Austin Schuh | cb09171 | 2018-02-21 20:01:55 -0800 | [diff] [blame] | 1 | #include "y2018/control_loops/superstructure/arm/arm.h" |
| 2 | |
| 3 | #include <chrono> |
| 4 | #include <iostream> |
| 5 | |
| 6 | #include "aos/common/logging/logging.h" |
| 7 | #include "aos/common/logging/queue_logging.h" |
| 8 | #include "y2018/constants.h" |
| 9 | #include "y2018/control_loops/superstructure/arm/demo_path.h" |
| 10 | #include "y2018/control_loops/superstructure/arm/dynamics.h" |
Austin Schuh | 7dfccf6 | 2018-03-03 21:28:14 -0800 | [diff] [blame^] | 11 | #include "y2018/control_loops/superstructure/arm/generated_graph.h" |
Austin Schuh | cb09171 | 2018-02-21 20:01:55 -0800 | [diff] [blame] | 12 | |
| 13 | namespace y2018 { |
| 14 | namespace control_loops { |
| 15 | namespace superstructure { |
| 16 | namespace arm { |
| 17 | |
| 18 | namespace chrono = ::std::chrono; |
| 19 | using ::aos::monotonic_clock; |
| 20 | |
Austin Schuh | cb09171 | 2018-02-21 20:01:55 -0800 | [diff] [blame] | 21 | Arm::Arm() |
| 22 | : proximal_zeroing_estimator_(constants::GetValues().arm_proximal.zeroing), |
| 23 | distal_zeroing_estimator_(constants::GetValues().arm_distal.zeroing), |
| 24 | alpha_unitizer_((::Eigen::Matrix<double, 2, 2>() << 1.0 / kAlpha0Max(), |
| 25 | 0.0, 0.0, 1.0 / kAlpha1Max()) |
| 26 | .finished()), |
Austin Schuh | 7dfccf6 | 2018-03-03 21:28:14 -0800 | [diff] [blame^] | 27 | search_graph_(MakeSearchGraph(&trajectories_, alpha_unitizer_, kVMax())), |
Austin Schuh | cb09171 | 2018-02-21 20:01:55 -0800 | [diff] [blame] | 28 | // Go to the start of the first trajectory. |
Austin Schuh | 7dfccf6 | 2018-03-03 21:28:14 -0800 | [diff] [blame^] | 29 | follower_(ReadyAboveBoxPoint()) { |
| 30 | int i = 0; |
| 31 | for (const auto &trajectory : trajectories_) { |
| 32 | LOG(INFO, "trajectory length for edge node %d: %f\n", i, |
| 33 | trajectory.path().length()); |
| 34 | ++i; |
Austin Schuh | cb09171 | 2018-02-21 20:01:55 -0800 | [diff] [blame] | 35 | } |
| 36 | } |
| 37 | |
| 38 | void Arm::Reset() { state_ = State::UNINITIALIZED; } |
| 39 | |
| 40 | void Arm::Iterate(const uint32_t *unsafe_goal, |
| 41 | const control_loops::ArmPosition *position, |
| 42 | double *proximal_output, double *distal_output, |
| 43 | bool *release_arm_brake, control_loops::ArmStatus *status) { |
| 44 | ::Eigen::Matrix<double, 2, 1> Y; |
| 45 | |
| 46 | Y << position->proximal.encoder + proximal_offset_, |
| 47 | position->distal.encoder + distal_offset_; |
| 48 | |
| 49 | proximal_zeroing_estimator_.UpdateEstimate(position->proximal); |
| 50 | distal_zeroing_estimator_.UpdateEstimate(position->distal); |
| 51 | |
| 52 | if (proximal_output != nullptr) { |
| 53 | *proximal_output = 0.0; |
| 54 | } |
| 55 | if (distal_output != nullptr) { |
| 56 | *distal_output = 0.0; |
| 57 | } |
| 58 | |
| 59 | arm_ekf_.Correct(Y, kDt()); |
| 60 | |
| 61 | if (::std::abs(arm_ekf_.X_hat(0) - follower_.theta(0)) <= 0.05 && |
| 62 | ::std::abs(arm_ekf_.X_hat(2) - follower_.theta(1)) <= 0.05) { |
| 63 | close_enough_for_full_power_ = true; |
| 64 | } |
| 65 | if (::std::abs(arm_ekf_.X_hat(0) - follower_.theta(0)) >= 1.10 || |
| 66 | ::std::abs(arm_ekf_.X_hat(2) - follower_.theta(1)) >= 1.10) { |
