Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h b/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
new file mode 100644
index 0000000..661c1f2
--- /dev/null
+++ b/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
@@ -0,0 +1,278 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_INCOMPLETE_CHOlESKY_H
+#define EIGEN_INCOMPLETE_CHOlESKY_H
+#include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h" 
+#include <Eigen/OrderingMethods>
+#include <list>
+
+namespace Eigen {  
+/** 
+ * \brief Modified Incomplete Cholesky with dual threshold
+ * 
+ * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with
+ *              Limited memory, SIAM J. Sci. Comput.  21(1), pp. 24-45, 1999
+ * 
+ * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric 
+ *                     matrix. It is advised to give  a row-oriented sparse matrix 
+ * \tparam _UpLo The triangular part of the matrix to reference. 
+ * \tparam _OrderingType 
+ */
+
+template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
+class IncompleteCholesky : internal::noncopyable
+{
+  public:
+    typedef SparseMatrix<Scalar,ColMajor> MatrixType;
+    typedef _OrderingType OrderingType;
+    typedef typename MatrixType::RealScalar RealScalar; 
+    typedef typename MatrixType::Index Index; 
+    typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
+    typedef Matrix<Scalar,Dynamic,1> ScalarType; 
+    typedef Matrix<Index,Dynamic, 1> IndexType;
+    typedef std::vector<std::list<Index> > VectorList; 
+    enum { UpLo = _UpLo };
+  public:
+    IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {}
+    IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false)
+    {
+      compute(matrix);
+    }
+    
+    Index rows() const { return m_L.rows(); }
+    
+    Index cols() const { return m_L.cols(); }
+    
+
+    /** \brief Reports whether previous computation was successful.
+      *
+      * \returns \c Success if computation was succesful,
+      *          \c NumericalIssue if the matrix appears to be negative.
+      */
+    ComputationInfo info() const
+    {
+      eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
+      return m_info;
+    }
+    
+    /** 
+     * \brief Set the initial shift parameter
+     */
+    void setShift( Scalar shift) { m_shift = shift; }
+    
+    /**
+    * \brief Computes the fill reducing permutation vector. 
+    */
+    template<typename MatrixType>
+    void analyzePattern(const MatrixType& mat)
+    {
+      OrderingType ord; 
+      ord(mat.template selfadjointView<UpLo>(), m_perm); 
+      m_analysisIsOk = true; 
+    }
+    
+    template<typename MatrixType>
+    void factorize(const MatrixType& amat);
+    
+    template<typename MatrixType>
+    void compute (const MatrixType& matrix)
+    {
+      analyzePattern(matrix); 
+      factorize(matrix);
+    }
+    
+    template<typename Rhs, typename Dest>
+    void _solve(const Rhs& b, Dest& x) const
+    {
+      eigen_assert(m_factorizationIsOk && "factorize() should be called first");
+      if (m_perm.rows() == b.rows())
+        x = m_perm.inverse() * b; 
+      else 
+        x = b; 
+      x = m_scal.asDiagonal() * x;
+      x = m_L.template triangularView<UnitLower>().solve(x); 
+      x = m_L.adjoint().template triangularView<Upper>().solve(x); 
+      if (m_perm.rows() == b.rows())
+        x = m_perm * x;
+      x = m_scal.asDiagonal() * x;
+    }
+    template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
+    solve(const MatrixBase<Rhs>& b) const
+    {
+      eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed");
+      eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
+      eigen_assert(cols()==b.rows()
+                && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
+      return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
+    }
+  protected:
+    SparseMatrix<Scalar,ColMajor> m_L;  // The lower part stored in CSC
+    ScalarType m_scal; // The vector for scaling the matrix 
+    Scalar m_shift; //The initial shift parameter
+    bool m_analysisIsOk; 
+    bool m_factorizationIsOk; 
+    bool m_isInitialized;
+    ComputationInfo m_info;
+    PermutationType m_perm; 
+    
+  private:
+    template <typename IdxType, typename SclType>
+    inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol); 
+}; 
+
+template<typename Scalar, int _UpLo, typename OrderingType>
+template<typename _MatrixType>
+void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
+{
+  using std::sqrt;
+  using std::min;
+  eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); 
+    
