blob: fe20228ca1b59773b6caabe808b938eabcc7fb6a [file] [log] [blame]
James Kuszmaulf254c1a2013-03-10 16:31:26 -07001#!/usr/bin/python
2
3import control_loop
4import numpy
5import sys
6from matplotlib import pylab
7
Austin Schuh8afe35a2013-10-27 10:59:15 -07008
9class CIM(control_loop.ControlLoop):
10 def __init__(self):
11 super(CIM, self).__init__("CIM")
12 # Stall Torque in N m
13 self.stall_torque = 2.42
14 # Stall Current in Amps
15 self.stall_current = 133
16 # Free Speed in RPM
17 self.free_speed = 4650.0
18 # Free Current in Amps
19 self.free_current = 2.7
20 # Moment of inertia of the CIM in kg m^2
21 self.J = 0.0001
22 # Resistance of the motor, divided by 2 to account for the 2 motors
23 self.R = 12.0 / self.stall_current
24 # Motor velocity constant
25 self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
26 (12.0 - self.R * self.free_current))
27 # Torque constant
28 self.Kt = self.stall_torque / self.stall_current
29 # Control loop time step
30 self.dt = 0.01
31
32 # State feedback matrices
33 self.A_continuous = numpy.matrix(
34 [[-self.Kt / self.Kv / (self.J * self.R)]])
35 self.B_continuous = numpy.matrix(
36 [[self.Kt / (self.J * self.R)]])
37 self.C = numpy.matrix([[1]])
38 self.D = numpy.matrix([[0]])
39
40 self.A, self.B = self.ContinuousToDiscrete(self.A_continuous,
41 self.B_continuous, self.dt)
42
43 self.PlaceControllerPoles([0.01])
44
45 self.U_max = numpy.matrix([[12.0]])
46 self.U_min = numpy.matrix([[-12.0]])
47
48 self.InitializeState()
49
50
James Kuszmaulf254c1a2013-03-10 16:31:26 -070051class Drivetrain(control_loop.ControlLoop):
Austin Schuhde4d7fe2013-10-08 22:22:45 -070052 def __init__(self, left_low=True, right_low=True):
James Kuszmaulf254c1a2013-03-10 16:31:26 -070053 super(Drivetrain, self).__init__("Drivetrain")
54 # Stall Torque in N m
55 self.stall_torque = 2.42
56 # Stall Current in Amps
57 self.stall_current = 133
58 # Free Speed in RPM. Used number from last year.
59 self.free_speed = 4650.0
60 # Free Current in Amps
61 self.free_current = 2.7
62 # Moment of inertia of the drivetrain in kg m^2
63 # Just borrowed from last year.
Austin Schuh4352ac62013-03-19 06:23:16 +000064 self.J = 6.4
James Kuszmaulf254c1a2013-03-10 16:31:26 -070065 # Mass of the robot, in kg.
66 self.m = 68
67 # Radius of the robot, in meters (from last year).
68 self.rb = 0.617998644 / 2.0
69 # Radius of the wheels, in meters.
70 self.r = .04445
71 # Resistance of the motor, divided by the number of motors.
Austin Schuh8afe35a2013-10-27 10:59:15 -070072 self.R = (12.0 / self.stall_current / 4 + 0.03) / (0.93 ** 2.0)
James Kuszmaulf254c1a2013-03-10 16:31:26 -070073 # Motor velocity constant
74 self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
75 (12.0 - self.R * self.free_current))
76 # Torque constant
77 self.Kt = self.stall_torque / self.stall_current
78 # Gear ratios
79 self.G_low = 16.0 / 60.0 * 19.0 / 50.0
80 self.G_high = 28.0 / 48.0 * 19.0 / 50.0
Austin Schuhde4d7fe2013-10-08 22:22:45 -070081 if left_low:
82 self.Gl = self.G_low
83 else:
84 self.Gl = self.G_high
85 if right_low:
86 self.Gr = self.G_low
87 else:
88 self.Gr = self.G_high
James Kuszmaulf254c1a2013-03-10 16:31:26 -070089 # Control loop time step
90 self.dt = 0.01
91
92 # These describe the way that a given side of a robot will be influenced
93 # by the other side. Units of 1 / kg.
94 self.msp = 1.0 / self.m + self.rb * self.rb / self.J
95 self.msn = 1.0 / self.m - self.rb * self.rb / self.J
96 # The calculations which we will need for A and B.
