Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_MATRIX_SQUARE_ROOT |
| 11 | #define EIGEN_MATRIX_SQUARE_ROOT |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | /** \ingroup MatrixFunctions_Module |
| 16 | * \brief Class for computing matrix square roots of upper quasi-triangular matrices. |
| 17 | * \tparam MatrixType type of the argument of the matrix square root, |
| 18 | * expected to be an instantiation of the Matrix class template. |
| 19 | * |
| 20 | * This class computes the square root of the upper quasi-triangular |
| 21 | * matrix stored in the upper Hessenberg part of the matrix passed to |
| 22 | * the constructor. |
| 23 | * |
| 24 | * \sa MatrixSquareRoot, MatrixSquareRootTriangular |
| 25 | */ |
| 26 | template <typename MatrixType> |
| 27 | class MatrixSquareRootQuasiTriangular |
| 28 | { |
| 29 | public: |
| 30 | |
| 31 | /** \brief Constructor. |
| 32 | * |
| 33 | * \param[in] A upper quasi-triangular matrix whose square root |
| 34 | * is to be computed. |
| 35 | * |
| 36 | * The class stores a reference to \p A, so it should not be |
| 37 | * changed (or destroyed) before compute() is called. |
| 38 | */ |
| 39 | MatrixSquareRootQuasiTriangular(const MatrixType& A) |
| 40 | : m_A(A) |
| 41 | { |
| 42 | eigen_assert(A.rows() == A.cols()); |
| 43 | } |
| 44 | |
| 45 | /** \brief Compute the matrix square root |
| 46 | * |
| 47 | * \param[out] result square root of \p A, as specified in the constructor. |
| 48 | * |
| 49 | * Only the upper Hessenberg part of \p result is updated, the |
| 50 | * rest is not touched. See MatrixBase::sqrt() for details on |
| 51 | * how this computation is implemented. |
| 52 | */ |
| 53 | template <typename ResultType> void compute(ResultType &result); |
| 54 | |
| 55 | private: |
| 56 | typedef typename MatrixType::Index Index; |
| 57 | typedef typename MatrixType::Scalar Scalar; |
| 58 | |
| 59 | void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T); |
| 60 | void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T); |
| 61 | void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i); |
| 62 | void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, |
| 63 | typename MatrixType::Index i, typename MatrixType::Index j); |
| 64 | void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, |
| 65 | typename MatrixType::Index i, typename MatrixType::Index j); |
| 66 | void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, |
| 67 | typename MatrixType::Index i, typename MatrixType::Index j); |
| 68 | void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, |
| 69 | typename MatrixType::Index i, typename MatrixType::Index j); |
| 70 | |
| 71 | template <typename SmallMatrixType> |
| 72 | static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A, |
| 73 | const SmallMatrixType& B, const SmallMatrixType& C); |
| 74 | |
| 75 | const MatrixType& m_A; |
| 76 | }; |
| 77 | |
| 78 | template <typename MatrixType> |
| 79 | template <typename ResultType> |
| 80 | void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result) |
| 81 | { |
| 82 | result.resize(m_A.rows(), m_A.cols()); |
| 83 | computeDiagonalPartOfSqrt(result, m_A); |
| 84 | computeOffDiagonalPartOfSqrt(result, m_A); |
| 85 | } |
| 86 | |
| 87 | // pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size |
| 88 | // post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T |
| 89 | template <typename MatrixType> |
| 90 | void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT, |
| 91 | const MatrixType& T) |
| 92 | { |
| 93 | using std::sqrt; |
| 94 | const Index size = m_A.rows(); |
| 95 | for (Index i = 0; i < size; i++) { |
| 96 | if (i == size - 1 || T.coeff(i+1, i) == 0) { |
| 97 | eigen_assert(T(i,i) >= 0); |
