Austin Schuh | cb09171 | 2018-02-21 20:01:55 -0800 | [diff] [blame] | 1 | #include "y2018/control_loops/superstructure/arm/arm.h" |
| 2 | |
| 3 | #include <chrono> |
| 4 | #include <iostream> |
| 5 | |
| 6 | #include "aos/common/logging/logging.h" |
| 7 | #include "aos/common/logging/queue_logging.h" |
| 8 | #include "y2018/constants.h" |
| 9 | #include "y2018/control_loops/superstructure/arm/demo_path.h" |
| 10 | #include "y2018/control_loops/superstructure/arm/dynamics.h" |
| 11 | |
| 12 | namespace y2018 { |
| 13 | namespace control_loops { |
| 14 | namespace superstructure { |
| 15 | namespace arm { |
| 16 | |
| 17 | namespace chrono = ::std::chrono; |
| 18 | using ::aos::monotonic_clock; |
| 19 | |
| 20 | SearchGraph::Edge MakeEdge(::std::vector<TrajectoryPair> *trajectories, |
| 21 | size_t start, size_t end, ::std::unique_ptr<Path> forwards_path, |
| 22 | ::std::unique_ptr<Path> backwards_path) { |
| 23 | trajectories->emplace_back(::std::move(forwards_path), |
| 24 | ::std::move(backwards_path), 0.005); |
| 25 | |
| 26 | return SearchGraph::Edge{start, end, |
| 27 | trajectories->back().forwards.path().length()}; |
| 28 | } |
| 29 | |
| 30 | SearchGraph MakeSearchGraph(::std::vector<TrajectoryPair> *trajectories) { |
| 31 | ::std::vector<SearchGraph::Edge> edges; |
| 32 | |
| 33 | // TODO(austin): Add more trajectories here. |
| 34 | edges.push_back( |
| 35 | MakeEdge(trajectories, 0, 1, MakeReversedDemoPath(), MakeDemoPath())); |
| 36 | |
| 37 | return SearchGraph(2, ::std::move(edges)); |
| 38 | } |
| 39 | |
| 40 | Arm::Arm() |
| 41 | : proximal_zeroing_estimator_(constants::GetValues().arm_proximal.zeroing), |
| 42 | distal_zeroing_estimator_(constants::GetValues().arm_distal.zeroing), |
| 43 | alpha_unitizer_((::Eigen::Matrix<double, 2, 2>() << 1.0 / kAlpha0Max(), |
| 44 | 0.0, 0.0, 1.0 / kAlpha1Max()) |
| 45 | .finished()), |
| 46 | search_graph_(MakeSearchGraph(&trajectories_)), |
| 47 | // Go to the start of the first trajectory. |
| 48 | follower_(trajectories_[0].forwards.path().Theta(0)) { |
| 49 | // TODO(austin): Stop talking about indeces in the list and start talking |
| 50 | // about points/search for the nearest point. |
| 51 | for (TrajectoryPair &trajectory_pair : trajectories_) { |
| 52 | trajectory_pair.forwards.OptimizeTrajectory(alpha_unitizer_, kVMax()); |
| 53 | trajectory_pair.backwards.OptimizeTrajectory(alpha_unitizer_, kVMax()); |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | void Arm::Reset() { state_ = State::UNINITIALIZED; } |
| 58 | |
| 59 | void Arm::Iterate(const uint32_t *unsafe_goal, |
| 60 | const control_loops::ArmPosition *position, |
| 61 | double *proximal_output, double *distal_output, |
| 62 | bool *release_arm_brake, control_loops::ArmStatus *status) { |
| 63 | ::Eigen::Matrix<double, 2, 1> Y; |
| 64 | |
| 65 | Y << position->proximal.encoder + proximal_offset_, |
| 66 | position->distal.encoder + distal_offset_; |
| 67 | |
| 68 | proximal_zeroing_estimator_.UpdateEstimate(position->proximal); |
| 69 | distal_zeroing_estimator_.UpdateEstimate(position->distal); |
| 70 | |
| 71 | if (proximal_output != nullptr) { |
| 72 | *proximal_output = 0.0; |
| 73 | } |
| 74 | if (distal_output != nullptr) { |
