| //============================================================================= |
| // |
| // nldiffusion_functions.cpp |
| // Author: Pablo F. Alcantarilla |
| // Institution: University d'Auvergne |
| // Address: Clermont Ferrand, France |
| // Date: 27/12/2011 |
| // Email: pablofdezalc@gmail.com |
| // |
| // KAZE Features Copyright 2012, Pablo F. Alcantarilla |
| // All Rights Reserved |
| // See LICENSE for the license information |
| //============================================================================= |
| |
| /** |
| * @file nldiffusion_functions.cpp |
| * @brief Functions for non-linear diffusion applications: |
| * 2D Gaussian Derivatives |
| * Perona and Malik conductivity equations |
| * Perona and Malik evolution |
| * @date Dec 27, 2011 |
| * @author Pablo F. Alcantarilla |
| */ |
| |
| #include "nldiffusion_functions.h" |
| |
| #include <cstdint> |
| #include <cstring> |
| #include <iostream> |
| #include <opencv2/core.hpp> |
| #include <opencv2/imgproc.hpp> |
| |
| // Namespaces |
| |
| /* ************************************************************************* */ |
| |
| namespace cv { |
| using namespace std; |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function smoothes an image with a Gaussian kernel |
| * @param src Input image |
| * @param dst Output image |
| * @param ksize_x Kernel size in X-direction (horizontal) |
| * @param ksize_y Kernel size in Y-direction (vertical) |
| * @param sigma Kernel standard deviation |
| */ |
| void gaussian_2D_convolutionV2(const cv::Mat& src, cv::Mat& dst, int ksize_x, |
| int ksize_y, float sigma) { |
| int ksize_x_ = 0, ksize_y_ = 0; |
| |
| // Compute an appropriate kernel size according to the specified sigma |
| if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) { |
| ksize_x_ = (int)ceil(2.0f * (1.0f + (sigma - 0.8f) / (0.3f))); |
| ksize_y_ = ksize_x_; |
| } |
| |
| // The kernel size must be and odd number |
| if ((ksize_x_ % 2) == 0) { |
| ksize_x_ += 1; |
| } |
| |
| if ((ksize_y_ % 2) == 0) { |
| ksize_y_ += 1; |
| } |
| |
| // Perform the Gaussian Smoothing with border replication |
| GaussianBlur(src, dst, Size(ksize_x_, ksize_y_), sigma, sigma, |
| BORDER_REPLICATE); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function computes image derivatives with Scharr kernel |
| * @param src Input image |
| * @param dst Output image |
| * @param xorder Derivative order in X-direction (horizontal) |
| * @param yorder Derivative order in Y-direction (vertical) |
| * @note Scharr operator approximates better rotation invariance than |
| * other stencils such as Sobel. See Weickert and Scharr, |
| * A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation |
| * Invariance, Journal of Visual Communication and Image Representation 2002 |
| */ |
| void image_derivatives_scharrV2(const cv::Mat& src, cv::Mat& dst, int xorder, |
| int yorder) { |
| Scharr(src, dst, CV_32F, xorder, yorder, 1.0, 0, BORDER_DEFAULT); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function computes the Perona and Malik conductivity coefficient |
| * g1 g1 = exp(-|dL|^2/k^2) |
| * @param Lx First order image derivative in X-direction (horizontal) |
| * @param Ly First order image derivative in Y-direction (vertical) |
| * @param dst Output image |
| * @param k Contrast factor parameter |
| */ |
| void pm_g1V2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { |
| // Compute: dst = exp((Lx.mul(Lx) + Ly.mul(Ly)) / (-k * k)) |
| |
| const float neg_inv_k2 = -1.0f / (k * k); |
| |
| const int total = Lx.rows * Lx.cols; |
| const float* lx = Lx.ptr<float>(0); |
| const float* ly = Ly.ptr<float>(0); |
| float* d = dst.ptr<float>(0); |
| |
| for (int i = 0; i < total; i++) |
| d[i] = neg_inv_k2 * (lx[i] * lx[i] + ly[i] * ly[i]); |
| |
