| #!/usr/bin/python |
| |
| import numpy |
| import sys |
| from matplotlib import pylab |
| import control_loop |
| import slycot |
| |
| class Shooter(control_loop.ControlLoop): |
| def __init__(self): |
| super(Shooter, self).__init__("Shooter") |
| # Stall Torque in N m |
| self.stall_torque = 2.42211227883219 |
| # Stall Current in Amps |
| self.stall_current = 133 |
| # Free Speed in RPM |
| self.free_speed = 4650.0 |
| # Free Current in Amps |
| self.free_current = 2.7 |
| # Moment of inertia of the shooter wheel in kg m^2 |
| self.J = 0.0032 |
| # Resistance of the motor, divided by 2 to account for the 2 motors |
| self.R = 12.0 / self.stall_current |
| # Motor velocity constant |
| self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| (12.0 - self.R * self.free_current)) |
| # Torque constant |
| self.Kt = self.stall_torque / self.stall_current |
| # Gear ratio |
| self.G = 40.0 / 34.0 |
| # Control loop time step |
| self.dt = 0.01 |
| |
| # State feedback matrices |
| self.A_continuous = numpy.matrix( |
| [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]]) |
| self.B_continuous = numpy.matrix( |
| [[self.Kt / (self.J * self.G * self.R)]]) |
| self.C = numpy.matrix([[1]]) |
| self.D = numpy.matrix([[0]]) |
| |
| self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous, |
| self.dt) |
| |
| self.InitializeState() |
| |
| self.PlaceControllerPoles([.8]) |
| # LQR stuff for optimization, if needed. |
| #print self.K |
| #self.R_LQR = numpy.matrix([[1.5]]) |
| #self.P = slycot.sb02od(1, 1, self.A, self.B, self.C * self.C.T, self.R, 'D')[0] |
| #self.K = (numpy.linalg.inv(self.R_LQR + self.B.T * self.P * self.B) |
| # * self.B.T * self.P * self.A) |
| #print numpy.linalg.eig(self.A - self.B * self.K) |
| |
| |
| self.PlaceObserverPoles([0.45]) |
| |
| self.U_max = numpy.matrix([[12.0]]) |
| self.U_min = numpy.matrix([[-12.0]]) |
| |
| |
| def main(argv): |
| # Simulate the response of the system to a step input. |
| shooter_data = numpy.genfromtxt('shooter/shooter_data.csv', delimiter=',') |
| shooter = Shooter() |
| simulated_x = [] |
| real_x = [] |
| x_vel = [] |
| initial_x = shooter_data[0, 2] |
| last_x = initial_x |
| for i in xrange(shooter_data.shape[0]): |
| shooter.Update(numpy.matrix([[shooter_data[i, 1]]])) |
| simulated_x.append(shooter.X[0, 0]) |
| x_offset = shooter_data[i, 2] - initial_x |
| real_x.append(x_offset) |
| x_vel.append((shooter_data[i, 2] - last_x) * 100.0) |
| last_x = shooter_data[i, 2] |
| |
| sim_delay = 1 |
| # pylab.plot(range(sim_delay, shooter_data.shape[0] + sim_delay), |
| # simulated_x, label='Simulation') |
| # pylab.plot(range(shooter_data.shape[0]), real_x, label='Reality') |
| # pylab.plot(range(shooter_data.shape[0]), x_vel, label='Velocity') |
| # pylab.legend() |
| # pylab.show() |
| |
| # Simulate the closed loop response of the system to a step input. |
| shooter = Shooter() |
| close_loop_x = [] |
| close_loop_U = [] |
| velocity_goal = 400 |
| R = numpy.matrix([[velocity_goal]]) |
| goal = False |
| for i in pylab.linspace(0,1.99,200): |
| # Iterate the position up. |
| R = numpy.matrix([[velocity_goal]]) |
| U = numpy.clip(shooter.K * (R - shooter.X_hat) + |
| (numpy.identity(shooter.A.shape[0]) - shooter.A) * R / shooter.B, |
| shooter.U_min, shooter.U_max) |
| shooter.UpdateObserver(U) |
| shooter.Update(U) |
| close_loop_x.append(shooter.X[0, 0]) |
| close_loop_U.append(U[0, 0]) |
| if (abs(R[0, 0] - shooter.X[0, 0]) < R[0, 0]* 0.01 and (not goal)): |
| goal = True |
| print i |
| |
| #pylab.plotfile("shooter.csv", (0,1)) |
| pylab.plot(pylab.linspace(0,1.99,200), close_loop_U) |
| #pylab.plotfile("shooter.csv", (0,2)) |
| pylab.plot(pylab.linspace(0,1.99,200), close_loop_x) |
| pylab.show() |
| |
| # Simulate spin down. |
| spin_down_x = []; |
| for _ in xrange(150): |
| U = 0 |
| shooter.UpdateObserver(U) |
| shooter.Update(U) |
| spin_down_x.append(shooter.X[0, 0]) |
| |
| #pylab.plot(range(150), spin_down_x) |
| #pylab.show() |
| |
| if len(argv) != 3: |
| print "Expected .h file name and .cc file name" |
| else: |
| loop_writer = control_loop.ControlLoopWriter("Shooter", [shooter]) |
| if argv[1][-3:] == '.cc': |
| loop_writer.Write(argv[2], argv[1]) |
| else: |
| loop_writer.Write(argv[1], argv[2]) |
| |
| |
| if __name__ == '__main__': |
| sys.exit(main(sys.argv)) |