Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> |
| 5 | // |
| 6 | // This Source Code Form is subject to the terms of the Mozilla |
| 7 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 9 | |
| 10 | #ifndef EIGEN_INCOMPLETE_CHOlESKY_H |
| 11 | #define EIGEN_INCOMPLETE_CHOlESKY_H |
| 12 | #include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h" |
| 13 | #include <Eigen/OrderingMethods> |
| 14 | #include <list> |
| 15 | |
| 16 | namespace Eigen { |
| 17 | /** |
| 18 | * \brief Modified Incomplete Cholesky with dual threshold |
| 19 | * |
| 20 | * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with |
| 21 | * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 |
| 22 | * |
| 23 | * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric |
| 24 | * matrix. It is advised to give a row-oriented sparse matrix |
| 25 | * \tparam _UpLo The triangular part of the matrix to reference. |
| 26 | * \tparam _OrderingType |
| 27 | */ |
| 28 | |
| 29 | template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> > |
| 30 | class IncompleteCholesky : internal::noncopyable |
| 31 | { |
| 32 | public: |
| 33 | typedef SparseMatrix<Scalar,ColMajor> MatrixType; |
| 34 | typedef _OrderingType OrderingType; |
| 35 | typedef typename MatrixType::RealScalar RealScalar; |
| 36 | typedef typename MatrixType::Index Index; |
| 37 | typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; |
| 38 | typedef Matrix<Scalar,Dynamic,1> ScalarType; |
| 39 | typedef Matrix<Index,Dynamic, 1> IndexType; |
| 40 | typedef std::vector<std::list<Index> > VectorList; |
| 41 | enum { UpLo = _UpLo }; |
| 42 | public: |
| 43 | IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {} |
| 44 | IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false) |
| 45 | { |
| 46 | compute(matrix); |
| 47 | } |
| 48 | |
| 49 | Index rows() const { return m_L.rows(); } |
| 50 | |
| 51 | Index cols() const { return m_L.cols(); } |
| 52 | |
| 53 | |
| 54 | /** \brief Reports whether previous computation was successful. |
| 55 | * |
| 56 | * \returns \c Success if computation was succesful, |
| 57 | * \c NumericalIssue if the matrix appears to be negative. |
| 58 | */ |
| 59 | ComputationInfo info() const |
| 60 | { |
| 61 | eigen_assert(m_isInitialized && "IncompleteLLT is not initialized."); |
| 62 | return m_info; |
| 63 | } |
| 64 | |
| 65 | /** |
| 66 | * \brief Set the initial shift parameter |
| 67 | */ |
| 68 | void setShift( Scalar shift) { m_shift = shift; } |
| 69 | |
| 70 | /** |
| 71 | * \brief Computes the fill reducing permutation vector. |
| 72 | */ |
| 73 | template<typename MatrixType> |
| 74 | void analyzePattern(const MatrixType& mat) |
| 75 | { |
| 76 | OrderingType ord; |
| 77 | ord(mat.template selfadjointView<UpLo>(), m_perm); |
| 78 | m_analysisIsOk = true; |
| 79 | } |
| 80 | |
| 81 | template<typename MatrixType> |
| 82 | void factorize(const MatrixType& amat); |
| 83 | |
| 84 | template<typename MatrixType> |
| 85 | void compute (const MatrixType& matrix) |
| 86 | { |
| 87 | analyzePattern(matrix); |
| 88 | factorize(matrix); |
| 89 | } |
| 90 | |
| 91 | template<typename Rhs, typename Dest> |
| 92 | void _solve(const Rhs& b, Dest& x) const |
| 93 | { |
| 94 | eigen_assert(m_factorizationIsOk && "factorize() should be called first"); |
| 95 | if (m_perm.rows() == b.rows()) |
| 96 | x = m_perm.inverse() * b; |
| 97 | else |
| 98 | x = b; |
| 99 | x = m_scal.asDiagonal() * x; |
| 100 | x = m_L.template triangularView<UnitLower>().solve(x); |
