Yash Chainani | 5458dea | 2022-06-29 21:05:02 -0700 | [diff] [blame] | 1 | //============================================================================= |
| 2 | // |
| 3 | // nldiffusion_functions.cpp |
| 4 | // Author: Pablo F. Alcantarilla |
| 5 | // Institution: University d'Auvergne |
| 6 | // Address: Clermont Ferrand, France |
| 7 | // Date: 27/12/2011 |
| 8 | // Email: pablofdezalc@gmail.com |
| 9 | // |
| 10 | // KAZE Features Copyright 2012, Pablo F. Alcantarilla |
| 11 | // All Rights Reserved |
| 12 | // See LICENSE for the license information |
| 13 | //============================================================================= |
| 14 | |
| 15 | /** |
| 16 | * @file nldiffusion_functions.cpp |
| 17 | * @brief Functions for non-linear diffusion applications: |
| 18 | * 2D Gaussian Derivatives |
| 19 | * Perona and Malik conductivity equations |
| 20 | * Perona and Malik evolution |
| 21 | * @date Dec 27, 2011 |
| 22 | * @author Pablo F. Alcantarilla |
| 23 | */ |
| 24 | |
| 25 | #include "nldiffusion_functions.h" |
| 26 | |
| 27 | #include <cstdint> |
| 28 | #include <cstring> |
| 29 | #include <iostream> |
| 30 | #include <opencv2/core.hpp> |
| 31 | #include <opencv2/imgproc.hpp> |
| 32 | |
| 33 | // Namespaces |
| 34 | |
| 35 | /* ************************************************************************* */ |
| 36 | |
| 37 | namespace cv { |
| 38 | using namespace std; |
| 39 | |
| 40 | /* ************************************************************************* */ |
| 41 | /** |
| 42 | * @brief This function smoothes an image with a Gaussian kernel |
| 43 | * @param src Input image |
| 44 | * @param dst Output image |
| 45 | * @param ksize_x Kernel size in X-direction (horizontal) |
| 46 | * @param ksize_y Kernel size in Y-direction (vertical) |
| 47 | * @param sigma Kernel standard deviation |
| 48 | */ |
| 49 | void gaussian_2D_convolutionV2(const cv::Mat& src, cv::Mat& dst, int ksize_x, |
| 50 | int ksize_y, float sigma) { |
| 51 | int ksize_x_ = 0, ksize_y_ = 0; |
| 52 | |
| 53 | // Compute an appropriate kernel size according to the specified sigma |
| 54 | if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) { |
| 55 | ksize_x_ = (int)ceil(2.0f * (1.0f + (sigma - 0.8f) / (0.3f))); |
| 56 | ksize_y_ = ksize_x_; |
| 57 | } |
| 58 | |
| 59 | // The kernel size must be and odd number |
| 60 | if ((ksize_x_ % 2) == 0) { |
| 61 | ksize_x_ += 1; |
| 62 | } |
| 63 | |
| 64 | if ((ksize_y_ % 2) == 0) { |
| 65 | ksize_y_ += 1; |
| 66 | } |
| 67 | |
| 68 | // Perform the Gaussian Smoothing with border replication |
| 69 | GaussianBlur(src, dst, Size(ksize_x_, ksize_y_), sigma, sigma, |
| 70 | BORDER_REPLICATE); |
| 71 | } |
| 72 | |
| 73 | /* ************************************************************************* */ |
| 74 | /** |
| 75 | * @brief This function computes image derivatives with Scharr kernel |
| 76 | * @param src Input image |
| 77 | * @param dst Output image |
| 78 | * @param xorder Derivative order in X-direction (horizontal) |
| 79 | * @param yorder Derivative order in Y-direction (vertical) |
