Brian Silverman | 72890c2 | 2015-09-19 14:37:37 -0400 | [diff] [blame^] | 1 | // This file is part of Eigen, a lightweight C++ template library |
| 2 | // for linear algebra. |
| 3 | // |
| 4 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| 5 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| 6 | // |
| 7 | // This Source Code Form is subject to the terms of the Mozilla |
| 8 | // Public License v. 2.0. If a copy of the MPL was not distributed |
| 9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| 10 | |
| 11 | // no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway |
| 12 | |
| 13 | namespace Eigen { |
| 14 | |
| 15 | /** \geometry_module \ingroup Geometry_Module |
| 16 | * |
| 17 | * \class ParametrizedLine |
| 18 | * |
| 19 | * \brief A parametrized line |
| 20 | * |
| 21 | * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit |
| 22 | * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to |
| 23 | * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ l \in \mathbf{R} \f$. |
| 24 | * |
| 25 | * \param _Scalar the scalar type, i.e., the type of the coefficients |
| 26 | * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. |
| 27 | */ |
| 28 | template <typename _Scalar, int _AmbientDim> |
| 29 | class ParametrizedLine |
| 30 | { |
| 31 | public: |
| 32 | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) |
| 33 | enum { AmbientDimAtCompileTime = _AmbientDim }; |
| 34 | typedef _Scalar Scalar; |
| 35 | typedef typename NumTraits<Scalar>::Real RealScalar; |
| 36 | typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; |
| 37 | |
| 38 | /** Default constructor without initialization */ |
| 39 | inline ParametrizedLine() {} |
| 40 | |
| 41 | /** Constructs a dynamic-size line with \a _dim the dimension |
| 42 | * of the ambient space */ |
| 43 | inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {} |
| 44 | |
| 45 | /** Initializes a parametrized line of direction \a direction and origin \a origin. |
| 46 | * \warning the vector direction is assumed to be normalized. |
| 47 | */ |
| 48 | ParametrizedLine(const VectorType& origin, const VectorType& direction) |
| 49 | : m_origin(origin), m_direction(direction) {} |
| 50 | |
| 51 | explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane); |
| 52 | |
| 53 | /** Constructs a parametrized line going from \a p0 to \a p1. */ |
| 54 | static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1) |
| 55 | { return ParametrizedLine(p0, (p1-p0).normalized()); } |
| 56 | |
| 57 | ~ParametrizedLine() {} |
| 58 | |
| 59 | /** \returns the dimension in which the line holds */ |
| 60 | inline int dim() const { return m_direction.size(); } |
| 61 | |
| 62 | const VectorType& origin() const { return m_origin; } |
| 63 | VectorType& origin() { return m_origin; } |
| 64 | |
| 65 | const VectorType& direction() const { return m_direction; } |
| 66 | VectorType& direction() { return m_direction; } |
| 67 | |
| 68 | /** \returns the squared distance of a point \a p to its projection onto the line \c *this. |
| 69 | * \sa distance() |
| 70 | */ |
| 71 | RealScalar squaredDistance(const VectorType& p) const |
| 72 | { |
| 73 | VectorType diff = p-origin(); |
| 74 | return (diff - diff.eigen2_dot(direction())* direction()).squaredNorm(); |
| 75 | } |
| 76 | /** \returns the distance of a point \a p to its projection onto the line \c *this. |
| 77 | * \sa squaredDistance() |
| 78 | */ |
| 79 | RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); } |
| 80 | |
| 81 | /** \returns the projection of a point \a p onto the line \c *this. */ |
| 82 | VectorType projection(const VectorType& p) const |
| 83 | { return origin() + (p-origin()).eigen2_dot(direction()) * direction(); } |
| 84 | |
| 85 | Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane); |
| 86 | |
| 87 | /** \returns \c *this with scalar type casted to \a NewScalarType |
| 88 | * |
| 89 | * Note that if \a NewScalarType is equal to the current scalar type of \c *this |
| 90 | * then this function smartly returns a const reference to \c *this. |
| 91 | */ |
| 92 | template<typename NewScalarType> |
| 93 | inline typename internal::cast_return_type<ParametrizedLine, |
| 94 | ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type cast() const |
| 95 | { |
| 96 | return typename internal::cast_return_type<ParametrizedLine, |
| 97 | ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type(*this); |
| 98 | } |
| 99 | |
| 100 | /** Copy constructor with scalar type conversion */ |
| 101 | template<typename OtherScalarType> |
| 102 | inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime>& other) |
| 103 | { |
| 104 | m_origin = other.origin().template cast<Scalar>(); |
| 105 | m_direction = other.direction().template cast<Scalar>(); |
| 106 | } |
| 107 | |
| 108 | /** \returns \c true if \c *this is approximately equal to \a other, within the precision |
| 109 | * determined by \a prec. |
| 110 | * |
| 111 | * \sa MatrixBase::isApprox() */ |
| 112 | bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const |
| 113 | { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); } |
| 114 | |
| 115 | protected: |
| 116 | |
| 117 | VectorType m_origin, m_direction; |
| 118 | }; |
| 119 | |
| 120 | /** Constructs a parametrized line from a 2D hyperplane |
| 121 | * |
| 122 | * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line |
| 123 | */ |
| 124 | template <typename _Scalar, int _AmbientDim> |
| 125 | inline ParametrizedLine<_Scalar, _AmbientDim>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane) |
| 126 | { |
| 127 | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2) |
| 128 | direction() = hyperplane.normal().unitOrthogonal(); |
| 129 | origin() = -hyperplane.normal()*hyperplane.offset(); |
| 130 | } |
| 131 | |
| 132 | /** \returns the parameter value of the intersection between \c *this and the given hyperplane |
| 133 | */ |
| 134 | template <typename _Scalar, int _AmbientDim> |
| 135 | inline _Scalar ParametrizedLine<_Scalar, _AmbientDim>::intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane) |
| 136 | { |
| 137 | return -(hyperplane.offset()+origin().eigen2_dot(hyperplane.normal())) |
| 138 | /(direction().eigen2_dot(hyperplane.normal())); |
| 139 | } |
| 140 | |
| 141 | } // end namespace Eigen |