James Kuszmaul | f254c1a | 2013-03-10 16:31:26 -0700 | [diff] [blame^] | 1 | #!/usr/bin/python |
| 2 | |
| 3 | import control_loop |
| 4 | import numpy |
| 5 | import sys |
| 6 | from matplotlib import pylab |
| 7 | |
| 8 | class Drivetrain(control_loop.ControlLoop): |
| 9 | def __init__(self): |
| 10 | super(Drivetrain, self).__init__("Drivetrain") |
| 11 | # Stall Torque in N m |
| 12 | self.stall_torque = 2.42 |
| 13 | # Stall Current in Amps |
| 14 | self.stall_current = 133 |
| 15 | # Free Speed in RPM. Used number from last year. |
| 16 | self.free_speed = 4650.0 |
| 17 | # Free Current in Amps |
| 18 | self.free_current = 2.7 |
| 19 | # Moment of inertia of the drivetrain in kg m^2 |
| 20 | # Just borrowed from last year. |
| 21 | self.J = 7.0 |
| 22 | # Mass of the robot, in kg. |
| 23 | self.m = 68 |
| 24 | # Radius of the robot, in meters (from last year). |
| 25 | self.rb = 0.617998644 / 2.0 |
| 26 | # Radius of the wheels, in meters. |
| 27 | self.r = .04445 |
| 28 | # Resistance of the motor, divided by the number of motors. |
| 29 | self.R = 12.0 / self.stall_current / 6 |
| 30 | # Motor velocity constant |
| 31 | self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) / |
| 32 | (12.0 - self.R * self.free_current)) |
| 33 | # Torque constant |
| 34 | self.Kt = self.stall_torque / self.stall_current |
| 35 | # Gear ratios |
| 36 | self.G_low = 16.0 / 60.0 * 19.0 / 50.0 |
| 37 | self.G_high = 28.0 / 48.0 * 19.0 / 50.0 |
| 38 | self.G = self.G_low |
| 39 | # Control loop time step |
| 40 | self.dt = 0.01 |
| 41 | |
| 42 | # These describe the way that a given side of a robot will be influenced |
| 43 | # by the other side. Units of 1 / kg. |
| 44 | self.msp = 1.0 / self.m + self.rb * self.rb / self.J |
| 45 | self.msn = 1.0 / self.m - self.rb * self.rb / self.J |
| 46 | # The calculations which we will need for A and B. |
| 47 | self.tc = -self.Kt / self.Kv / (self.G * self.G * self.R * self.r * self.r) |
| 48 | self.mp = self.Kt / (self.G * self.R * self.r) |
| 49 | |
| 50 | # State feedback matrices |
| 51 | # X will be of the format |
| 52 | # [[position1], [velocity1], [position2], velocity2]] |
| 53 | self.A_continuous = numpy.matrix( |
| 54 | [[0, 1, 0, 0], |
| 55 | [0, self.msp * self.tc, 0, self.msn * self.tc], |
| 56 | [0, 0, 0, 1], |
| 57 | [0, self.msn * self.tc, 0, self.msp * self.tc]]) |
| 58 | self.B_continuous = numpy.matrix( |
| 59 | [[0, 0], |
| 60 | [self.msp * self.mp, self.msn * self.mp], |
| 61 | [0, 0], |
| 62 | [self.msn * self.mp, self.msp * self.mp]]) |
| 63 | self.C = numpy.matrix([[1, 0, 0, 0], |
| 64 | [0, 0, 1, 0]]) |
| 65 | self.D = numpy.matrix([[0, 0], |
| 66 | [0, 0]]) |
| 67 | |
| 68 | self.ContinuousToDiscrete(self.A_continuous, self.B_continuous, |
| 69 | self.dt, self.C) |
| 70 | |
| 71 | # Poles from last year. |
| 72 | self.hp = 0.8 |
| 73 | self.lp = 0.85 |
| 74 | self.PlaceControllerPoles([self.hp, self.hp, self.lp, self.lp]) |
| 75 | |
| 76 | print self.K |
| 77 | |
| 78 | self.hlp = 0.07 |
| 79 | self.llp = 0.09 |
| 80 | self.PlaceObserverPoles([self.hlp, self.hlp, self.llp, self.llp]) |