| 80 | * @note Scharr operator approximates better rotation invariance than |
| 81 | * other stencils such as Sobel. See Weickert and Scharr, |
| 82 | * A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation |
| 83 | * Invariance, Journal of Visual Communication and Image Representation 2002 |
| 84 | */ |
| 85 | void image_derivatives_scharrV2(const cv::Mat& src, cv::Mat& dst, int xorder, |
| 86 | int yorder) { |
| 87 | Scharr(src, dst, CV_32F, xorder, yorder, 1.0, 0, BORDER_DEFAULT); |
| 88 | } |
| 89 | |
| 90 | /* ************************************************************************* */ |
| 91 | /** |
| 92 | * @brief This function computes the Perona and Malik conductivity coefficient |
| 93 | * g1 g1 = exp(-|dL|^2/k^2) |
| 94 | * @param Lx First order image derivative in X-direction (horizontal) |
| 95 | * @param Ly First order image derivative in Y-direction (vertical) |
| 96 | * @param dst Output image |
| 97 | * @param k Contrast factor parameter |
| 98 | */ |
| 99 | void pm_g1V2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { |
| 100 | // Compute: dst = exp((Lx.mul(Lx) + Ly.mul(Ly)) / (-k * k)) |
| 101 | |
| 102 | const float neg_inv_k2 = -1.0f / (k * k); |
| 103 | |
| 104 | const int total = Lx.rows * Lx.cols; |
| 105 | const float* lx = Lx.ptr<float>(0); |
| 106 | const float* ly = Ly.ptr<float>(0); |
| 107 | float* d = dst.ptr<float>(0); |
| 108 | |
| 109 | for (int i = 0; i < total; i++) |
| 110 | d[i] = neg_inv_k2 * (lx[i] * lx[i] + ly[i] * ly[i]); |
| 111 | |
| 112 | exp(dst, dst); |
| 113 | } |
| 114 | |
| 115 | /* ************************************************************************* */ |
| 116 | /** |
| 117 | * @brief This function computes the Perona and Malik conductivity coefficient |
| 118 | * g2 g2 = 1 / (1 + dL^2 / k^2) |
| 119 | * @param Lx First order image derivative in X-direction (horizontal) |
| 120 | * @param Ly First order image derivative in Y-direction (vertical) |
| 121 | * @param dst Output image |
| 122 | * @param k Contrast factor parameter |
| 123 | */ |
| 124 | void pm_g2V2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { |
| 125 | // Compute: dst = 1.0f / (1.0f + ((Lx.mul(Lx) + Ly.mul(Ly)) / (k * k)) ); |
| 126 | |
| 127 | const float inv_k2 = 1.0f / (k * k); |
| 128 | |
| 129 | const int total = Lx.rows * Lx.cols; |
| 130 | const float* lx = Lx.ptr<float>(0); |
| 131 | const float* ly = Ly.ptr<float>(0); |
| 132 | float* d = dst.ptr<float>(0); |
| 133 | |
| 134 | for (int i = 0; i < total; i++) |
| 135 | d[i] = 1.0f / (1.0f + ((lx[i] * lx[i] + ly[i] * ly[i]) * inv_k2)); |
| 136 | } |
| 137 | |
| 138 | /* ************************************************************************* */ |
| 139 | /** |
| 140 | * @brief This function computes Weickert conductivity coefficient gw |
| 141 | * @param Lx First order image derivative in X-direction (horizontal) |
| 142 | * @param Ly First order image derivative in Y-direction (vertical) |
| 143 | * @param dst Output image |
| 144 | * @param k Contrast factor parameter |
| 145 | * @note For more information check the following paper: J. Weickert |