+  // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
+  
+  // Apply the fill-reducing permutation computed in analyzePattern()
+  if (m_perm.rows() == mat.rows() ) // To detect the null permutation
+    m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
+  else
+    m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
+  
+  Index n = m_L.cols(); 
+  Index nnz = m_L.nonZeros();
+  Map<ScalarType> vals(m_L.valuePtr(), nnz); //values
+  Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz);  //Row indices
+  Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
+  IndexType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
+  VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
+  ScalarType curCol(n); // Store a  nonzero values in each column
+  IndexType irow(n); // Row indices of nonzero elements in each column
+  
+  
+  // Computes the scaling factors 
+  m_scal.resize(n);
+  for (int j = 0; j < n; j++)
+  {
+    m_scal(j) = m_L.col(j).norm();
+    m_scal(j) = sqrt(m_scal(j));
+  }
+  // Scale and compute the shift for the matrix 
+  Scalar mindiag = vals[0];
+  for (int j = 0; j < n; j++){
+    for (int k = colPtr[j]; k < colPtr[j+1]; k++)
+     vals[k] /= (m_scal(j) * m_scal(rowIdx[k]));
+    mindiag = (min)(vals[colPtr[j]], mindiag);
+  }
+  
+  if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag;
+  // Apply the shift to the diagonal elements of the matrix
+  for (int j = 0; j < n; j++)
+    vals[colPtr[j]] += m_shift;
+  // jki version of the Cholesky factorization 
+  for (int j=0; j < n; ++j)
+  {  
+    //Left-looking factorize the column j 
+    // First, load the jth column into curCol 
+    Scalar diag = vals[colPtr[j]];  // It is assumed that only the lower part is stored
+    curCol.setZero();
+    irow.setLinSpaced(n,0,n-1); 
+    for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
+    {
+      curCol(rowIdx[i]) = vals[i]; 
+      irow(rowIdx[i]) = rowIdx[i]; 
+    }
+    std::list<int>::iterator k; 
+    // Browse all previous columns that will update column j
+    for(k = listCol[j].begin(); k != listCol[j].end(); k++) 
+    {
+      int jk = firstElt(*k); // First element to use in the column 
+      jk += 1; 
+      for (int i = jk; i < colPtr[*k+1]; i++)
+      {
+        curCol(rowIdx[i]) -= vals[i] * vals[jk] ;
+      }
+      updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
+    }
+    
+    // Scale the current column
+    if(RealScalar(diag) <= 0) 
+    {
+      std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n";
+      m_info = NumericalIssue; 
+      return; 
+    }
+    RealScalar rdiag = sqrt(RealScalar(diag));
+    vals[colPtr[j]] = rdiag;
+    for (int i = j+1; i < n; i++)
+    {
+      //Scale 
+      curCol(i) /= rdiag;
+      //Update the remaining diagonals with curCol
+      vals[colPtr[i]] -= curCol(i) * curCol(i);
+    }
+    // Select the largest p elements
+    //  p is the original number of elements in the column (without the diagonal)
+    int p = colPtr[j+1] - colPtr[j] - 1 ; 
+    internal::QuickSplit(curCol, irow, p); 
+    // Insert the largest p elements in the matrix
+    int cpt = 0; 
+    for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
+    {
+      vals[i] = curCol(cpt); 
+      rowIdx[i] = irow(cpt); 
+      cpt ++; 
+    }
+    // Get the first smallest row index and put it after the diagonal element
+    Index jk = colPtr(j)+1;
+    updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol); 
+  }
+  m_factorizationIsOk = true; 
+  m_isInitialized = true;
+  m_info = Success; 
+}
+
+template<typename Scalar, int _UpLo, typename OrderingType>
+template <typename IdxType, typename SclType>
+inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol)
+{
+  if (jk < colPtr(col+1) )
+  {
+    Index p = colPtr(col+1) - jk;
+    Index minpos; 
+    rowIdx.segment(jk,p).minCoeff(&minpos);
+    minpos += jk;
+    if (rowIdx(minpos) != rowIdx(jk))
+    {
+      //Swap
+      std::swap(rowIdx(jk),rowIdx(minpos));
+      std::swap(vals(jk),vals(minpos));
+    }
+    firstElt(col) = jk;
+    listCol[rowIdx(jk)].push_back(col);
+  }
+}
+namespace internal {
+
+template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs>
+struct solve_retval<IncompleteCholesky<_Scalar,  _UpLo, OrderingType>, Rhs>
+  : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
+{
+  typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec;
+  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+  template<typename Dest> void evalTo(Dest& dst) const
+  {
+    dec()._solve(rhs(),dst);
+  }
+};
+
+} // end namespace internal
+
+} // end namespace Eigen 
+
+#endif