| 101 | x = m_L.adjoint().template triangularView<Upper>().solve(x); |
| 102 | if (m_perm.rows() == b.rows()) |
| 103 | x = m_perm * x; |
| 104 | x = m_scal.asDiagonal() * x; |
| 105 | } |
| 106 | template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs> |
| 107 | solve(const MatrixBase<Rhs>& b) const |
| 108 | { |
| 109 | eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed"); |
| 110 | eigen_assert(m_isInitialized && "IncompleteLLT is not initialized."); |
| 111 | eigen_assert(cols()==b.rows() |
| 112 | && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b"); |
| 113 | return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived()); |
| 114 | } |
| 115 | protected: |
| 116 | SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC |
| 117 | ScalarType m_scal; // The vector for scaling the matrix |
| 118 | Scalar m_shift; //The initial shift parameter |
| 119 | bool m_analysisIsOk; |
| 120 | bool m_factorizationIsOk; |
| 121 | bool m_isInitialized; |
| 122 | ComputationInfo m_info; |
| 123 | PermutationType m_perm; |
| 124 | |
| 125 | private: |
| 126 | template <typename IdxType, typename SclType> |
| 127 | inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol); |
| 128 | }; |
| 129 | |
| 130 | template<typename Scalar, int _UpLo, typename OrderingType> |
| 131 | template<typename _MatrixType> |
| 132 | void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat) |
| 133 | { |
| 134 | using std::sqrt; |
| 135 | using std::min; |
| 136 | eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); |
| 137 | |
| 138 | // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added |
| 139 | |
| 140 | // Apply the fill-reducing permutation computed in analyzePattern() |
| 141 | if (m_perm.rows() == mat.rows() ) // To detect the null permutation |
| 142 | m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm); |
| 143 | else |
| 144 | m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>(); |
| 145 | |
| 146 | Index n = m_L.cols(); |
| 147 | Index nnz = m_L.nonZeros(); |
| 148 | Map<ScalarType> vals(m_L.valuePtr(), nnz); //values |
| 149 | Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices |
| 150 | Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row |
| 151 | IndexType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization |
| 152 | VectorList listCol(n); // listCol(j) is a linked list of columns to update column j |
| 153 | ScalarType curCol(n); // Store a nonzero values in each column |
| 154 | IndexType irow(n); // Row indices of nonzero elements in each column |
| 155 | |
| 156 | |
| 157 | // Computes the scaling factors |
| 158 | m_scal.resize(n); |
| 159 | for (int j = 0; j < n; j++) |
| 160 | { |
| 161 | m_scal(j) = m_L.col(j).norm(); |
| 162 | m_scal(j) = sqrt(m_scal(j)); |
| 163 | } |
| 164 | // Scale and compute the shift for the matrix |
| 165 | Scalar mindiag = vals[0]; |
| 166 | for (int j = 0; j < n; j++){ |
| 167 | for (int k = colPtr[j]; k < colPtr[j+1]; k++) |
| 168 | vals[k] /= (m_scal(j) * m_scal(rowIdx[k])); |
| 169 | mindiag = (min)(vals[colPtr[j]], mindiag); |
| 170 | } |
| 171 | |
| 172 | if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag; |
| 173 | // Apply the shift to the diagonal elements of the matrix |
| 174 | for (int j = 0; j < n; j++) |
| 175 | vals[colPtr[j]] += m_shift; |
| 176 | // jki version of the Cholesky factorization |
| 177 | for (int j=0; j < n; ++j) |
| 178 | { |
| 179 | //Left-looking factorize the column j |
| 180 | // First, load the jth column into curCol |