| 146 | * Applications of nonlinear diffusion in image processing and computer vision, |
| 147 | * Proceedings of Algorithmy 2000 |
| 148 | */ |
| 149 | void weickert_diffusivityV2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, |
| 150 | float k) { |
| 151 | // Compute: dst = 1.0f - exp(-3.315f / ((Lx.mul(Lx) + Ly.mul(Ly)) / (k * |
| 152 | // k))^4) |
| 153 | |
| 154 | const float inv_k2 = 1.0f / (k * k); |
| 155 | |
| 156 | const int total = Lx.rows * Lx.cols; |
| 157 | const float* lx = Lx.ptr<float>(0); |
| 158 | const float* ly = Ly.ptr<float>(0); |
| 159 | float* d = dst.ptr<float>(0); |
| 160 | |
| 161 | for (int i = 0; i < total; i++) { |
| 162 | float dL = inv_k2 * (lx[i] * lx[i] + ly[i] * ly[i]); |
| 163 | d[i] = -3.315f / (dL * dL * dL * dL); |
| 164 | } |
| 165 | |
| 166 | exp(dst, dst); |
| 167 | |
| 168 | for (int i = 0; i < total; i++) d[i] = 1.0f - d[i]; |
| 169 | } |
| 170 | |
| 171 | /* ************************************************************************* */ |
| 172 | /** |
| 173 | * @brief This function computes Charbonnier conductivity coefficient gc |
| 174 | * gc = 1 / sqrt(1 + dL^2 / k^2) |
| 175 | * @param Lx First order image derivative in X-direction (horizontal) |
| 176 | * @param Ly First order image derivative in Y-direction (vertical) |
| 177 | * @param dst Output image |
| 178 | * @param k Contrast factor parameter |
| 179 | * @note For more information check the following paper: J. Weickert |
| 180 | * Applications of nonlinear diffusion in image processing and computer vision, |
| 181 | * Proceedings of Algorithmy 2000 |
| 182 | */ |
| 183 | void charbonnier_diffusivityV2(const cv::Mat& Lx, const cv::Mat& Ly, |
| 184 | cv::Mat& dst, float k) { |
| 185 | // Compute: dst = 1.0f / sqrt(1.0f + (Lx.mul(Lx) + Ly.mul(Ly)) / (k * k)) |
| 186 | |
| 187 | const float inv_k2 = 1.0f / (k * k); |
| 188 | |
| 189 | const int total = Lx.rows * Lx.cols; |
| 190 | const float* lx = Lx.ptr<float>(0); |
| 191 | const float* ly = Ly.ptr<float>(0); |
| 192 | float* d = dst.ptr<float>(0); |
| 193 | |
| 194 | for (int i = 0; i < total; i++) |
| 195 | d[i] = 1.0f / sqrtf(1.0f + inv_k2 * (lx[i] * lx[i] + ly[i] * ly[i])); |
| 196 | } |
| 197 | |
| 198 | /* ************************************************************************* */ |
| 199 | /** |
| 200 | * @brief This function computes a good empirical value for the k contrast |
| 201 | * factor given two gradient images, the percentile (0-1), the temporal storage |
| 202 | * to hold gradient norms and the histogram bins |
| 203 | * @param Lx Horizontal gradient of the input image |
| 204 | * @param Ly Vertical gradient of the input image |
| 205 | * @param perc Percentile of the image gradient histogram (0-1) |
| 206 | * @param modgs Temporal vector to hold the gradient norms |
| 207 | * @param histogram Temporal vector to hold the gradient histogram |
| 208 | * @return k contrast factor |
| 209 | */ |
| 210 | float compute_k_percentileV2(const cv::Mat& Lx, const cv::Mat& Ly, float perc, |
| 211 | cv::Mat& modgs, cv::Mat& histogram) { |
| 212 | const int total = modgs.cols; |
| 213 | const int nbins = histogram.cols; |