Austin Schuhde4d7fe2013-10-08 22:22:45 -070097 self.tcl = -self.Kt / self.Kv / (self.Gl * self.Gl * self.R * self.r * self.r)
98 self.tcr = -self.Kt / self.Kv / (self.Gr * self.Gr * self.R * self.r * self.r)
99 self.mpl = self.Kt / (self.Gl * self.R * self.r)
100 self.mpr = self.Kt / (self.Gr * self.R * self.r)
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700101
102 # State feedback matrices
103 # X will be of the format
Austin Schuhde4d7fe2013-10-08 22:22:45 -0700104 # [[positionl], [velocityl], [positionr], velocityr]]
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700105 self.A_continuous = numpy.matrix(
106 [[0, 1, 0, 0],
Austin Schuhde4d7fe2013-10-08 22:22:45 -0700107 [0, self.msp * self.tcl, 0, self.msn * self.tcr],
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700108 [0, 0, 0, 1],
Austin Schuhde4d7fe2013-10-08 22:22:45 -0700109 [0, self.msn * self.tcl, 0, self.msp * self.tcr]])
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700110 self.B_continuous = numpy.matrix(
111 [[0, 0],
Austin Schuhde4d7fe2013-10-08 22:22:45 -0700112 [self.msp * self.mpl, self.msn * self.mpr],
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700113 [0, 0],
Austin Schuhde4d7fe2013-10-08 22:22:45 -0700114 [self.msn * self.mpl, self.msp * self.mpr]])
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700115 self.C = numpy.matrix([[1, 0, 0, 0],
116 [0, 0, 1, 0]])
117 self.D = numpy.matrix([[0, 0],
118 [0, 0]])
119
Austin Schuh4352ac62013-03-19 06:23:16 +0000120 self.A, self.B = self.ContinuousToDiscrete(
121 self.A_continuous, self.B_continuous, self.dt)
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700122
123 # Poles from last year.
Austin Schuh4352ac62013-03-19 06:23:16 +0000124 self.hp = 0.65
125 self.lp = 0.83
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700126 self.PlaceControllerPoles([self.hp, self.hp, self.lp, self.lp])
127
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700128 self.hlp = 0.07
129 self.llp = 0.09
130 self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp])
131
132 self.U_max = numpy.matrix([[12.0], [12.0]])
133 self.U_min = numpy.matrix([[-12.0], [-12.0]])
Austin Schuh4352ac62013-03-19 06:23:16 +0000134 self.InitializeState()
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700135
136def main(argv):
137 # Simulate the response of the system to a step input.
138 drivetrain = Drivetrain()
139 simulated_left = []
140 simulated_right = []
141 for _ in xrange(100):
142 drivetrain.Update(numpy.matrix([[12.0], [12.0]]))
143 simulated_left.append(drivetrain.X[0, 0])
144 simulated_right.append(drivetrain.X[2, 0])
145
Austin Schuh4352ac62013-03-19 06:23:16 +0000146 #pylab.plot(range(100), simulated_left)
147 #pylab.plot(range(100), simulated_right)
148 #pylab.show()
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700149
150 # Simulate forwards motion.
151 drivetrain = Drivetrain()
152 close_loop_left = []
153 close_loop_right = []
154 R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]])
155 for _ in xrange(100):
156 U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
157 drivetrain.U_min, drivetrain.U_max)
158 drivetrain.UpdateObserver(U)
159 drivetrain.Update(U)
160 close_loop_left.append(drivetrain.X[0, 0])
161 close_loop_right.append(drivetrain.X[2, 0])
162
Austin Schuh4352ac62013-03-19 06:23:16 +0000163 #pylab.plot(range(100), close_loop_left)
164 #pylab.plot(range(100), close_loop_right)
165 #pylab.show()
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700166
167 # Try turning in place
168 drivetrain = Drivetrain()
169 close_loop_left = []
170 close_loop_right = []
171 R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]])
172 for _ in xrange(100):
173 U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
174 drivetrain.U_min, drivetrain.U_max)
175 drivetrain.UpdateObserver(U)
176 drivetrain.Update(U)
177 close_loop_left.append(drivetrain.X[0, 0])
178 close_loop_right.append(drivetrain.X[2, 0])
179
Austin Schuh4352ac62013-03-19 06:23:16 +0000180 #pylab.plot(range(100), close_loop_left)
181 #pylab.plot(range(100), close_loop_right)
182 #pylab.show()
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700183
184 # Try turning just one side.
185 drivetrain = Drivetrain()
186 close_loop_left = []
187 close_loop_right = []
188 R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]])
189 for _ in xrange(100):
190 U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
191 drivetrain.U_min, drivetrain.U_max)
192 drivetrain.UpdateObserver(U)
193 drivetrain.Update(U)
194 close_loop_left.append(drivetrain.X[0, 0])
195 close_loop_right.append(drivetrain.X[2, 0])
196
Austin Schuh4352ac62013-03-19 06:23:16 +0000197 #pylab.plot(range(100), close_loop_left)
198 #pylab.plot(range(100), close_loop_right)
199 #pylab.show()
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700200
201 # Write the generated constants out to a file.
202 if len(argv) != 3:
203 print "Expected .h file name and .cc file name"
204 else:
Austin Schuh4352ac62013-03-19 06:23:16 +0000205 loop_writer = control_loop.ControlLoopWriter("Drivetrain", [drivetrain])
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700206 if argv[1][-3:] == '.cc':
Austin Schuh4352ac62013-03-19 06:23:16 +0000207 loop_writer.Write(argv[2], argv[1])
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700208 else:
Austin Schuh4352ac62013-03-19 06:23:16 +0000209 loop_writer.Write(argv[1], argv[2])
James Kuszmaulf254c1a2013-03-10 16:31:26 -0700210
211if __name__ == '__main__':
212 sys.exit(main(sys.argv))