Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
new file mode 100644
index 0000000..b48ea9d
--- /dev/null
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
@@ -0,0 +1,466 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_MATRIX_SQUARE_ROOT
+#define EIGEN_MATRIX_SQUARE_ROOT
+
+namespace Eigen { 
+
+/** \ingroup MatrixFunctions_Module
+  * \brief Class for computing matrix square roots of upper quasi-triangular matrices.
+  * \tparam  MatrixType  type of the argument of the matrix square root,
+  *                      expected to be an instantiation of the Matrix class template.
+  *
+  * This class computes the square root of the upper quasi-triangular
+  * matrix stored in the upper Hessenberg part of the matrix passed to
+  * the constructor.
+  *
+  * \sa MatrixSquareRoot, MatrixSquareRootTriangular
+  */
+template <typename MatrixType>
+class MatrixSquareRootQuasiTriangular
+{
+  public:
+
+    /** \brief Constructor. 
+      *
+      * \param[in]  A  upper quasi-triangular matrix whose square root 
+      *                is to be computed.
+      *
+      * The class stores a reference to \p A, so it should not be
+      * changed (or destroyed) before compute() is called.
+      */
+    MatrixSquareRootQuasiTriangular(const MatrixType& A) 
+      : m_A(A) 
+    {
+      eigen_assert(A.rows() == A.cols());
+    }
+    
+    /** \brief Compute the matrix square root
+      *
+      * \param[out] result  square root of \p A, as specified in the constructor.
+      *
+      * Only the upper Hessenberg part of \p result is updated, the
+      * rest is not touched.  See MatrixBase::sqrt() for details on
+      * how this computation is implemented.
+      */
+    template <typename ResultType> void compute(ResultType &result);    
+    
+  private:
+    typedef typename MatrixType::Index Index;
+    typedef typename MatrixType::Scalar Scalar;
+    
+    void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
+    void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
+    void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
+    void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
+				  typename MatrixType::Index i, typename MatrixType::Index j);
+    void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
+				  typename MatrixType::Index i, typename MatrixType::Index j);
+    void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
+				  typename MatrixType::Index i, typename MatrixType::Index j);
+    void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
+				  typename MatrixType::Index i, typename MatrixType::Index j);
+  
+    template <typename SmallMatrixType>
+    static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A, 
+				     const SmallMatrixType& B, const SmallMatrixType& C);
+  
+    const MatrixType& m_A;
+};
+
+template <typename MatrixType>
+template <typename ResultType> 
+void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result)
+{
+  result.resize(m_A.rows(), m_A.cols());
+  computeDiagonalPartOfSqrt(result, m_A);
+  computeOffDiagonalPartOfSqrt(result, m_A);
+}
+
+// pre:  T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
+// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT, 
+									  const MatrixType& T)
+{
+  using std::sqrt;
+  const Index size = m_A.rows();
+  for (Index i = 0; i < size; i++) {
+    if (i == size - 1 || T.coeff(i+1, i) == 0) {
+      eigen_assert(T(i,i) >= 0);
+      sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
+    }
+    else {
+      compute2x2diagonalBlock(sqrtT, T, i);
+      ++i;
+    }
+  }
+}
+
+// pre:  T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
+// post: sqrtT is the square root of T.
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, 
+									     const MatrixType& T)
+{
+  const Index size = m_A.rows();
+  for (Index j = 1; j < size; j++) {
+      if (T.coeff(j, j-1) != 0)  // if T(j-1:j, j-1:j) is a 2-by-2 block
+	continue;
+    for (Index i = j-1; i >= 0; i--) {
+      if (i > 0 && T.coeff(i, i-1) != 0)  // if T(i-1:i, i-1:i) is a 2-by-2 block
+	continue;
+      bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
+      bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
+      if (iBlockIs2x2 && jBlockIs2x2) 
+	compute2x2offDiagonalBlock(sqrtT, T, i, j);
+      else if (iBlockIs2x2 && !jBlockIs2x2) 
+	compute2x1offDiagonalBlock(sqrtT, T, i, j);
+      else if (!iBlockIs2x2 && jBlockIs2x2) 
+	compute1x2offDiagonalBlock(sqrtT, T, i, j);
+      else if (!iBlockIs2x2 && !jBlockIs2x2) 
+	compute1x1offDiagonalBlock(sqrtT, T, i, j);
+    }
+  }
+}
+
+// pre:  T.block(i,i,2,2) has complex conjugate eigenvalues
+// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+     ::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i)
+{
+  // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
+  //       in EigenSolver. If we expose it, we could call it directly from here.