| 67 | close_enough_for_full_power_ = false; |
| 68 | } |
| 69 | |
| 70 | switch (state_) { |
| 71 | case State::UNINITIALIZED: |
| 72 | // Wait in the uninitialized state until the intake is initialized. |
| 73 | LOG(DEBUG, "Uninitialized, waiting for intake\n"); |
| 74 | state_ = State::ZEROING; |
| 75 | proximal_zeroing_estimator_.Reset(); |
| 76 | distal_zeroing_estimator_.Reset(); |
| 77 | // TODO(austin): Go to the nearest node. For now, we are always going to |
| 78 | // go to node 0. |
| 79 | break; |
| 80 | |
| 81 | case State::ZEROING: |
| 82 | // Zero by not moving. |
| 83 | if (proximal_zeroing_estimator_.zeroed() && |
| 84 | distal_zeroing_estimator_.zeroed()) { |
| 85 | state_ = State::RUNNING; |
| 86 | |
| 87 | proximal_offset_ = proximal_zeroing_estimator_.offset(); |
| 88 | distal_offset_ = distal_zeroing_estimator_.offset(); |
| 89 | |
| 90 | Y << position->proximal.encoder + proximal_offset_, |
| 91 | position->distal.encoder + distal_offset_; |
| 92 | |
| 93 | // TODO(austin): Offset ekf rather than reset it. Since we aren't |
| 94 | // moving at this point, it's pretty safe to do this. |
| 95 | ::Eigen::Matrix<double, 4, 1> X; |
| 96 | X << Y(0), 0.0, Y(1), 0.0; |
| 97 | arm_ekf_.Reset(X); |
| 98 | } else { |
| 99 | break; |
| 100 | } |
| 101 | |
| 102 | case State::RUNNING: |
| 103 | // ESTOP if we hit the hard limits. |
| 104 | // TODO(austin): Pick some sane limits. |
| 105 | if (proximal_zeroing_estimator_.error() || |
| 106 | distal_zeroing_estimator_.error()) { |
| 107 | LOG(ERROR, "Zeroing error ESTOP\n"); |
| 108 | state_ = State::ESTOP; |
| 109 | } else if (unsafe_goal != nullptr) { |
| 110 | if (!follower_.has_path()) { |
Austin Schuh | 7dfccf6 | 2018-03-03 21:28:14 -0800 | [diff] [blame^] | 111 | // TODO(austin): Nearest point at the end of Initialize. |
| 112 | // So, get a vector of all the points, loop through them, and find the |
| 113 | // closest one. |
| 114 | |
Austin Schuh | cb09171 | 2018-02-21 20:01:55 -0800 | [diff] [blame] | 115 | // If we don't have a path and are far from the goal, don't update the |
| 116 | // path. |
| 117 | // TODO(austin): Once we get close to our first setpoint, crank the |
| 118 | // power back up. Otherwise we'll be weak at startup. |
| 119 | LOG(INFO, "No path.\n"); |
| 120 | if (!close_enough_for_full_power_) { |
| 121 | break; |
| 122 | } |
| 123 | } |
| 124 | if (current_node_ != *unsafe_goal) { |
| 125 | LOG(INFO, "Goal is different\n"); |
| 126 | if (*unsafe_goal >= search_graph_.num_vertexes()) { |
| 127 | LOG(ERROR, "goal out of range ESTOP\n"); |
| 128 | state_ = State::ESTOP; |
| 129 | break; |
| 130 | } |
| 131 | |
| 132 | if (follower_.path_distance_to_go() > 1e-3) { |
| 133 | LOG(INFO, " Distance to go %f\n", follower_.path_distance_to_go()); |
| 134 | // Still on the old path segment. Can't change yet. |
| 135 | break; |
| 136 | } |
| 137 | |
| 138 | search_graph_.SetGoal(*unsafe_goal); |
| 139 | |
| 140 | size_t min_edge = 0; |
| 141 | double min_cost = -1.0; |
| 142 | for (const SearchGraph::HalfEdge &edge : |
| 143 | search_graph_.Neighbors(current_node_)) { |
| 144 | const double cost = search_graph_.GetCostToGoal(edge.dest); |