| 81 | |
| 82 | self.U_max = numpy.matrix([[12.0], [12.0]]) |
| 83 | self.U_min = numpy.matrix([[-12.0], [-12.0]]) |
| 84 | |
| 85 | def main(argv): |
| 86 | # Simulate the response of the system to a step input. |
| 87 | drivetrain = Drivetrain() |
| 88 | simulated_left = [] |
| 89 | simulated_right = [] |
| 90 | for _ in xrange(100): |
| 91 | drivetrain.Update(numpy.matrix([[12.0], [12.0]])) |
| 92 | simulated_left.append(drivetrain.X[0, 0]) |
| 93 | simulated_right.append(drivetrain.X[2, 0]) |
| 94 | |
| 95 | pylab.plot(range(100), simulated_left) |
| 96 | pylab.plot(range(100), simulated_right) |
| 97 | pylab.show() |
| 98 | |
| 99 | # Simulate forwards motion. |
| 100 | drivetrain = Drivetrain() |
| 101 | close_loop_left = [] |
| 102 | close_loop_right = [] |
| 103 | R = numpy.matrix([[1.0], [0.0], [1.0], [0.0]]) |
| 104 | for _ in xrange(100): |
| 105 | U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), |
| 106 | drivetrain.U_min, drivetrain.U_max) |
| 107 | drivetrain.UpdateObserver(U) |
| 108 | drivetrain.Update(U) |
| 109 | close_loop_left.append(drivetrain.X[0, 0]) |
| 110 | close_loop_right.append(drivetrain.X[2, 0]) |
| 111 | |
| 112 | pylab.plot(range(100), close_loop_left) |
| 113 | pylab.plot(range(100), close_loop_right) |
| 114 | pylab.show() |
| 115 | |
| 116 | # Try turning in place |
| 117 | drivetrain = Drivetrain() |
| 118 | close_loop_left = [] |
| 119 | close_loop_right = [] |
| 120 | R = numpy.matrix([[-1.0], [0.0], [1.0], [0.0]]) |
| 121 | for _ in xrange(100): |
| 122 | U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), |
| 123 | drivetrain.U_min, drivetrain.U_max) |
| 124 | drivetrain.UpdateObserver(U) |
| 125 | drivetrain.Update(U) |
| 126 | close_loop_left.append(drivetrain.X[0, 0]) |
| 127 | close_loop_right.append(drivetrain.X[2, 0]) |
| 128 | |
| 129 | pylab.plot(range(100), close_loop_left) |
| 130 | pylab.plot(range(100), close_loop_right) |
| 131 | pylab.show() |
| 132 | |
| 133 | # Try turning just one side. |
| 134 | drivetrain = Drivetrain() |
| 135 | close_loop_left = [] |
| 136 | close_loop_right = [] |
| 137 | R = numpy.matrix([[0.0], [0.0], [1.0], [0.0]]) |
| 138 | for _ in xrange(100): |
| 139 | U = numpy.clip(drivetrain.K * (R - drivetrain.X_hat), |
| 140 | drivetrain.U_min, drivetrain.U_max) |
| 141 | drivetrain.UpdateObserver(U) |
| 142 | drivetrain.Update(U) |
| 143 | close_loop_left.append(drivetrain.X[0, 0]) |
| 144 | close_loop_right.append(drivetrain.X[2, 0]) |
| 145 | |
| 146 | pylab.plot(range(100), close_loop_left) |
| 147 | pylab.plot(range(100), close_loop_right) |
| 148 | pylab.show() |
| 149 | |
| 150 | # Write the generated constants out to a file. |
| 151 | if len(argv) != 3: |
| 152 | print "Expected .h file name and .cc file name" |
| 153 | else: |
| 154 | if argv[1][-3:] == '.cc': |
| 155 | print '.cc file is second' |
| 156 | else: |
| 157 | drivetrain.DumpHeaderFile(argv[1]) |
| 158 | drivetrain.DumpCppFile(argv[2], argv[1]) |
| 159 | |
| 160 | if __name__ == '__main__': |
| 161 | sys.exit(main(sys.argv)) |