Austin Schuh | 7445586 | 2018-02-17 17:14:59 -0800 | [diff] [blame^] | 1 | #ifndef Y2018_CONTROL_LOOPS_SUPERSTRUCTURE_ARM_DYNAMICS_H_ |
| 2 | #define Y2018_CONTROL_LOOPS_SUPERSTRUCTURE_ARM_DYNAMICS_H_ |
| 3 | |
| 4 | #include "Eigen/Dense" |
| 5 | |
| 6 | #include "frc971/control_loops/runge_kutta.h" |
| 7 | |
| 8 | namespace y2018 { |
| 9 | namespace control_loops { |
| 10 | namespace superstructure { |
| 11 | namespace arm { |
| 12 | |
| 13 | // This class captures the dynamics of our system. It doesn't actually need to |
| 14 | // store state yet, so everything can be constexpr and/or static. |
| 15 | class Dynamics { |
| 16 | public: |
| 17 | // Below, 1 refers to the proximal joint, and 2 refers to the distal joint. |
| 18 | // Length of the joints in meters. |
| 19 | static constexpr double kL1 = 46.25 * 0.0254; |
| 20 | static constexpr double kL2 = 41.80 * 0.0254; |
| 21 | |
| 22 | // Mass of the joints in kilograms. |
| 23 | static constexpr double kM1 = 9.34 / 2.2; |
| 24 | static constexpr double kM2 = 9.77 / 2.2; |
| 25 | |
| 26 | // Moment of inertia of the joints in kg m^2 |
| 27 | static constexpr double kJ1 = 2957.05 * 0.0002932545454545454; |
| 28 | static constexpr double kJ2 = 2824.70 * 0.0002932545454545454; |
| 29 | |
| 30 | // Radius of the center of mass of the joints in meters. |
| 31 | static constexpr double r1 = 21.64 * 0.0254; |
| 32 | static constexpr double r2 = 26.70 * 0.0254; |
| 33 | |
| 34 | // Gear ratios for the two joints. |
| 35 | static constexpr double kG1 = 140.0; |
| 36 | static constexpr double kG2 = 90.0; |
| 37 | |
| 38 | // MiniCIM motor constants. |
| 39 | static constexpr double kStallTorque = 1.41; |
| 40 | static constexpr double kFreeSpeed = (5840.0 / 60.0) * 2.0 * M_PI; |
| 41 | static constexpr double kStallCurrent = 89.0; |
| 42 | static constexpr double kResistance = 12.0 / kStallCurrent; |
| 43 | static constexpr double Kv = kFreeSpeed / 12.0; |
| 44 | static constexpr double Kt = kStallTorque / kStallCurrent; |
| 45 | |
| 46 | // Number of motors on the distal joint. |
| 47 | static constexpr double kNumDistalMotors = 2.0; |
| 48 | |
| 49 | static constexpr double kAlpha = kJ1 + r1 * r1 * kM1 + kL1 * kL1 * kM2; |
| 50 | static constexpr double kBeta = kL1 * r2 * kM2; |
| 51 | static constexpr double kGamma = kJ2 + r2 * r2 * kM2; |
| 52 | |
| 53 | // K3, K4 matricies described below. |
| 54 | static const ::Eigen::Matrix<double, 2, 2> K3; |
| 55 | static const ::Eigen::Matrix<double, 2, 2> K4; |
| 56 | |
| 57 | // Generates K1-2 for the arm ODE. |
| 58 | // K1 * d^2 theta / dt^2 + K2 * d theta / dt = K3 * V - K4 * d theta/dt |
| 59 | // These matricies are missing the velocity factor for K2[1, 0], and K2[0, 1]. |
| 60 | // You probbaly want MatriciesForState. |
| 61 | static void NormilizedMatriciesForState( |
| 62 | const ::Eigen::Matrix<double, 4, 1> &X, |
| 63 | ::Eigen::Matrix<double, 2, 2> *K1_result, |