| 145 | if (min_cost == -1 || cost < min_cost) { |
| 146 | min_edge = edge.edge_id; |
| 147 | min_cost = cost; |
| 148 | } |
| 149 | } |
| 150 | // Ok, now we know which edge we are on. Figure out the path and |
| 151 | // trajectory. |
| 152 | const SearchGraph::Edge &next_edge = search_graph_.edges()[min_edge]; |
Austin Schuh | 7dfccf6 | 2018-03-03 21:28:14 -0800 | [diff] [blame^] | 153 | LOG(INFO, "Switching from node %d to %d along edge %d\n", |
| 154 | static_cast<int>(current_node_), static_cast<int>(next_edge.end), |
| 155 | static_cast<int>(min_edge)); |
| 156 | follower_.SwitchTrajectory(&trajectories_[min_edge]); |
| 157 | current_node_ = next_edge.end; |
Austin Schuh | cb09171 | 2018-02-21 20:01:55 -0800 | [diff] [blame] | 158 | } |
| 159 | } |
| 160 | break; |
| 161 | |
| 162 | case State::ESTOP: |
| 163 | LOG(ERROR, "Estop\n"); |
| 164 | break; |
| 165 | } |
| 166 | |
| 167 | const bool disable = |
| 168 | ((proximal_output == nullptr) || (distal_output == nullptr) || |
| 169 | (release_arm_brake == nullptr)) || |
| 170 | state_ != State::RUNNING; |
| 171 | if (disable) { |
| 172 | close_enough_for_full_power_ = false; |
| 173 | } |
| 174 | |
| 175 | follower_.Update( |
| 176 | arm_ekf_.X_hat(), disable, kDt(), kVMax(), |
| 177 | close_enough_for_full_power_ ? kOperatingVoltage() : kPathlessVMax()); |
| 178 | LOG(INFO, "Max voltage: %f\n", |
| 179 | close_enough_for_full_power_ ? kOperatingVoltage() : kPathlessVMax()); |
| 180 | status->goal_theta0 = follower_.theta(0); |
| 181 | status->goal_theta1 = follower_.theta(1); |
| 182 | status->goal_omega0 = follower_.omega(0); |
| 183 | status->goal_omega1 = follower_.omega(1); |
| 184 | |
| 185 | status->theta0 = arm_ekf_.X_hat(0); |
| 186 | status->theta1 = arm_ekf_.X_hat(2); |
| 187 | status->omega0 = arm_ekf_.X_hat(1); |
| 188 | status->omega1 = arm_ekf_.X_hat(3); |
| 189 | status->voltage_error0 = arm_ekf_.X_hat(4); |
| 190 | status->voltage_error1 = arm_ekf_.X_hat(5); |
| 191 | |
| 192 | if (!disable) { |
| 193 | *proximal_output = ::std::max( |
| 194 | -kOperatingVoltage(), ::std::min(kOperatingVoltage(), follower_.U(0))); |
| 195 | *distal_output = ::std::max( |
| 196 | -kOperatingVoltage(), ::std::min(kOperatingVoltage(), follower_.U(1))); |
| 197 | *release_arm_brake = true; |
| 198 | } |
| 199 | |
| 200 | status->proximal_estimator_state = |
| 201 | proximal_zeroing_estimator_.GetEstimatorState(); |
| 202 | status->distal_estimator_state = |
| 203 | distal_zeroing_estimator_.GetEstimatorState(); |
| 204 | |
| 205 | status->path_distance_to_go = follower_.path_distance_to_go(); |
| 206 | status->current_node = current_node_; |
| 207 | |
| 208 | status->zeroed = (proximal_zeroing_estimator_.zeroed() && |
| 209 | distal_zeroing_estimator_.zeroed()); |
| 210 | status->estopped = (state_ == State::ESTOP); |
| 211 | status->state = static_cast<int32_t>(state_); |
| 212 | status->failed_solutions = follower_.failed_solutions(); |
| 213 | |
| 214 | arm_ekf_.Predict(follower_.U(), kDt()); |
| 215 | } |
| 216 | |
| 217 | } // namespace arm |
| 218 | } // namespace superstructure |
| 219 | } // namespace control_loops |
| 220 | } // namespace y2018 |