| 75 | *distal_output = 0.0; |
| 76 | } |
| 77 | |
| 78 | arm_ekf_.Correct(Y, kDt()); |
| 79 | |
| 80 | if (::std::abs(arm_ekf_.X_hat(0) - follower_.theta(0)) <= 0.05 && |
| 81 | ::std::abs(arm_ekf_.X_hat(2) - follower_.theta(1)) <= 0.05) { |
| 82 | close_enough_for_full_power_ = true; |
| 83 | } |
| 84 | if (::std::abs(arm_ekf_.X_hat(0) - follower_.theta(0)) >= 1.10 || |
| 85 | ::std::abs(arm_ekf_.X_hat(2) - follower_.theta(1)) >= 1.10) { |
| 86 | close_enough_for_full_power_ = false; |
| 87 | } |
| 88 | |
| 89 | switch (state_) { |
| 90 | case State::UNINITIALIZED: |
| 91 | // Wait in the uninitialized state until the intake is initialized. |
| 92 | LOG(DEBUG, "Uninitialized, waiting for intake\n"); |
| 93 | state_ = State::ZEROING; |
| 94 | proximal_zeroing_estimator_.Reset(); |
| 95 | distal_zeroing_estimator_.Reset(); |
| 96 | // TODO(austin): Go to the nearest node. For now, we are always going to |
| 97 | // go to node 0. |
| 98 | break; |
| 99 | |
| 100 | case State::ZEROING: |
| 101 | // Zero by not moving. |
| 102 | if (proximal_zeroing_estimator_.zeroed() && |
| 103 | distal_zeroing_estimator_.zeroed()) { |
| 104 | state_ = State::RUNNING; |
| 105 | |
| 106 | proximal_offset_ = proximal_zeroing_estimator_.offset(); |
| 107 | distal_offset_ = distal_zeroing_estimator_.offset(); |
| 108 | |
| 109 | Y << position->proximal.encoder + proximal_offset_, |
| 110 | position->distal.encoder + distal_offset_; |
| 111 | |
| 112 | // TODO(austin): Offset ekf rather than reset it. Since we aren't |
| 113 | // moving at this point, it's pretty safe to do this. |
| 114 | ::Eigen::Matrix<double, 4, 1> X; |
| 115 | X << Y(0), 0.0, Y(1), 0.0; |
| 116 | arm_ekf_.Reset(X); |
| 117 | } else { |
| 118 | break; |
| 119 | } |
| 120 | |
| 121 | case State::RUNNING: |
| 122 | // ESTOP if we hit the hard limits. |
| 123 | // TODO(austin): Pick some sane limits. |
| 124 | if (proximal_zeroing_estimator_.error() || |
| 125 | distal_zeroing_estimator_.error()) { |
| 126 | LOG(ERROR, "Zeroing error ESTOP\n"); |
| 127 | state_ = State::ESTOP; |
| 128 | } else if (unsafe_goal != nullptr) { |
| 129 | if (!follower_.has_path()) { |
| 130 | // If we don't have a path and are far from the goal, don't update the |
| 131 | // path. |
| 132 | // TODO(austin): Once we get close to our first setpoint, crank the |
| 133 | // power back up. Otherwise we'll be weak at startup. |
| 134 | LOG(INFO, "No path.\n"); |
| 135 | if (!close_enough_for_full_power_) { |
| 136 | break; |
| 137 | } |
| 138 | } |
| 139 | if (current_node_ != *unsafe_goal) { |
| 140 | LOG(INFO, "Goal is different\n"); |
| 141 | if (*unsafe_goal >= search_graph_.num_vertexes()) { |
| 142 | LOG(ERROR, "goal out of range ESTOP\n"); |
| 143 | state_ = State::ESTOP; |
| 144 | break; |
| 145 | } |
| 146 | |
| 147 | if (follower_.path_distance_to_go() > 1e-3) { |
| 148 | LOG(INFO, " Distance to go %f\n", follower_.path_distance_to_go()); |
| 149 | // Still on the old path segment. Can't change yet. |
| 150 | break; |
| 151 | } |
| 152 | |
| 153 | search_graph_.SetGoal(*unsafe_goal); |
| 154 | |
| 155 | size_t min_edge = 0; |
| 156 | double min_cost = -1.0; |
| 157 | for (const SearchGraph::HalfEdge &edge : |