| 98 | sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i)); |
| 99 | } |
| 100 | else { |
| 101 | compute2x2diagonalBlock(sqrtT, T, i); |
| 102 | ++i; |
| 103 | } |
| 104 | } |
| 105 | } |
| 106 | |
| 107 | // pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T. |
| 108 | // post: sqrtT is the square root of T. |
| 109 | template <typename MatrixType> |
| 110 | void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, |
| 111 | const MatrixType& T) |
| 112 | { |
| 113 | const Index size = m_A.rows(); |
| 114 | for (Index j = 1; j < size; j++) { |
| 115 | if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block |
| 116 | continue; |
| 117 | for (Index i = j-1; i >= 0; i--) { |
| 118 | if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block |
| 119 | continue; |
| 120 | bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0); |
| 121 | bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0); |
| 122 | if (iBlockIs2x2 && jBlockIs2x2) |
| 123 | compute2x2offDiagonalBlock(sqrtT, T, i, j); |
| 124 | else if (iBlockIs2x2 && !jBlockIs2x2) |
| 125 | compute2x1offDiagonalBlock(sqrtT, T, i, j); |
| 126 | else if (!iBlockIs2x2 && jBlockIs2x2) |
| 127 | compute1x2offDiagonalBlock(sqrtT, T, i, j); |
| 128 | else if (!iBlockIs2x2 && !jBlockIs2x2) |
| 129 | compute1x1offDiagonalBlock(sqrtT, T, i, j); |
| 130 | } |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | // pre: T.block(i,i,2,2) has complex conjugate eigenvalues |
| 135 | // post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2) |
| 136 | template <typename MatrixType> |
| 137 | void MatrixSquareRootQuasiTriangular<MatrixType> |
| 138 | ::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i) |
| 139 | { |
| 140 | // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere |
| 141 | // in EigenSolver. If we expose it, we could call it directly from here. |
| 142 | Matrix<Scalar,2,2> block = T.template block<2,2>(i,i); |
| 143 | EigenSolver<Matrix<Scalar,2,2> > es(block); |
| 144 | sqrtT.template block<2,2>(i,i) |
| 145 | = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real(); |
| 146 | } |
| 147 | |
| 148 | // pre: block structure of T is such that (i,j) is a 1x1 block, |
| 149 | // all blocks of sqrtT to left of and below (i,j) are correct |
| 150 | // post: sqrtT(i,j) has the correct value |
| 151 | template <typename MatrixType> |
| 152 | void MatrixSquareRootQuasiTriangular<MatrixType> |
| 153 | ::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, |
| 154 | typename MatrixType::Index i, typename MatrixType::Index j) |
| 155 | { |
| 156 | Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value(); |
| 157 | sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j)); |
| 158 | } |
| 159 | |
| 160 | // similar to compute1x1offDiagonalBlock() |
| 161 | template <typename MatrixType> |
| 162 | void MatrixSquareRootQuasiTriangular<MatrixType> |
| 163 | ::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, |
| 164 | typename MatrixType::Index i, typename MatrixType::Index j) |
| 165 | { |
| 166 | Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j); |
| 167 | if (j-i > 1) |
| 168 | rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2); |
| 169 | Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity(); |
| 170 | A += sqrtT.template block<2,2>(j,j).transpose(); |
| 171 | sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose()); |
| 172 | } |
| 173 | |
| 174 | // similar to compute1x1offDiagonalBlock() |
| 175 | template <typename MatrixType> |
| 176 | void MatrixSquareRootQuasiTriangular<MatrixType> |
| 177 | ::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, |
| 178 | typename MatrixType::Index i, typename MatrixType::Index j) |
| 179 | { |
