kuszmaul1a8f3e62013-11-05 19:17:53 -080097 R = numpy.matrix([[velocity_goal]])
98 U = numpy.clip(shooter.K * (R - shooter.X_hat) +
99 (numpy.identity(shooter.A.shape[0]) - shooter.A) * R / shooter.B,
Austin Schuh0e38a5d2013-03-03 03:53:35 -0800100 shooter.U_min, shooter.U_max)
James Kuszmaulcdd033e2013-03-02 15:10:43 -0800101 shooter.UpdateObserver(U)
102 shooter.Update(U)
James Kuszmaul1a8f3e62013-11-05 19:17:53 -0800103 close_loop_x.append(shooter.X[0, 0])
James Kuszmaulcdd033e2013-03-02 15:10:43 -0800104 close_loop_U.append(U[0, 0])
James Kuszmaul1a8f3e62013-11-05 19:17:53 -0800105 if (abs(R[0, 0] - shooter.X[0, 0]) < R[0, 0]* 0.01 and (not goal)):
106 goal = True
107 print i
James Kuszmaulcdd033e2013-03-02 15:10:43 -0800108
Austin Schuh0e38a5d2013-03-03 03:53:35 -0800109 #pylab.plotfile("shooter.csv", (0,1))
James Kuszmaul1a8f3e62013-11-05 19:17:53 -0800110 pylab.plot(pylab.linspace(0,1.99,200), close_loop_U)
Austin Schuh0e38a5d2013-03-03 03:53:35 -0800111 #pylab.plotfile("shooter.csv", (0,2))
James Kuszmaul1a8f3e62013-11-05 19:17:53 -0800112 pylab.plot(pylab.linspace(0,1.99,200), close_loop_x)
James Kuszmaulcdd033e2013-03-02 15:10:43 -0800113 pylab.show()
114
115 # Simulate spin down.
116 spin_down_x = [];
James Kuszmaulcdd033e2013-03-02 15:10:43 -0800117 for _ in xrange(150):
118 U = 0
119 shooter.UpdateObserver(U)
120 shooter.Update(U)
James Kuszmaul1a8f3e62013-11-05 19:17:53 -0800121 spin_down_x.append(shooter.X[0, 0])
James Kuszmaulcdd033e2013-03-02 15:10:43 -0800122
Austin Schuh0e38a5d2013-03-03 03:53:35 -0800123 #pylab.plot(range(150), spin_down_x)
124 #pylab.show()
James Kuszmaulcdd033e2013-03-02 15:10:43 -0800125
Austin Schuh0e38a5d2013-03-03 03:53:35 -0800126 if len(argv) != 3:
127 print "Expected .h file name and .cc file name"
James Kuszmaulcdd033e2013-03-02 15:10:43 -0800128 else:
Austin Schuhe3490622013-03-13 01:24:30 -0700129 loop_writer = control_loop.ControlLoopWriter("Shooter", [shooter])
Austin Schuh0e38a5d2013-03-03 03:53:35 -0800130 if argv[1][-3:] == '.cc':
Austin Schuhe3490622013-03-13 01:24:30 -0700131 loop_writer.Write(argv[2], argv[1])
Austin Schuh0e38a5d2013-03-03 03:53:35 -0800132 else:
Austin Schuhe3490622013-03-13 01:24:30 -0700133 loop_writer.Write(argv[1], argv[2])
James Kuszmaulcdd033e2013-03-02 15:10:43 -0800134
135
136if __name__ == '__main__':
137 sys.exit(main(sys.argv))