| exp(dst, dst); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function computes the Perona and Malik conductivity coefficient |
| * g2 g2 = 1 / (1 + dL^2 / k^2) |
| * @param Lx First order image derivative in X-direction (horizontal) |
| * @param Ly First order image derivative in Y-direction (vertical) |
| * @param dst Output image |
| * @param k Contrast factor parameter |
| */ |
| void pm_g2V2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { |
| // Compute: dst = 1.0f / (1.0f + ((Lx.mul(Lx) + Ly.mul(Ly)) / (k * k)) ); |
| |
| const float inv_k2 = 1.0f / (k * k); |
| |
| const int total = Lx.rows * Lx.cols; |
| const float* lx = Lx.ptr<float>(0); |
| const float* ly = Ly.ptr<float>(0); |
| float* d = dst.ptr<float>(0); |
| |
| for (int i = 0; i < total; i++) |
| d[i] = 1.0f / (1.0f + ((lx[i] * lx[i] + ly[i] * ly[i]) * inv_k2)); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function computes Weickert conductivity coefficient gw |
| * @param Lx First order image derivative in X-direction (horizontal) |
| * @param Ly First order image derivative in Y-direction (vertical) |
| * @param dst Output image |
| * @param k Contrast factor parameter |
| * @note For more information check the following paper: J. Weickert |
| * Applications of nonlinear diffusion in image processing and computer vision, |
| * Proceedings of Algorithmy 2000 |
| */ |
| void weickert_diffusivityV2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, |
| float k) { |
| // Compute: dst = 1.0f - exp(-3.315f / ((Lx.mul(Lx) + Ly.mul(Ly)) / (k * |
| // k))^4) |
| |
| const float inv_k2 = 1.0f / (k * k); |
| |
| const int total = Lx.rows * Lx.cols; |
| const float* lx = Lx.ptr<float>(0); |
| const float* ly = Ly.ptr<float>(0); |
| float* d = dst.ptr<float>(0); |
| |
| for (int i = 0; i < total; i++) { |
| float dL = inv_k2 * (lx[i] * lx[i] + ly[i] * ly[i]); |
| d[i] = -3.315f / (dL * dL * dL * dL); |
| } |
| |
| exp(dst, dst); |
| |
| for (int i = 0; i < total; i++) d[i] = 1.0f - d[i]; |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function computes Charbonnier conductivity coefficient gc |
| * gc = 1 / sqrt(1 + dL^2 / k^2) |
| * @param Lx First order image derivative in X-direction (horizontal) |
| * @param Ly First order image derivative in Y-direction (vertical) |
| * @param dst Output image |
| * @param k Contrast factor parameter |
| * @note For more information check the following paper: J. Weickert |
| * Applications of nonlinear diffusion in image processing and computer vision, |
| * Proceedings of Algorithmy 2000 |
| */ |
| void charbonnier_diffusivityV2(const cv::Mat& Lx, const cv::Mat& Ly, |
| cv::Mat& dst, float k) { |
| // Compute: dst = 1.0f / sqrt(1.0f + (Lx.mul(Lx) + Ly.mul(Ly)) / (k * k)) |
| |
| const float inv_k2 = 1.0f / (k * k); |
| |
| const int total = Lx.rows * Lx.cols; |
| const float* lx = Lx.ptr<float>(0); |
| const float* ly = Ly.ptr<float>(0); |
| float* d = dst.ptr<float>(0); |
| |
| for (int i = 0; i < total; i++) |
| d[i] = 1.0f / sqrtf(1.0f + inv_k2 * (lx[i] * lx[i] + ly[i] * ly[i])); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function computes a good empirical value for the k contrast |
| * factor given two gradient images, the percentile (0-1), the temporal storage |
| * to hold gradient norms and the histogram bins |
| * @param Lx Horizontal gradient of the input image |
| * @param Ly Vertical gradient of the input image |
| * @param perc Percentile of the image gradient histogram (0-1) |
| * @param modgs Temporal vector to hold the gradient norms |
| * @param histogram Temporal vector to hold the gradient histogram |
| * @return k contrast factor |
| */ |
| float compute_k_percentileV2(const cv::Mat& Lx, const cv::Mat& Ly, float perc, |
| cv::Mat& modgs, cv::Mat& histogram) { |
| const int total = modgs.cols; |
| const int nbins = histogram.cols; |
| |