| 214 | |
| 215 | CV_DbgAssert(total == (Lx.rows - 2) * (Lx.cols - 2)); |
| 216 | CV_DbgAssert(nbins > 2); |
| 217 | |
| 218 | float* modg = modgs.ptr<float>(0); |
| 219 | int32_t* hist = histogram.ptr<int32_t>(0); |
| 220 | |
| 221 | for (int i = 1; i < Lx.rows - 1; i++) { |
| 222 | const float* lx = Lx.ptr<float>(i) + 1; |
| 223 | const float* ly = Ly.ptr<float>(i) + 1; |
| 224 | const int cols = Lx.cols - 2; |
| 225 | |
| 226 | for (int j = 0; j < cols; j++) |
| 227 | *modg++ = sqrtf(lx[j] * lx[j] + ly[j] * ly[j]); |
| 228 | } |
| 229 | modg = modgs.ptr<float>(0); |
| 230 | |
| 231 | // Get the maximum |
| 232 | float hmax = 0.0f; |
| 233 | for (int i = 0; i < total; i++) |
| 234 | if (hmax < modg[i]) hmax = modg[i]; |
| 235 | |
| 236 | if (hmax == 0.0f) return 0.03f; // e.g. a blank image |
| 237 | |
| 238 | // Compute the bin numbers: the value range [0, hmax] -> [0, nbins-1] |
| 239 | for (int i = 0; i < total; i++) modg[i] *= (nbins - 1) / hmax; |
| 240 | |
| 241 | // Count up |
| 242 | std::memset(hist, 0, sizeof(int32_t) * nbins); |
| 243 | for (int i = 0; i < total; i++) hist[(int)modg[i]]++; |
| 244 | |
| 245 | // Now find the perc of the histogram percentile |
| 246 | const int nthreshold = |
| 247 | (int)((total - hist[0]) * perc); // Exclude hist[0] as background |
| 248 | int nelements = 0; |
| 249 | for (int k = 1; k < nbins; k++) { |
| 250 | if (nelements >= nthreshold) return (float)hmax * k / nbins; |
| 251 | |
| 252 | nelements = nelements + hist[k]; |
| 253 | } |
| 254 | |
| 255 | return 0.03f; |
| 256 | } |
| 257 | |
| 258 | /* ************************************************************************* */ |
| 259 | /** |
| 260 | * @brief Compute Scharr derivative kernels for sizes different than 3 |
| 261 | * @param _kx Horizontal kernel ues |
| 262 | * @param _ky Vertical kernel values |
| 263 | * @param dx Derivative order in X-direction (horizontal) |
| 264 | * @param dy Derivative order in Y-direction (vertical) |
| 265 | * @param scale_ Scale factor or derivative size |
| 266 | */ |
| 267 | void compute_scharr_derivative_kernelsV2(cv::OutputArray _kx, |
| 268 | cv::OutputArray _ky, int dx, int dy, |
| 269 | int scale) { |
| 270 | int ksize = 3 + 2 * (scale - 1); |
| 271 | |
| 272 | // The standard Scharr kernel |
| 273 | if (scale == 1) { |
| 274 | getDerivKernels(_kx, _ky, dx, dy, FILTER_SCHARR, true, CV_32F); |
| 275 | return; |
| 276 | } |
| 277 | |
| 278 | _kx.create(ksize, 1, CV_32F, -1, true); |
| 279 | _ky.create(ksize, 1, CV_32F, -1, true); |
| 280 | Mat kx = _kx.getMat(); |
| 281 | Mat ky = _ky.getMat(); |
| 282 | |
| 283 | float w = 10.0f / 3.0f; |
| 284 | float norm = 1.0f / (2.0f * (w + 2.0f)); |
| 285 | |
| 286 | std::vector<float> kerI(ksize, 0.0f); |
| 287 | |
| 288 | if (dx == 0) { |
| 289 | kerI[0] = norm, kerI[ksize / 2] = w * norm, kerI[ksize - 1] = norm; |
| 290 | } else if (dx == 1) { |
| 291 | kerI[0] = -1, kerI[ksize / 2] = 0, kerI[ksize - 1] = 1; |
| 292 | } |
| 293 | Mat(kx.rows, kx.cols, CV_32F, &kerI[0]).copyTo(kx); |
| 294 | |
| 295 | kerI.assign(ksize, 0.0f); |
| 296 | |
| 297 | if (dy == 0) { |