| 158 | search_graph_.Neighbors(current_node_)) { |
| 159 | const double cost = search_graph_.GetCostToGoal(edge.dest); |
| 160 | if (min_cost == -1 || cost < min_cost) { |
| 161 | min_edge = edge.edge_id; |
| 162 | min_cost = cost; |
| 163 | } |
| 164 | } |
| 165 | // Ok, now we know which edge we are on. Figure out the path and |
| 166 | // trajectory. |
| 167 | const SearchGraph::Edge &next_edge = search_graph_.edges()[min_edge]; |
| 168 | if (next_edge.start == current_node_) { |
| 169 | follower_.SwitchTrajectory(&trajectories_[min_edge].forwards); |
| 170 | current_node_ = next_edge.end; |
| 171 | } else { |
| 172 | follower_.SwitchTrajectory(&trajectories_[min_edge].backwards); |
| 173 | current_node_ = next_edge.start; |
| 174 | } |
| 175 | } |
| 176 | } |
| 177 | break; |
| 178 | |
| 179 | case State::ESTOP: |
| 180 | LOG(ERROR, "Estop\n"); |
| 181 | break; |
| 182 | } |
| 183 | |
| 184 | const bool disable = |
| 185 | ((proximal_output == nullptr) || (distal_output == nullptr) || |
| 186 | (release_arm_brake == nullptr)) || |
| 187 | state_ != State::RUNNING; |
| 188 | if (disable) { |
| 189 | close_enough_for_full_power_ = false; |
| 190 | } |
| 191 | |
| 192 | follower_.Update( |
| 193 | arm_ekf_.X_hat(), disable, kDt(), kVMax(), |
| 194 | close_enough_for_full_power_ ? kOperatingVoltage() : kPathlessVMax()); |
| 195 | LOG(INFO, "Max voltage: %f\n", |
| 196 | close_enough_for_full_power_ ? kOperatingVoltage() : kPathlessVMax()); |
| 197 | status->goal_theta0 = follower_.theta(0); |
| 198 | status->goal_theta1 = follower_.theta(1); |
| 199 | status->goal_omega0 = follower_.omega(0); |
| 200 | status->goal_omega1 = follower_.omega(1); |
| 201 | |
| 202 | status->theta0 = arm_ekf_.X_hat(0); |
| 203 | status->theta1 = arm_ekf_.X_hat(2); |
| 204 | status->omega0 = arm_ekf_.X_hat(1); |
| 205 | status->omega1 = arm_ekf_.X_hat(3); |
| 206 | status->voltage_error0 = arm_ekf_.X_hat(4); |
| 207 | status->voltage_error1 = arm_ekf_.X_hat(5); |
| 208 | |
| 209 | if (!disable) { |
| 210 | *proximal_output = ::std::max( |
| 211 | -kOperatingVoltage(), ::std::min(kOperatingVoltage(), follower_.U(0))); |
| 212 | *distal_output = ::std::max( |
| 213 | -kOperatingVoltage(), ::std::min(kOperatingVoltage(), follower_.U(1))); |
| 214 | *release_arm_brake = true; |
| 215 | } |
| 216 | |
| 217 | status->proximal_estimator_state = |
| 218 | proximal_zeroing_estimator_.GetEstimatorState(); |
| 219 | status->distal_estimator_state = |
| 220 | distal_zeroing_estimator_.GetEstimatorState(); |
| 221 | |
| 222 | status->path_distance_to_go = follower_.path_distance_to_go(); |
| 223 | status->current_node = current_node_; |
| 224 | |
| 225 | status->zeroed = (proximal_zeroing_estimator_.zeroed() && |
| 226 | distal_zeroing_estimator_.zeroed()); |
| 227 | status->estopped = (state_ == State::ESTOP); |
| 228 | status->state = static_cast<int32_t>(state_); |
| 229 | status->failed_solutions = follower_.failed_solutions(); |
| 230 | |
| 231 | arm_ekf_.Predict(follower_.U(), kDt()); |
| 232 | } |
| 233 | |
| 234 | } // namespace arm |
| 235 | } // namespace superstructure |
| 236 | } // namespace control_loops |
| 237 | } // namespace y2018 |