| CV_DbgAssert(total == (Lx.rows - 2) * (Lx.cols - 2)); |
| CV_DbgAssert(nbins > 2); |
| |
| float* modg = modgs.ptr<float>(0); |
| int32_t* hist = histogram.ptr<int32_t>(0); |
| |
| for (int i = 1; i < Lx.rows - 1; i++) { |
| const float* lx = Lx.ptr<float>(i) + 1; |
| const float* ly = Ly.ptr<float>(i) + 1; |
| const int cols = Lx.cols - 2; |
| |
| for (int j = 0; j < cols; j++) |
| *modg++ = sqrtf(lx[j] * lx[j] + ly[j] * ly[j]); |
| } |
| modg = modgs.ptr<float>(0); |
| |
| // Get the maximum |
| float hmax = 0.0f; |
| for (int i = 0; i < total; i++) |
| if (hmax < modg[i]) hmax = modg[i]; |
| |
| if (hmax == 0.0f) return 0.03f; // e.g. a blank image |
| |
| // Compute the bin numbers: the value range [0, hmax] -> [0, nbins-1] |
| for (int i = 0; i < total; i++) modg[i] *= (nbins - 1) / hmax; |
| |
| // Count up |
| std::memset(hist, 0, sizeof(int32_t) * nbins); |
| for (int i = 0; i < total; i++) hist[(int)modg[i]]++; |
| |
| // Now find the perc of the histogram percentile |
| const int nthreshold = |
| (int)((total - hist[0]) * perc); // Exclude hist[0] as background |
| int nelements = 0; |
| for (int k = 1; k < nbins; k++) { |
| if (nelements >= nthreshold) return (float)hmax * k / nbins; |
| |
| nelements = nelements + hist[k]; |
| } |
| |
| return 0.03f; |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief Compute Scharr derivative kernels for sizes different than 3 |
| * @param _kx Horizontal kernel ues |
| * @param _ky Vertical kernel values |
| * @param dx Derivative order in X-direction (horizontal) |
| * @param dy Derivative order in Y-direction (vertical) |
| * @param scale_ Scale factor or derivative size |
| */ |
| void compute_scharr_derivative_kernelsV2(cv::OutputArray _kx, |
| cv::OutputArray _ky, int dx, int dy, |
| int scale) { |
| int ksize = 3 + 2 * (scale - 1); |
| |
| // The standard Scharr kernel |
| if (scale == 1) { |
| getDerivKernels(_kx, _ky, dx, dy, FILTER_SCHARR, true, CV_32F); |
| return; |
| } |
| |
| _kx.create(ksize, 1, CV_32F, -1, true); |
| _ky.create(ksize, 1, CV_32F, -1, true); |
| Mat kx = _kx.getMat(); |
| Mat ky = _ky.getMat(); |
| |
| float w = 10.0f / 3.0f; |
| float norm = 1.0f / (2.0f * (w + 2.0f)); |
| |
| std::vector<float> kerI(ksize, 0.0f); |
| |
| if (dx == 0) { |
| kerI[0] = norm, kerI[ksize / 2] = w * norm, kerI[ksize - 1] = norm; |
| } else if (dx == 1) { |
| kerI[0] = -1, kerI[ksize / 2] = 0, kerI[ksize - 1] = 1; |
| } |
| Mat(kx.rows, kx.cols, CV_32F, &kerI[0]).copyTo(kx); |
| |
| kerI.assign(ksize, 0.0f); |
| |
| if (dy == 0) { |
| kerI[0] = norm, kerI[ksize / 2] = w * norm, kerI[ksize - 1] = norm; |
| } else if (dy == 1) { |
| kerI[0] = -1, kerI[ksize / 2] = 0, kerI[ksize - 1] = 1; |
| } |
| Mat(ky.rows, ky.cols, CV_32F, &kerI[0]).copyTo(ky); |
| } |
| |
| inline void nld_step_scalar_one_lane(const cv::Mat& Lt, const cv::Mat& Lf, |
| cv::Mat& Lstep, int idx, int skip) { |
| /* The labeling scheme for this five star stencil: |
| [ a ] |
| [ -1 c +1 ] |
| [ b ] |
| */ |
| |
| const int cols = Lt.cols - 2; |
| int row = idx; |
| |
| const float *lt_a, *lt_c, *lt_b; |
| const float *lf_a, *lf_c, *lf_b; |
| float* dst; |
| |
| // Process the top row |
| if (row == 0) { |
| lt_c = Lt.ptr<float>(0) + 1; /* Skip the left-most column by +1 */ |
| lf_c = Lf.ptr<float>(0) + 1; |
| lt_b = Lt.ptr<float>(1) + 1; |
| lf_b = Lf.ptr<float>(1) + 1; |
| dst = Lstep.ptr<float>(0) + 1; |
| |
| for (int j = 0; j < cols; j++) { |
| dst[j] = (lf_c[j] + lf_c[j + 1]) * (lt_c[j + 1] - lt_c[j]) + |
| (lf_c[j] + lf_c[j - 1]) * (lt_c[j - 1] - lt_c[j]) + |
| (lf_c[j] + lf_b[j]) * (lt_b[j] - lt_c[j]); |
| } |
| row += skip; |
| } |
| |
| // Process the middle rows |
| for (; row < Lt.rows - 1; row += skip) { |
| lt_a = Lt.ptr<float>(row - 1); |
| lf_a = Lf.ptr<float>(row - 1); |
| lt_c = Lt.ptr<float>(row); |
| lf_c = Lf.ptr<float>(row); |