| 298 | kerI[0] = norm, kerI[ksize / 2] = w * norm, kerI[ksize - 1] = norm; |
| 299 | } else if (dy == 1) { |
| 300 | kerI[0] = -1, kerI[ksize / 2] = 0, kerI[ksize - 1] = 1; |
| 301 | } |
| 302 | Mat(ky.rows, ky.cols, CV_32F, &kerI[0]).copyTo(ky); |
| 303 | } |
| 304 | |
| 305 | inline void nld_step_scalar_one_lane(const cv::Mat& Lt, const cv::Mat& Lf, |
| 306 | cv::Mat& Lstep, int idx, int skip) { |
| 307 | /* The labeling scheme for this five star stencil: |
| 308 | [ a ] |
| 309 | [ -1 c +1 ] |
| 310 | [ b ] |
| 311 | */ |
| 312 | |
| 313 | const int cols = Lt.cols - 2; |
| 314 | int row = idx; |
| 315 | |
| 316 | const float *lt_a, *lt_c, *lt_b; |
| 317 | const float *lf_a, *lf_c, *lf_b; |
| 318 | float* dst; |
| 319 | |
| 320 | // Process the top row |
| 321 | if (row == 0) { |
| 322 | lt_c = Lt.ptr<float>(0) + 1; /* Skip the left-most column by +1 */ |
| 323 | lf_c = Lf.ptr<float>(0) + 1; |
| 324 | lt_b = Lt.ptr<float>(1) + 1; |
| 325 | lf_b = Lf.ptr<float>(1) + 1; |
| 326 | dst = Lstep.ptr<float>(0) + 1; |
| 327 | |
| 328 | for (int j = 0; j < cols; j++) { |
| 329 | dst[j] = (lf_c[j] + lf_c[j + 1]) * (lt_c[j + 1] - lt_c[j]) + |
| 330 | (lf_c[j] + lf_c[j - 1]) * (lt_c[j - 1] - lt_c[j]) + |
| 331 | (lf_c[j] + lf_b[j]) * (lt_b[j] - lt_c[j]); |
| 332 | } |
| 333 | row += skip; |
| 334 | } |
| 335 | |
| 336 | // Process the middle rows |
| 337 | for (; row < Lt.rows - 1; row += skip) { |
| 338 | lt_a = Lt.ptr<float>(row - 1); |
| 339 | lf_a = Lf.ptr<float>(row - 1); |
| 340 | lt_c = Lt.ptr<float>(row); |
| 341 | lf_c = Lf.ptr<float>(row); |
| 342 | lt_b = Lt.ptr<float>(row + 1); |
| 343 | lf_b = Lf.ptr<float>(row + 1); |
| 344 | dst = Lstep.ptr<float>(row); |
| 345 | |
| 346 | // The left-most column |
| 347 | dst[0] = (lf_c[0] + lf_c[1]) * (lt_c[1] - lt_c[0]) + |
| 348 | (lf_c[0] + lf_b[0]) * (lt_b[0] - lt_c[0]) + |
| 349 | (lf_c[0] + lf_a[0]) * (lt_a[0] - lt_c[0]); |
| 350 | |
| 351 | lt_a++; |
| 352 | lt_c++; |
| 353 | lt_b++; |
| 354 | lf_a++; |
| 355 | lf_c++; |
| 356 | lf_b++; |
| 357 | dst++; |
| 358 | |
| 359 | // The middle columns |
| 360 | for (int j = 0; j < cols; j++) { |
| 361 | dst[j] = (lf_c[j] + lf_c[j + 1]) * (lt_c[j + 1] - lt_c[j]) + |
| 362 | (lf_c[j] + lf_c[j - 1]) * (lt_c[j - 1] - lt_c[j]) + |
| 363 | (lf_c[j] + lf_b[j]) * (lt_b[j] - lt_c[j]) + |
| 364 | (lf_c[j] + lf_a[j]) * (lt_a[j] - lt_c[j]); |
| 365 | } |
| 366 | |
| 367 | // The right-most column |
| 368 | dst[cols] = (lf_c[cols] + lf_c[cols - 1]) * (lt_c[cols - 1] - lt_c[cols]) + |
| 369 | (lf_c[cols] + lf_b[cols]) * (lt_b[cols] - lt_c[cols]) + |
| 370 | (lf_c[cols] + lf_a[cols]) * (lt_a[cols] - lt_c[cols]); |
| 371 | } |
| 372 | |
| 373 | // Process the bottom row |
| 374 | if (row == Lt.rows - 1) { |
| 375 | lt_a = Lt.ptr<float>(row - 1) + 1; /* Skip the left-most column by +1 */ |
| 376 | lf_a = Lf.ptr<float>(row - 1) + 1; |
| 377 | lt_c = Lt.ptr<float>(row) + 1; |
| 378 | lf_c = Lf.ptr<float>(row) + 1; |
| 379 | dst = Lstep.ptr<float>(row) + 1; |
| 380 | |
| 381 | for (int j = 0; j < cols; j++) { |
| 382 | dst[j] = (lf_c[j] + lf_c[j + 1]) * (lt_c[j + 1] - lt_c[j]) + |