+  Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
+  EigenSolver<Matrix<Scalar,2,2> > es(block);
+  sqrtT.template block<2,2>(i,i)
+    = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
+}
+
+// pre:  block structure of T is such that (i,j) is a 1x1 block,
+//       all blocks of sqrtT to left of and below (i,j) are correct
+// post: sqrtT(i,j) has the correct value
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+     ::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
+				  typename MatrixType::Index i, typename MatrixType::Index j)
+{
+  Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
+  sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
+}
+
+// similar to compute1x1offDiagonalBlock()
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+     ::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
+				  typename MatrixType::Index i, typename MatrixType::Index j)
+{
+  Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
+  if (j-i > 1)
+    rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
+  Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
+  A += sqrtT.template block<2,2>(j,j).transpose();
+  sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
+}
+
+// similar to compute1x1offDiagonalBlock()
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+     ::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
+				  typename MatrixType::Index i, typename MatrixType::Index j)
+{
+  Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
+  if (j-i > 2)
+    rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
+  Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
+  A += sqrtT.template block<2,2>(i,i);
+  sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
+}
+
+// similar to compute1x1offDiagonalBlock()
+template <typename MatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+     ::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
+				  typename MatrixType::Index i, typename MatrixType::Index j)
+{
+  Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
+  Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
+  Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
+  if (j-i > 2)
+    C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
+  Matrix<Scalar,2,2> X;
+  solveAuxiliaryEquation(X, A, B, C);
+  sqrtT.template block<2,2>(i,j) = X;
+}
+
+// solves the equation A X + X B = C where all matrices are 2-by-2
+template <typename MatrixType>
+template <typename SmallMatrixType>
+void MatrixSquareRootQuasiTriangular<MatrixType>
+     ::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
+			      const SmallMatrixType& B, const SmallMatrixType& C)
+{
+  EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
+		      EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT);
+
+  Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
+  coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
+  coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
+  coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
+  coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
+  coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
+  coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
+  coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
+  coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
+  coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
+  coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
+  coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
+  coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
+  
+  Matrix<Scalar,4,1> rhs;
+  rhs.coeffRef(0) = C.coeff(0,0);
+  rhs.coeffRef(1) = C.coeff(0,1);
+  rhs.coeffRef(2) = C.coeff(1,0);
+  rhs.coeffRef(3) = C.coeff(1,1);
+  
+  Matrix<Scalar,4,1> result;
+  result = coeffMatrix.fullPivLu().solve(rhs);
+
+  X.coeffRef(0,0) = result.coeff(0);
+  X.coeffRef(0,1) = result.coeff(1);
+  X.coeffRef(1,0) = result.coeff(2);
+  X.coeffRef(1,1) = result.coeff(3);
+}
+
+
+/** \ingroup MatrixFunctions_Module
+  * \brief Class for computing matrix square roots of upper triangular matrices.
+  * \tparam  MatrixType  type of the argument of the matrix square root,
+  *                      expected to be an instantiation of the Matrix class template.
+  *
+  * This class computes the square root of the upper triangular matrix
+  * stored in the upper triangular part (including the diagonal) of
+  * the matrix passed to the constructor.
+  *
+  * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
+  */
+template <typename MatrixType>
+class MatrixSquareRootTriangular
+{
+  public:
+    MatrixSquareRootTriangular(const MatrixType& A) 
+      : m_A(A) 
+    {
+      eigen_assert(A.rows() == A.cols());
+    }
+
+    /** \brief Compute the matrix square root
+      *
+      * \param[out] result  square root of \p A, as specified in the constructor.
+      *
+      * Only the upper triangular part (including the diagonal) of 
+      * \p result is updated, the rest is not touched.  See
+      * MatrixBase::sqrt() for details on how this computation is
+      * implemented.
+      */
+    template <typename ResultType> void compute(ResultType &result);    
+
+ private:
+    const MatrixType& m_A;
+};
+
+template <typename MatrixType>
+template <typename ResultType> 
+void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result)
+{
+  using std::sqrt;
+
+  // Compute square root of m_A and store it in upper triangular part of result
+  // This uses that the square root of triangular matrices can be computed directly.
+  result.resize(m_A.rows(), m_A.cols());
+  typedef typename MatrixType::Index Index;
+  for (Index i = 0; i < m_A.rows(); i++) {
+    result.coeffRef(i,i) = sqrt(m_A.coeff(i,i));
+  }
+  for (Index j = 1; j < m_A.cols(); j++) {
+    for (Index i = j-1; i >= 0; i--) {
+      typedef typename MatrixType::Scalar Scalar;
+      // if i = j-1, then segment has length 0 so tmp = 0
+      Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
+      // denominator may be zero if original matrix is singular
+      result.coeffRef(i,j) = (m_A.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
+    }
+  }
+}
+
+
+/** \ingroup MatrixFunctions_Module
+  * \brief Class for computing matrix square roots of general matrices.
