blob: e5a8217f7a7a188b68780d69620b17517b1a1345 [file] [log] [blame]
James Kuszmaulf254c1a2013-03-10 16:31:26 -07001#!/usr/bin/python
2
3import control_loop
4import numpy
5import sys
6from matplotlib import pylab
7
8class Drivetrain(control_loop.ControlLoop):
9 def __init__(self):
10 super(Drivetrain, self).__init__("Drivetrain")
11 # Stall Torque in N m
12 self.stall_torque = 2.42
13 # Stall Current in Amps
14 self.stall_current = 133
15 # Free Speed in RPM. Used number from last year.
16 self.free_speed = 4650.0
17 # Free Current in Amps
18 self.free_current = 2.7
19 # Moment of inertia of the drivetrain in kg m^2
20 # Just borrowed from last year.
21 self.J = 7.0
22 # Mass of the robot, in kg.
23 self.m = 68
24 # Radius of the robot, in meters (from last year).
25 self.rb = 0.617998644 / 2.0
26 # Radius of the wheels, in meters.
27 self.r = .04445
28 # Resistance of the motor, divided by the number of motors.
29 self.R = 12.0 / self.stall_current / 6
30 # Motor velocity constant
31 self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
32 (12.0 - self.R * self.free_current))
33 # Torque constant
34 self.Kt = self.stall_torque / self.stall_current
35 # Gear ratios
36 self.G_low = 16.0 / 60.0 * 19.0 / 50.0
37 self.G_high = 28.0 / 48.0 * 19.0 / 50.0
38 self.G = self.G_low
39 # Control loop time step
40 self.dt = 0.01
41
42 # These describe the way that a given side of a robot will be influenced
43 # by the other side. Units of 1 / kg.
44 self.msp = 1.0 / self.m + self.rb * self.rb / self.J
45 self.msn = 1.0 / self.m - self.rb * self.rb / self.J
46 # The calculations which we will need for A and B.
47 self.tc = -self.Kt / self.Kv / (self.G * self.G * self.R * self.r * self.r)
48 self.mp = self.Kt / (self.G * self.R * self.r)
49
50 # State feedback matrices
51 # X will be of the format
52 # [[position1], [velocity1], [position2], velocity2]]
53 self.A_continuous = numpy.matrix(
54 [[0, 1, 0, 0],
55 [0, self.msp * self.tc, 0, self.msn * self.tc],
56 [0, 0, 0, 1],
57 [0, self.msn * self.tc, 0, self.msp * self.tc]])
58 self.B_continuous = numpy.matrix(
59 [[0, 0],
60 [self.msp * self.mp, self.msn * self.mp],
61 [0, 0],
62 [self.msn * self.mp, self.msp * self.mp]])
63 self.C = numpy.matrix([[1, 0, 0, 0],
64 [0, 0, 1, 0]])
65 self.D = numpy.matrix([[0, 0],
66 [0, 0]])
67
68 self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
69 self.dt, self.C)
70
71 # Poles from last year.
72 self.hp = 0.8
73 self.lp = 0.85
74 self.PlaceControllerPoles([self.hp, self.hp, self.lp, self.lp])
75
76 print self.K
77
78 self.hlp = 0.07
79 self.llp = 0.09
80 self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp])
81
82 self.U_max = numpy.matrix([[12.0], [12.0]])
83 self.U_min = numpy.matrix([[-12.0], [-12.0]])
84
85def main(argv):
86 # Simulate the response of the system to a step input.
87 drivetrain = Drivetrain()
88 simulated_left = []
89 simulated_right = []
90 for _ in xrange(100):
91 drivetrain.Update(numpy.matrix([[12.0], [12.0]]))
92 simulated_left.append(drivetrain.X[0, 0])
93 simulated_right.append(drivetrain.X[2, 0])
94
95 pylab.plot(range(100), simulated_left)
96 pylab.plot(range(100), simulated_right)
97 pylab.show()
98
99 # Simulate forwards motion.
100 drivetrain = Drivetrain()
101 close_loop_left = []
102 close_loop_right = []
103 R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]])
104 for _ in xrange(100):
105 U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
106 drivetrain.U_min, drivetrain.U_max)
107 drivetrain.UpdateObserver(U)
108 drivetrain.Update(U)
109 close_loop_left.append(drivetrain.X[0, 0])
110 close_loop_right.append(drivetrain.X[2, 0])
111
112 pylab.plot(range(100), close_loop_left)
113 pylab.plot(range(100), close_loop_right)
114 pylab.show()
115
116 # Try turning in place
117 drivetrain = Drivetrain()
118 close_loop_left = []
119 close_loop_right = []
120 R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]])
121 for _ in xrange(100):
122 U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
123 drivetrain.U_min, drivetrain.U_max)
124 drivetrain.UpdateObserver(U)
125 drivetrain.Update(U)
126 close_loop_left.append(drivetrain.X[0, 0])
127 close_loop_right.append(drivetrain.X[2, 0])
128
129 pylab.plot(range(100), close_loop_left)
130 pylab.plot(range(100), close_loop_right)
131 pylab.show()
132
133 # Try turning just one side.
134 drivetrain = Drivetrain()
135 close_loop_left = []
136 close_loop_right = []
137 R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]])
138 for _ in xrange(100):
139 U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat),
140 drivetrain.U_min, drivetrain.U_max)
141 drivetrain.UpdateObserver(U)
142 drivetrain.Update(U)
143 close_loop_left.append(drivetrain.X[0, 0])
144 close_loop_right.append(drivetrain.X[2, 0])
145
146 pylab.plot(range(100), close_loop_left)
147 pylab.plot(range(100), close_loop_right)
148 pylab.show()
149
150 # Write the generated constants out to a file.
151 if len(argv) != 3:
152 print "Expected .h file name and .cc file name"
153 else:
154 if argv[1][-3:] == '.cc':
155 print '.cc file is second'
156 else:
157 drivetrain.DumpHeaderFile(argv[1])
158 drivetrain.DumpCppFile(argv[2], argv[1])
159
160if __name__ == '__main__':
161 sys.exit(main(sys.argv))