| 180 | Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j); |
| 181 | if (j-i > 2) |
| 182 | rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1); |
| 183 | Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity(); |
| 184 | A += sqrtT.template block<2,2>(i,i); |
| 185 | sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs); |
| 186 | } |
| 187 | |
| 188 | // similar to compute1x1offDiagonalBlock() |
| 189 | template <typename MatrixType> |
| 190 | void MatrixSquareRootQuasiTriangular<MatrixType> |
| 191 | ::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, |
| 192 | typename MatrixType::Index i, typename MatrixType::Index j) |
| 193 | { |
| 194 | Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i); |
| 195 | Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j); |
| 196 | Matrix<Scalar,2,2> C = T.template block<2,2>(i,j); |
| 197 | if (j-i > 2) |
| 198 | C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2); |
| 199 | Matrix<Scalar,2,2> X; |
| 200 | solveAuxiliaryEquation(X, A, B, C); |
| 201 | sqrtT.template block<2,2>(i,j) = X; |
| 202 | } |
| 203 | |
| 204 | // solves the equation A X + X B = C where all matrices are 2-by-2 |
| 205 | template <typename MatrixType> |
| 206 | template <typename SmallMatrixType> |
| 207 | void MatrixSquareRootQuasiTriangular<MatrixType> |
| 208 | ::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A, |
| 209 | const SmallMatrixType& B, const SmallMatrixType& C) |
| 210 | { |
| 211 | EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value), |
| 212 | EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT); |
| 213 | |
| 214 | Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero(); |
| 215 | coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0); |
| 216 | coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1); |
| 217 | coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0); |
| 218 | coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1); |
| 219 | coeffMatrix.coeffRef(0,1) = B.coeff(1,0); |
| 220 | coeffMatrix.coeffRef(0,2) = A.coeff(0,1); |
| 221 | coeffMatrix.coeffRef(1,0) = B.coeff(0,1); |
| 222 | coeffMatrix.coeffRef(1,3) = A.coeff(0,1); |
| 223 | coeffMatrix.coeffRef(2,0) = A.coeff(1,0); |
| 224 | coeffMatrix.coeffRef(2,3) = B.coeff(1,0); |
| 225 | coeffMatrix.coeffRef(3,1) = A.coeff(1,0); |
| 226 | coeffMatrix.coeffRef(3,2) = B.coeff(0,1); |
| 227 | |
| 228 | Matrix<Scalar,4,1> rhs; |
| 229 | rhs.coeffRef(0) = C.coeff(0,0); |
| 230 | rhs.coeffRef(1) = C.coeff(0,1); |
| 231 | rhs.coeffRef(2) = C.coeff(1,0); |
| 232 | rhs.coeffRef(3) = C.coeff(1,1); |
| 233 | |
| 234 | Matrix<Scalar,4,1> result; |
| 235 | result = coeffMatrix.fullPivLu().solve(rhs); |
| 236 | |
| 237 | X.coeffRef(0,0) = result.coeff(0); |
| 238 | X.coeffRef(0,1) = result.coeff(1); |
| 239 | X.coeffRef(1,0) = result.coeff(2); |
| 240 | X.coeffRef(1,1) = result.coeff(3); |
| 241 | } |
| 242 | |
| 243 | |
| 244 | /** \ingroup MatrixFunctions_Module |
| 245 | * \brief Class for computing matrix square roots of upper triangular matrices. |
| 246 | * \tparam MatrixType type of the argument of the matrix square root, |
| 247 | * expected to be an instantiation of the Matrix class template. |
| 248 | * |
| 249 | * This class computes the square root of the upper triangular matrix |
| 250 | * stored in the upper triangular part (including the diagonal) of |
| 251 | * the matrix passed to the constructor. |
| 252 | * |
| 253 | * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular |
| 254 | */ |
| 255 | template <typename MatrixType> |
| 256 | class MatrixSquareRootTriangular |
| 257 | { |
| 258 | public: |
| 259 | MatrixSquareRootTriangular(const MatrixType& A) |
| 260 | : m_A(A) |
| 261 | { |