+  * \tparam  MatrixType  type of the argument of the matrix square root,
+  *                      expected to be an instantiation of the Matrix class template.
+  *
+  * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
+  */
+template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
+class MatrixSquareRoot
+{
+  public:
+
+    /** \brief Constructor. 
+      *
+      * \param[in]  A  matrix whose square root is to be computed.
+      *
+      * The class stores a reference to \p A, so it should not be
+      * changed (or destroyed) before compute() is called.
+      */
+    MatrixSquareRoot(const MatrixType& A); 
+    
+    /** \brief Compute the matrix square root
+      *
+      * \param[out] result  square root of \p A, as specified in the constructor.
+      *
+      * See MatrixBase::sqrt() for details on how this computation is
+      * implemented.
+      */
+    template <typename ResultType> void compute(ResultType &result);    
+};
+
+
+// ********** Partial specialization for real matrices **********
+
+template <typename MatrixType>
+class MatrixSquareRoot<MatrixType, 0>
+{
+  public:
+
+    MatrixSquareRoot(const MatrixType& A) 
+      : m_A(A) 
+    {  
+      eigen_assert(A.rows() == A.cols());
+    }
+  
+    template <typename ResultType> void compute(ResultType &result)
+    {
+      // Compute Schur decomposition of m_A
+      const RealSchur<MatrixType> schurOfA(m_A);  
+      const MatrixType& T = schurOfA.matrixT();
+      const MatrixType& U = schurOfA.matrixU();
+    
+      // Compute square root of T
+      MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.cols());
+      MatrixSquareRootQuasiTriangular<MatrixType>(T).compute(sqrtT);
+    
+      // Compute square root of m_A
+      result = U * sqrtT * U.adjoint();
+    }
+    
+  private:
+    const MatrixType& m_A;
+};
+
+
+// ********** Partial specialization for complex matrices **********
+
+template <typename MatrixType>
+class MatrixSquareRoot<MatrixType, 1>
+{
+  public:
+
+    MatrixSquareRoot(const MatrixType& A) 
+      : m_A(A) 
+    {  
+      eigen_assert(A.rows() == A.cols());
+    }
+  
+    template <typename ResultType> void compute(ResultType &result)
+    {
+      // Compute Schur decomposition of m_A
+      const ComplexSchur<MatrixType> schurOfA(m_A);  
+      const MatrixType& T = schurOfA.matrixT();
+      const MatrixType& U = schurOfA.matrixU();
+    
+      // Compute square root of T
+      MatrixType sqrtT;
+      MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
+    
+      // Compute square root of m_A
+      result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
+    }
+    
+  private:
+    const MatrixType& m_A;
+};
+
+
+/** \ingroup MatrixFunctions_Module
+  *
+  * \brief Proxy for the matrix square root of some matrix (expression).
+  *
+  * \tparam Derived  Type of the argument to the matrix square root.
+  *
+  * This class holds the argument to the matrix square root until it
+  * is assigned or evaluated for some other reason (so the argument
+  * should not be changed in the meantime). It is the return type of
+  * MatrixBase::sqrt() and most of the time this is the only way it is
+  * used.
+  */
+template<typename Derived> class MatrixSquareRootReturnValue
+: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
+{
+    typedef typename Derived::Index Index;
+  public:
+    /** \brief Constructor.
+      *
+      * \param[in]  src  %Matrix (expression) forming the argument of the
+      * matrix square root.
+      */
+    MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }
+
+    /** \brief Compute the matrix square root.
+      *
+      * \param[out]  result  the matrix square root of \p src in the
+      * constructor.
+      */
+    template <typename ResultType>
+    inline void evalTo(ResultType& result) const
+    {
+      const typename Derived::PlainObject srcEvaluated = m_src.eval();
+      MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated);
+      me.compute(result);
+    }
+
+    Index rows() const { return m_src.rows(); }
+    Index cols() const { return m_src.cols(); }
+
+  protected:
+    const Derived& m_src;
+  private:
+    MatrixSquareRootReturnValue& operator=(const MatrixSquareRootReturnValue&);
+};
+
+namespace internal {
+template<typename Derived>
+struct traits<MatrixSquareRootReturnValue<Derived> >
+{
+  typedef typename Derived::PlainObject ReturnType;
+};
+}
+
+template <typename Derived>
+const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
+{
+  eigen_assert(rows() == cols());
+  return MatrixSquareRootReturnValue<Derived>(derived());
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATRIX_FUNCTION