| 181 | Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored |
| 182 | curCol.setZero(); |
| 183 | irow.setLinSpaced(n,0,n-1); |
| 184 | for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++) |
| 185 | { |
| 186 | curCol(rowIdx[i]) = vals[i]; |
| 187 | irow(rowIdx[i]) = rowIdx[i]; |
| 188 | } |
| 189 | std::list<int>::iterator k; |
| 190 | // Browse all previous columns that will update column j |
| 191 | for(k = listCol[j].begin(); k != listCol[j].end(); k++) |
| 192 | { |
| 193 | int jk = firstElt(*k); // First element to use in the column |
| 194 | jk += 1; |
| 195 | for (int i = jk; i < colPtr[*k+1]; i++) |
| 196 | { |
| 197 | curCol(rowIdx[i]) -= vals[i] * vals[jk] ; |
| 198 | } |
| 199 | updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol); |
| 200 | } |
| 201 | |
| 202 | // Scale the current column |
| 203 | if(RealScalar(diag) <= 0) |
| 204 | { |
| 205 | std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n"; |
| 206 | m_info = NumericalIssue; |
| 207 | return; |
| 208 | } |
| 209 | RealScalar rdiag = sqrt(RealScalar(diag)); |
| 210 | vals[colPtr[j]] = rdiag; |
| 211 | for (int i = j+1; i < n; i++) |
| 212 | { |
| 213 | //Scale |
| 214 | curCol(i) /= rdiag; |
| 215 | //Update the remaining diagonals with curCol |
| 216 | vals[colPtr[i]] -= curCol(i) * curCol(i); |
| 217 | } |
| 218 | // Select the largest p elements |
| 219 | // p is the original number of elements in the column (without the diagonal) |
| 220 | int p = colPtr[j+1] - colPtr[j] - 1 ; |
| 221 | internal::QuickSplit(curCol, irow, p); |
| 222 | // Insert the largest p elements in the matrix |
| 223 | int cpt = 0; |
| 224 | for (int i = colPtr[j]+1; i < colPtr[j+1]; i++) |
| 225 | { |
| 226 | vals[i] = curCol(cpt); |
| 227 | rowIdx[i] = irow(cpt); |
| 228 | cpt ++; |
| 229 | } |
| 230 | // Get the first smallest row index and put it after the diagonal element |
| 231 | Index jk = colPtr(j)+1; |
| 232 | updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol); |
| 233 | } |
| 234 | m_factorizationIsOk = true; |
| 235 | m_isInitialized = true; |
| 236 | m_info = Success; |
| 237 | } |
| 238 | |
| 239 | template<typename Scalar, int _UpLo, typename OrderingType> |
| 240 | template <typename IdxType, typename SclType> |
| 241 | inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol) |
| 242 | { |
| 243 | if (jk < colPtr(col+1) ) |
| 244 | { |
| 245 | Index p = colPtr(col+1) - jk; |
| 246 | Index minpos; |
| 247 | rowIdx.segment(jk,p).minCoeff(&minpos); |
| 248 | minpos += jk; |
| 249 | if (rowIdx(minpos) != rowIdx(jk)) |
| 250 | { |
| 251 | //Swap |
| 252 | std::swap(rowIdx(jk),rowIdx(minpos)); |
| 253 | std::swap(vals(jk),vals(minpos)); |
| 254 | } |
| 255 | firstElt(col) = jk; |
| 256 | listCol[rowIdx(jk)].push_back(col); |
| 257 | } |
| 258 | } |
| 259 | namespace internal { |
| 260 | |
| 261 | template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs> |
| 262 | struct solve_retval<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs> |
| 263 | : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs> |
| 264 | { |
| 265 | typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec; |
| 266 | EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) |
| 267 | |
| 268 | template<typename Dest> void evalTo(Dest& dst) const |
| 269 | { |
| 270 | dec()._solve(rhs(),dst); |
| 271 | } |
| 272 | }; |
| 273 | |
| 274 | } // end namespace internal |
| 275 | |
| 276 | } // end namespace Eigen |
| 277 | |
| 278 | #endif |