Squashed 'third_party/eigen/' content from commit 61d72f6

Change-Id: Iccc90fa0b55ab44037f018046d2fcffd90d9d025
git-subtree-dir: third_party/eigen
git-subtree-split: 61d72f6383cfa842868c53e30e087b0258177257
diff --git a/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h b/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h
new file mode 100644
index 0000000..9b57b7e
--- /dev/null
+++ b/Eigen/src/Eigen2Support/Geometry/ParametrizedLine.h
@@ -0,0 +1,141 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
+// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway
+
+namespace Eigen { 
+
+/** \geometry_module \ingroup Geometry_Module
+  *
+  * \class ParametrizedLine
+  *
+  * \brief A parametrized line
+  *
+  * A parametrized line is defined by an origin point \f$ \mathbf{o} \f$ and a unit
+  * direction vector \f$ \mathbf{d} \f$ such that the line corresponds to
+  * the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ l \in \mathbf{R} \f$.
+  *
+  * \param _Scalar the scalar type, i.e., the type of the coefficients
+  * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
+  */
+template <typename _Scalar, int _AmbientDim>
+class ParametrizedLine
+{
+public:
+  EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
+  enum { AmbientDimAtCompileTime = _AmbientDim };
+  typedef _Scalar Scalar;
+  typedef typename NumTraits<Scalar>::Real RealScalar;
+  typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
+
+  /** Default constructor without initialization */
+  inline ParametrizedLine() {}
+
+  /** Constructs a dynamic-size line with \a _dim the dimension
+    * of the ambient space */
+  inline explicit ParametrizedLine(int _dim) : m_origin(_dim), m_direction(_dim) {}
+
+  /** Initializes a parametrized line of direction \a direction and origin \a origin.
+    * \warning the vector direction is assumed to be normalized.
+    */
+  ParametrizedLine(const VectorType& origin, const VectorType& direction)
+    : m_origin(origin), m_direction(direction) {}
+
+  explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
+
+  /** Constructs a parametrized line going from \a p0 to \a p1. */
+  static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
+  { return ParametrizedLine(p0, (p1-p0).normalized()); }
+
+  ~ParametrizedLine() {}
+
+  /** \returns the dimension in which the line holds */
+  inline int dim() const { return m_direction.size(); }
+
+  const VectorType& origin() const { return m_origin; }
+  VectorType& origin() { return m_origin; }
+
+  const VectorType& direction() const { return m_direction; }
+  VectorType& direction() { return m_direction; }
+
+  /** \returns the squared distance of a point \a p to its projection onto the line \c *this.
+    * \sa distance()
+    */
+  RealScalar squaredDistance(const VectorType& p) const
+  {
+    VectorType diff = p-origin();
+    return (diff - diff.eigen2_dot(direction())* direction()).squaredNorm();
+  }
+  /** \returns the distance of a point \a p to its projection onto the line \c *this.
+    * \sa squaredDistance()
+    */
+  RealScalar distance(const VectorType& p) const { return ei_sqrt(squaredDistance(p)); }
+
+  /** \returns the projection of a point \a p onto the line \c *this. */
+  VectorType projection(const VectorType& p) const
+  { return origin() + (p-origin()).eigen2_dot(direction()) * direction(); }
+
+  Scalar intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane);
+
+  /** \returns \c *this with scalar type casted to \a NewScalarType
+    *
+    * Note that if \a NewScalarType is equal to the current scalar type of \c *this
+    * then this function smartly returns a const reference to \c *this.
+    */
+  template<typename NewScalarType>
+  inline typename internal::cast_return_type<ParametrizedLine,
+           ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
+  {
+    return typename internal::cast_return_type<ParametrizedLine,
+                    ParametrizedLine<NewScalarType,AmbientDimAtCompileTime> >::type(*this);
+  }
+
+  /** Copy constructor with scalar type conversion */
+  template<typename OtherScalarType>
+  inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime>& other)
+  {
+    m_origin = other.origin().template cast<Scalar>();
+    m_direction = other.direction().template cast<Scalar>();
+  }
+
+  /** \returns \c true if \c *this is approximately equal to \a other, within the precision
+    * determined by \a prec.
+    *
+    * \sa MatrixBase::isApprox() */
+  bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const
+  { return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); }
+
+protected:
+
+  VectorType m_origin, m_direction;
+};
+
+/** Constructs a parametrized line from a 2D hyperplane
+  *
+  * \warning the ambient space must have dimension 2 such that the hyperplane actually describes a line
+  */
+template <typename _Scalar, int _AmbientDim>
+inline ParametrizedLine<_Scalar, _AmbientDim>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
+{
+  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
+  direction() = hyperplane.normal().unitOrthogonal();
+  origin() = -hyperplane.normal()*hyperplane.offset();
+}
+
+/** \returns the parameter value of the intersection between \c *this and the given hyperplane
+  */
+template <typename _Scalar, int _AmbientDim>
+inline _Scalar ParametrizedLine<_Scalar, _AmbientDim>::intersection(const Hyperplane<_Scalar, _AmbientDim>& hyperplane)
+{
+  return -(hyperplane.offset()+origin().eigen2_dot(hyperplane.normal()))
+          /(direction().eigen2_dot(hyperplane.normal()));
+}
+
+} // end namespace Eigen