| 383 | (lf_c[j] + lf_c[j - 1]) * (lt_c[j - 1] - lt_c[j]) + |
| 384 | (lf_c[j] + lf_a[j]) * (lt_a[j] - lt_c[j]); |
| 385 | } |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | /* ************************************************************************* */ |
| 390 | /** |
| 391 | * @brief This function computes a scalar non-linear diffusion step |
| 392 | * @param Ld Base image in the evolution |
| 393 | * @param c Conductivity image |
| 394 | * @param Lstep Output image that gives the difference between the current |
| 395 | * Ld and the next Ld being evolved |
| 396 | * @note Forward Euler Scheme 3x3 stencil |
| 397 | * The function c is a scalar value that depends on the gradient norm |
| 398 | * dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy |
| 399 | */ |
| 400 | void nld_step_scalarV2(const cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep) { |
| 401 | nld_step_scalar_one_lane(Ld, c, Lstep, 0, 1); |
| 402 | } |
| 403 | |
| 404 | /* ************************************************************************* */ |
| 405 | /** |
| 406 | * @brief This function downsamples the input image using OpenCV resize |
| 407 | * @param src Input image to be downsampled |
| 408 | * @param dst Output image with half of the resolution of the input image |
| 409 | */ |
| 410 | void halfsample_imageV2(const cv::Mat& src, cv::Mat& dst) { |
| 411 | // Make sure the destination image is of the right size |
| 412 | CV_Assert(src.cols / 2 == dst.cols); |
| 413 | CV_Assert(src.rows / 2 == dst.rows); |
| 414 | resize(src, dst, dst.size(), 0, 0, cv::INTER_AREA); |
| 415 | } |
| 416 | |
| 417 | /* ************************************************************************* */ |
| 418 | /** |
| 419 | * @brief This function checks if a given pixel is a maximum in a local |
| 420 | * neighbourhood |
| 421 | * @param img Input image where we will perform the maximum search |
| 422 | * @param dsize Half size of the neighbourhood |
| 423 | * @param value Response value at (x,y) position |
| 424 | * @param row Image row coordinate |
| 425 | * @param col Image column coordinate |
| 426 | * @param same_img Flag to indicate if the image value at (x,y) is in the input |
| 427 | * image |
| 428 | * @return 1->is maximum, 0->otherwise |
| 429 | */ |
| 430 | bool check_maximum_neighbourhoodV2(const cv::Mat& img, int dsize, float value, |
| 431 | int row, int col, bool same_img) { |
| 432 | bool response = true; |
| 433 | |
| 434 | for (int i = row - dsize; i <= row + dsize; i++) { |
| 435 | for (int j = col - dsize; j <= col + dsize; j++) { |
| 436 | if (i >= 0 && i < img.rows && j >= 0 && j < img.cols) { |
| 437 | if (same_img == true) { |
| 438 | if (i != row || j != col) { |
| 439 | if ((*(img.ptr<float>(i) + j)) > value) { |
| 440 | response = false; |
| 441 | return response; |
| 442 | } |
| 443 | } |
| 444 | } else { |
| 445 | if ((*(img.ptr<float>(i) + j)) > value) { |
| 446 | response = false; |
| 447 | return response; |
| 448 | } |
| 449 | } |
| 450 | } |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | return response; |
| 455 | } |
| 456 | |
| 457 | } // namespace cv |