| 262 | eigen_assert(A.rows() == A.cols()); |
| 263 | } |
| 264 | |
| 265 | /** \brief Compute the matrix square root |
| 266 | * |
| 267 | * \param[out] result square root of \p A, as specified in the constructor. |
| 268 | * |
| 269 | * Only the upper triangular part (including the diagonal) of |
| 270 | * \p result is updated, the rest is not touched. See |
| 271 | * MatrixBase::sqrt() for details on how this computation is |
| 272 | * implemented. |
| 273 | */ |
| 274 | template <typename ResultType> void compute(ResultType &result); |
| 275 | |
| 276 | private: |
| 277 | const MatrixType& m_A; |
| 278 | }; |
| 279 | |
| 280 | template <typename MatrixType> |
| 281 | template <typename ResultType> |
| 282 | void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result) |
| 283 | { |
| 284 | using std::sqrt; |
| 285 | |
| 286 | // Compute square root of m_A and store it in upper triangular part of result |
| 287 | // This uses that the square root of triangular matrices can be computed directly. |
| 288 | result.resize(m_A.rows(), m_A.cols()); |
| 289 | typedef typename MatrixType::Index Index; |
| 290 | for (Index i = 0; i < m_A.rows(); i++) { |
| 291 | result.coeffRef(i,i) = sqrt(m_A.coeff(i,i)); |
| 292 | } |
| 293 | for (Index j = 1; j < m_A.cols(); j++) { |
| 294 | for (Index i = j-1; i >= 0; i--) { |
| 295 | typedef typename MatrixType::Scalar Scalar; |
| 296 | // if i = j-1, then segment has length 0 so tmp = 0 |
| 297 | Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value(); |
| 298 | // denominator may be zero if original matrix is singular |
| 299 | result.coeffRef(i,j) = (m_A.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j)); |
| 300 | } |
| 301 | } |
| 302 | } |
| 303 | |
| 304 | |
| 305 | /** \ingroup MatrixFunctions_Module |
| 306 | * \brief Class for computing matrix square roots of general matrices. |
| 307 | * \tparam MatrixType type of the argument of the matrix square root, |
| 308 | * expected to be an instantiation of the Matrix class template. |
| 309 | * |
| 310 | * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt() |
| 311 | */ |
| 312 | template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> |
| 313 | class MatrixSquareRoot |
| 314 | { |
| 315 | public: |
| 316 | |
| 317 | /** \brief Constructor. |
| 318 | * |
| 319 | * \param[in] A matrix whose square root is to be computed. |
| 320 | * |
| 321 | * The class stores a reference to \p A, so it should not be |
| 322 | * changed (or destroyed) before compute() is called. |
| 323 | */ |
| 324 | MatrixSquareRoot(const MatrixType& A); |
| 325 | |
| 326 | /** \brief Compute the matrix square root |
| 327 | * |
| 328 | * \param[out] result square root of \p A, as specified in the constructor. |
| 329 | * |
| 330 | * See MatrixBase::sqrt() for details on how this computation is |
| 331 | * implemented. |
| 332 | */ |
| 333 | template <typename ResultType> void compute(ResultType &result); |
| 334 | }; |
| 335 | |
| 336 | |
| 337 | // ********** Partial specialization for real matrices ********** |
| 338 | |
| 339 | template <typename MatrixType> |
| 340 | class MatrixSquareRoot<MatrixType, 0> |
| 341 | { |
| 342 | public: |
| 343 | |
| 344 | MatrixSquareRoot(const MatrixType& A) |
| 345 | : m_A(A) |
| 346 | { |
| 347 | eigen_assert(A.rows() == A.cols()); |
| 348 | } |
| 349 | |
| 350 | template <typename ResultType> void compute(ResultType &result) |
| 351 | { |
| 352 | // Compute Schur decomposition of m_A |
| 353 | const RealSchur<MatrixType> schurOfA(m_A); |
| 354 | const MatrixType& T = schurOfA.matrixT(); |
| 355 | const MatrixType& U = schurOfA.matrixU(); |
| 356 | |
| 357 | // Compute square root of T |
| 358 | MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.cols()); |
