| #ifndef Y2018_CONTROL_LOOPS_SUPERSTRUCTURE_ARM_DYNAMICS_H_ |
| #define Y2018_CONTROL_LOOPS_SUPERSTRUCTURE_ARM_DYNAMICS_H_ |
| |
| #include "Eigen/Dense" |
| |
| #include "frc971/control_loops/runge_kutta.h" |
| |
| namespace y2018 { |
| namespace control_loops { |
| namespace superstructure { |
| namespace arm { |
| |
| // This class captures the dynamics of our system. It doesn't actually need to |
| // store state yet, so everything can be constexpr and/or static. |
| class Dynamics { |
| public: |
| // Below, 1 refers to the proximal joint, and 2 refers to the distal joint. |
| // Length of the joints in meters. |
| static constexpr double kL1 = 46.25 * 0.0254; |
| static constexpr double kL2 = 41.80 * 0.0254; |
| |
| // Mass of the joints in kilograms. |
| static constexpr double kM1 = 9.34 / 2.2; |
| static constexpr double kM2 = 9.77 / 2.2; |
| |
| // Moment of inertia of the joints in kg m^2 |
| static constexpr double kJ1 = 2957.05 * 0.0002932545454545454; |
| static constexpr double kJ2 = 2824.70 * 0.0002932545454545454; |
| |
| // Radius of the center of mass of the joints in meters. |
| static constexpr double r1 = 21.64 * 0.0254; |
| static constexpr double r2 = 26.70 * 0.0254; |
| |
| // Gear ratios for the two joints. |
| static constexpr double kG1 = 140.0; |
| static constexpr double kG2 = 90.0; |
| |
| // MiniCIM motor constants. |
| static constexpr double kStallTorque = 1.41; |
| static constexpr double kFreeSpeed = (5840.0 / 60.0) * 2.0 * M_PI; |
| static constexpr double kStallCurrent = 89.0; |
| static constexpr double kResistance = 12.0 / kStallCurrent; |
| static constexpr double Kv = kFreeSpeed / 12.0; |
| static constexpr double Kt = kStallTorque / kStallCurrent; |
| |
| // Number of motors on the distal joint. |
| static constexpr double kNumDistalMotors = 2.0; |
| |
| static constexpr double kAlpha = kJ1 + r1 * r1 * kM1 + kL1 * kL1 * kM2; |
| static constexpr double kBeta = kL1 * r2 * kM2; |
| static constexpr double kGamma = kJ2 + r2 * r2 * kM2; |
| |
| // K3, K4 matricies described below. |
| static const ::Eigen::Matrix<double, 2, 2> K3; |
| static const ::Eigen::Matrix<double, 2, 2> K4; |
| |
| // Generates K1-2 for the arm ODE. |
| // K1 * d^2 theta / dt^2 + K2 * d theta / dt = K3 * V - K4 * d theta/dt |
| // These matricies are missing the velocity factor for K2[1, 0], and K2[0, 1]. |
| // You probbaly want MatriciesForState. |
| static void NormilizedMatriciesForState( |
| const ::Eigen::Matrix<double, 4, 1> &X, |
| ::Eigen::Matrix<double, 2, 2> *K1_result, |
| ::Eigen::Matrix<double, 2, 2> *K2_result) { |
| const double angle = X(0, 0) - X(2, 0); |
| const double s = ::std::sin(angle); |
| const double c = ::std::cos(angle); |
| *K1_result << kAlpha, c * kBeta, c * kBeta, kGamma; |
| *K2_result << 0.0, s * kBeta, -s * kBeta, 0.0; |
| } |
| |
| // Generates K1-2 for the arm ODE. |
| // K1 * d^2 theta / dt^2 + K2 * d theta / dt = K3 * V - K4 * d theta/dt |
| static void MatriciesForState(const ::Eigen::Matrix<double, 4, 1> &X, |
| ::Eigen::Matrix<double, 2, 2> *K1_result, |
| ::Eigen::Matrix<double, 2, 2> *K2_result) { |
| NormilizedMatriciesForState(X, K1_result, K2_result); |
| (*K2_result)(1, 0) *= X(1, 0); |
| (*K2_result)(0, 1) *= X(3, 0); |
| } |
| |
| // TODO(austin): We may want a way to provide K1 and K2 to save CPU cycles. |
| |
| // Calculates the acceleration given the current state and control input. |
| static const ::Eigen::Matrix<double, 4, 1> Acceleration( |
| const ::Eigen::Matrix<double, 4, 1> &X, |
| const ::Eigen::Matrix<double, 2, 1> &U) { |
| ::Eigen::Matrix<double, 2, 2> K1; |
| ::Eigen::Matrix<double, 2, 2> K2; |
| |
| MatriciesForState(X, &K1, &K2); |
| |
| const ::Eigen::Matrix<double, 2, 1> velocity = |
| (::Eigen::Matrix<double, 2, 1>() << X(1, 0), X(3, 0)).finished(); |
| |
| const ::Eigen::Matrix<double, 2, 1> torque = K3 * U - K4 * velocity; |
| |
| const ::Eigen::Matrix<double, 2, 1> accel = |
| K1.inverse() * (torque - K2 * velocity); |
| |
| return (::Eigen::Matrix<double, 4, 1>() << X(1, 0), accel(0, 0), X(3, 0), |
| accel(1, 0)) |
| .finished(); |
| } |
| |
| // Calculates the voltage required to follow the trajectory. This requires |
| // knowing the current state, desired angular velocity and acceleration. |
| static const ::Eigen::Matrix<double, 2, 1> FF_U( |
| const ::Eigen::Matrix<double, 4, 1> &X, |
| const ::Eigen::Matrix<double, 2, 1> &omega_t, |
| const ::Eigen::Matrix<double, 2, 1> &alpha_t) { |
| ::Eigen::Matrix<double, 2, 2> K1; |
| ::Eigen::Matrix<double, 2, 2> K2; |
| |
| MatriciesForState(X, &K1, &K2); |
| |
| return K3.inverse() * (K1 * alpha_t + K2 * omega_t + K4 * omega_t); |
| } |
| |
| static const ::Eigen::Matrix<double, 4, 1> UnboundedDiscreteDynamics( |
| const ::Eigen::Matrix<double, 4, 1> &X, |
| const ::Eigen::Matrix<double, 2, 1> &U, double dt) { |
| return ::frc971::control_loops::RungeKutta(Dynamics::Acceleration, X, U, |
| dt); |
| } |
| }; |
| |
| } // namespace arm |
| } // namespace superstructure |
| } // namespace control_loops |
| } // namespace y2018 |
| |
| #endif // Y2018_CONTROL_LOOPS_SUPERSTRUCTURE_ARM_DYNAMICS_H_ |