| 64 | ::Eigen::Matrix<double, 2, 2> *K2_result) { |
| 65 | const double angle = X(0, 0) - X(2, 0); |
| 66 | const double s = ::std::sin(angle); |
| 67 | const double c = ::std::cos(angle); |
| 68 | *K1_result << kAlpha, c * kBeta, c * kBeta, kGamma; |
| 69 | *K2_result << 0.0, s * kBeta, -s * kBeta, 0.0; |
| 70 | } |
| 71 | |
| 72 | // Generates K1-2 for the arm ODE. |
| 73 | // K1 * d^2 theta / dt^2 + K2 * d theta / dt = K3 * V - K4 * d theta/dt |
| 74 | static void MatriciesForState(const ::Eigen::Matrix<double, 4, 1> &X, |
| 75 | ::Eigen::Matrix<double, 2, 2> *K1_result, |
| 76 | ::Eigen::Matrix<double, 2, 2> *K2_result) { |
| 77 | NormilizedMatriciesForState(X, K1_result, K2_result); |
| 78 | (*K2_result)(1, 0) *= X(1, 0); |
| 79 | (*K2_result)(0, 1) *= X(3, 0); |
| 80 | } |
| 81 | |
| 82 | // TODO(austin): We may want a way to provide K1 and K2 to save CPU cycles. |
| 83 | |
| 84 | // Calculates the acceleration given the current state and control input. |
| 85 | static const ::Eigen::Matrix<double, 4, 1> Acceleration( |
| 86 | const ::Eigen::Matrix<double, 4, 1> &X, |
| 87 | const ::Eigen::Matrix<double, 2, 1> &U) { |
| 88 | ::Eigen::Matrix<double, 2, 2> K1; |
| 89 | ::Eigen::Matrix<double, 2, 2> K2; |
| 90 | |
| 91 | MatriciesForState(X, &K1, &K2); |
| 92 | |
| 93 | const ::Eigen::Matrix<double, 2, 1> velocity = |
| 94 | (::Eigen::Matrix<double, 2, 1>() << X(1, 0), X(3, 0)).finished(); |
| 95 | |
| 96 | const ::Eigen::Matrix<double, 2, 1> torque = K3 * U - K4 * velocity; |
| 97 | |
| 98 | const ::Eigen::Matrix<double, 2, 1> accel = |
| 99 | K1.inverse() * (torque - K2 * velocity); |
| 100 | |
| 101 | return (::Eigen::Matrix<double, 4, 1>() << X(1, 0), accel(0, 0), X(3, 0), |
| 102 | accel(1, 0)) |
| 103 | .finished(); |
| 104 | } |
| 105 | |
| 106 | // Calculates the voltage required to follow the trajectory. This requires |
| 107 | // knowing the current state, desired angular velocity and acceleration. |
| 108 | static const ::Eigen::Matrix<double, 2, 1> FF_U( |
| 109 | const ::Eigen::Matrix<double, 4, 1> &X, |
| 110 | const ::Eigen::Matrix<double, 2, 1> &omega_t, |
| 111 | const ::Eigen::Matrix<double, 2, 1> &alpha_t) { |
| 112 | ::Eigen::Matrix<double, 2, 2> K1; |
| 113 | ::Eigen::Matrix<double, 2, 2> K2; |
| 114 | |
| 115 | MatriciesForState(X, &K1, &K2); |
| 116 | |
| 117 | return K3.inverse() * (K1 * alpha_t + K2 * omega_t + K4 * omega_t); |
| 118 | } |
| 119 | |
| 120 | static const ::Eigen::Matrix<double, 4, 1> UnboundedDiscreteDynamics( |
| 121 | const ::Eigen::Matrix<double, 4, 1> &X, |
| 122 | const ::Eigen::Matrix<double, 2, 1> &U, double dt) { |
| 123 | return ::frc971::control_loops::RungeKutta(Dynamics::Acceleration, X, U, |
| 124 | dt); |
| 125 | } |
| 126 | }; |
| 127 | |
| 128 | } // namespace arm |
| 129 | } // namespace superstructure |
| 130 | } // namespace control_loops |
| 131 | } // namespace y2018 |
| 132 | |
| 133 | #endif // Y2018_CONTROL_LOOPS_SUPERSTRUCTURE_ARM_DYNAMICS_H_ |