| 359 | MatrixSquareRootQuasiTriangular<MatrixType>(T).compute(sqrtT); |
| 360 | |
| 361 | // Compute square root of m_A |
| 362 | result = U * sqrtT * U.adjoint(); |
| 363 | } |
| 364 | |
| 365 | private: |
| 366 | const MatrixType& m_A; |
| 367 | }; |
| 368 | |
| 369 | |
| 370 | // ********** Partial specialization for complex matrices ********** |
| 371 | |
| 372 | template <typename MatrixType> |
| 373 | class MatrixSquareRoot<MatrixType, 1> |
| 374 | { |
| 375 | public: |
| 376 | |
| 377 | MatrixSquareRoot(const MatrixType& A) |
| 378 | : m_A(A) |
| 379 | { |
| 380 | eigen_assert(A.rows() == A.cols()); |
| 381 | } |
| 382 | |
| 383 | template <typename ResultType> void compute(ResultType &result) |
| 384 | { |
| 385 | // Compute Schur decomposition of m_A |
| 386 | const ComplexSchur<MatrixType> schurOfA(m_A); |
| 387 | const MatrixType& T = schurOfA.matrixT(); |
| 388 | const MatrixType& U = schurOfA.matrixU(); |
| 389 | |
| 390 | // Compute square root of T |
| 391 | MatrixType sqrtT; |
| 392 | MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT); |
| 393 | |
| 394 | // Compute square root of m_A |
| 395 | result = U * (sqrtT.template triangularView<Upper>() * U.adjoint()); |
| 396 | } |
| 397 | |
| 398 | private: |
| 399 | const MatrixType& m_A; |
| 400 | }; |
| 401 | |
| 402 | |
| 403 | /** \ingroup MatrixFunctions_Module |
| 404 | * |
| 405 | * \brief Proxy for the matrix square root of some matrix (expression). |
| 406 | * |
| 407 | * \tparam Derived Type of the argument to the matrix square root. |
| 408 | * |
| 409 | * This class holds the argument to the matrix square root until it |
| 410 | * is assigned or evaluated for some other reason (so the argument |
| 411 | * should not be changed in the meantime). It is the return type of |
| 412 | * MatrixBase::sqrt() and most of the time this is the only way it is |
| 413 | * used. |
| 414 | */ |
| 415 | template<typename Derived> class MatrixSquareRootReturnValue |
| 416 | : public ReturnByValue<MatrixSquareRootReturnValue<Derived> > |
| 417 | { |
| 418 | typedef typename Derived::Index Index; |
| 419 | public: |
| 420 | /** \brief Constructor. |
| 421 | * |
| 422 | * \param[in] src %Matrix (expression) forming the argument of the |
| 423 | * matrix square root. |
| 424 | */ |
| 425 | MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { } |
| 426 | |
| 427 | /** \brief Compute the matrix square root. |
| 428 | * |
| 429 | * \param[out] result the matrix square root of \p src in the |
| 430 | * constructor. |
| 431 | */ |
| 432 | template <typename ResultType> |
| 433 | inline void evalTo(ResultType& result) const |
| 434 | { |
| 435 | const typename Derived::PlainObject srcEvaluated = m_src.eval(); |
| 436 | MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated); |
| 437 | me.compute(result); |
| 438 | } |
| 439 | |
| 440 | Index rows() const { return m_src.rows(); } |
| 441 | Index cols() const { return m_src.cols(); } |
| 442 | |
| 443 | protected: |
| 444 | const Derived& m_src; |
| 445 | private: |
| 446 | MatrixSquareRootReturnValue& operator=(const MatrixSquareRootReturnValue&); |
| 447 | }; |
| 448 | |
| 449 | namespace internal { |
| 450 | template<typename Derived> |
| 451 | struct traits<MatrixSquareRootReturnValue<Derived> > |
| 452 | { |
| 453 | typedef typename Derived::PlainObject ReturnType; |
| 454 | }; |
| 455 | } |
| 456 | |
| 457 | template <typename Derived> |
| 458 | const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const |
| 459 | { |
| 460 | eigen_assert(rows() == cols()); |
| 461 | return MatrixSquareRootReturnValue<Derived>(derived()); |
| 462 | } |
| 463 | |
| 464 | } // end namespace Eigen |
| 465 | |
| 466 | #endif // EIGEN_MATRIX_FUNCTION |