| lt_b = Lt.ptr<float>(row + 1); |
| lf_b = Lf.ptr<float>(row + 1); |
| dst = Lstep.ptr<float>(row); |
| |
| // The left-most column |
| dst[0] = (lf_c[0] + lf_c[1]) * (lt_c[1] - lt_c[0]) + |
| (lf_c[0] + lf_b[0]) * (lt_b[0] - lt_c[0]) + |
| (lf_c[0] + lf_a[0]) * (lt_a[0] - lt_c[0]); |
| |
| lt_a++; |
| lt_c++; |
| lt_b++; |
| lf_a++; |
| lf_c++; |
| lf_b++; |
| dst++; |
| |
| // The middle columns |
| for (int j = 0; j < cols; j++) { |
| dst[j] = (lf_c[j] + lf_c[j + 1]) * (lt_c[j + 1] - lt_c[j]) + |
| (lf_c[j] + lf_c[j - 1]) * (lt_c[j - 1] - lt_c[j]) + |
| (lf_c[j] + lf_b[j]) * (lt_b[j] - lt_c[j]) + |
| (lf_c[j] + lf_a[j]) * (lt_a[j] - lt_c[j]); |
| } |
| |
| // The right-most column |
| dst[cols] = (lf_c[cols] + lf_c[cols - 1]) * (lt_c[cols - 1] - lt_c[cols]) + |
| (lf_c[cols] + lf_b[cols]) * (lt_b[cols] - lt_c[cols]) + |
| (lf_c[cols] + lf_a[cols]) * (lt_a[cols] - lt_c[cols]); |
| } |
| |
| // Process the bottom row |
| if (row == Lt.rows - 1) { |
| lt_a = Lt.ptr<float>(row - 1) + 1; /* Skip the left-most column by +1 */ |
| lf_a = Lf.ptr<float>(row - 1) + 1; |
| lt_c = Lt.ptr<float>(row) + 1; |
| lf_c = Lf.ptr<float>(row) + 1; |
| dst = Lstep.ptr<float>(row) + 1; |
| |
| for (int j = 0; j < cols; j++) { |
| dst[j] = (lf_c[j] + lf_c[j + 1]) * (lt_c[j + 1] - lt_c[j]) + |
| (lf_c[j] + lf_c[j - 1]) * (lt_c[j - 1] - lt_c[j]) + |
| (lf_c[j] + lf_a[j]) * (lt_a[j] - lt_c[j]); |
| } |
| } |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function computes a scalar non-linear diffusion step |
| * @param Ld Base image in the evolution |
| * @param c Conductivity image |
| * @param Lstep Output image that gives the difference between the current |
| * Ld and the next Ld being evolved |
| * @note Forward Euler Scheme 3x3 stencil |
| * The function c is a scalar value that depends on the gradient norm |
| * dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy |
| */ |
| void nld_step_scalarV2(const cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep) { |
| nld_step_scalar_one_lane(Ld, c, Lstep, 0, 1); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function downsamples the input image using OpenCV resize |
| * @param src Input image to be downsampled |
| * @param dst Output image with half of the resolution of the input image |
| */ |
| void halfsample_imageV2(const cv::Mat& src, cv::Mat& dst) { |
| // Make sure the destination image is of the right size |
| CV_Assert(src.cols / 2 == dst.cols); |
| CV_Assert(src.rows / 2 == dst.rows); |
| resize(src, dst, dst.size(), 0, 0, cv::INTER_AREA); |
| } |
| |
| /* ************************************************************************* */ |
| /** |
| * @brief This function checks if a given pixel is a maximum in a local |
| * neighbourhood |
| * @param img Input image where we will perform the maximum search |
| * @param dsize Half size of the neighbourhood |
| * @param value Response value at (x,y) position |
| * @param row Image row coordinate |
| * @param col Image column coordinate |
| * @param same_img Flag to indicate if the image value at (x,y) is in the input |
| * image |
| * @return 1->is maximum, 0->otherwise |
| */ |
| bool check_maximum_neighbourhoodV2(const cv::Mat& img, int dsize, float value, |
| int row, int col, bool same_img) { |
| bool response = true; |
| |
| for (int i = row - dsize; i <= row + dsize; i++) { |
| for (int j = col - dsize; j <= col + dsize; j++) { |
| if (i >= 0 && i < img.rows && j >= 0 && j < img.cols) { |
| if (same_img == true) { |
| if (i != row || j != col) { |
| if ((*(img.ptr<float>(i) + j)) > value) { |
| response = false; |
| return response; |
| } |
| } |
| } else { |
| if ((*(img.ptr<float>(i) + j)) > value) { |
| response = false; |
| return response; |
| } |
| } |
| } |
| } |
| } |
| |
| return response; |
| } |
| |
| } // namespace cv |