Austin Schuh | 70cc955 | 2019-01-21 19:46:48 -0800 | [diff] [blame^] | 1 | // Ceres Solver - A fast non-linear least squares minimizer |
| 2 | // Copyright 2015 Google Inc. All rights reserved. |
| 3 | // http://ceres-solver.org/ |
| 4 | // |
| 5 | // Redistribution and use in source and binary forms, with or without |
| 6 | // modification, are permitted provided that the following conditions are met: |
| 7 | // |
| 8 | // * Redistributions of source code must retain the above copyright notice, |
| 9 | // this list of conditions and the following disclaimer. |
| 10 | // * Redistributions in binary form must reproduce the above copyright notice, |
| 11 | // this list of conditions and the following disclaimer in the documentation |
| 12 | // and/or other materials provided with the distribution. |
| 13 | // * Neither the name of Google Inc. nor the names of its contributors may be |
| 14 | // used to endorse or promote products derived from this software without |
| 15 | // specific prior written permission. |
| 16 | // |
| 17 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 18 | // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 19 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 20 | // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 21 | // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 22 | // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 23 | // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 24 | // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 25 | // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 26 | // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 27 | // POSSIBILITY OF SUCH DAMAGE. |
| 28 | // |
| 29 | // Author: sameeragarwal@google.com (Sameer Agarwal) |
| 30 | |
| 31 | #include "ceres/solver.h" |
| 32 | |
| 33 | #include <limits> |
| 34 | #include <memory> |
| 35 | #include <cmath> |
| 36 | #include <vector> |
| 37 | #include "gtest/gtest.h" |
| 38 | #include "ceres/evaluation_callback.h" |
| 39 | #include "ceres/autodiff_cost_function.h" |
| 40 | #include "ceres/sized_cost_function.h" |
| 41 | #include "ceres/problem.h" |
| 42 | #include "ceres/problem_impl.h" |
| 43 | |
| 44 | namespace ceres { |
| 45 | namespace internal { |
| 46 | |
| 47 | using std::string; |
| 48 | |
| 49 | TEST(SolverOptions, DefaultTrustRegionOptionsAreValid) { |
| 50 | Solver::Options options; |
| 51 | options.minimizer_type = TRUST_REGION; |
| 52 | string error; |
| 53 | EXPECT_TRUE(options.IsValid(&error)) << error; |
| 54 | } |
| 55 | |
| 56 | TEST(SolverOptions, DefaultLineSearchOptionsAreValid) { |
| 57 | Solver::Options options; |
| 58 | options.minimizer_type = LINE_SEARCH; |
| 59 | string error; |
| 60 | EXPECT_TRUE(options.IsValid(&error)) << error; |
| 61 | } |
| 62 | |
| 63 | struct QuadraticCostFunctor { |
| 64 | template <typename T> bool operator()(const T* const x, |
| 65 | T* residual) const { |
| 66 | residual[0] = T(5.0) - *x; |
| 67 | return true; |
| 68 | } |
| 69 | |
| 70 | static CostFunction* Create() { |
| 71 | return new AutoDiffCostFunction<QuadraticCostFunctor, 1, 1>( |
| 72 | new QuadraticCostFunctor); |
| 73 | } |
| 74 | }; |
| 75 | |
| 76 | struct RememberingCallback : public IterationCallback { |
| 77 | explicit RememberingCallback(double *x) : calls(0), x(x) {} |
| 78 | virtual ~RememberingCallback() {} |
| 79 | virtual CallbackReturnType operator()(const IterationSummary& summary) { |
| 80 | x_values.push_back(*x); |
| 81 | return SOLVER_CONTINUE; |
| 82 | } |
| 83 | int calls; |
| 84 | double *x; |
| 85 | std::vector<double> x_values; |
| 86 | }; |
| 87 | |
| 88 | struct NoOpEvaluationCallback : EvaluationCallback { |
| 89 | virtual ~NoOpEvaluationCallback() {} |
| 90 | virtual void PrepareForEvaluation(bool evaluate_jacobians, |
| 91 | bool new_evaluation_point) { |
| 92 | (void) evaluate_jacobians; |
| 93 | (void) new_evaluation_point; |
| 94 | } |
| 95 | }; |
| 96 | |
| 97 | TEST(Solver, UpdateStateEveryIterationOption) { |
| 98 | double x = 50.0; |
| 99 | const double original_x = x; |
| 100 | |
| 101 | std::unique_ptr<CostFunction> cost_function(QuadraticCostFunctor::Create()); |
| 102 | Problem::Options problem_options; |
| 103 | problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP; |
| 104 | Problem problem(problem_options); |
| 105 | problem.AddResidualBlock(cost_function.get(), NULL, &x); |
| 106 | |
| 107 | Solver::Options options; |
| 108 | options.linear_solver_type = DENSE_QR; |
| 109 | |
| 110 | RememberingCallback callback(&x); |
| 111 | options.callbacks.push_back(&callback); |
| 112 | |
| 113 | Solver::Summary summary; |
| 114 | |
| 115 | int num_iterations; |
| 116 | |
| 117 | // There are four cases that need to be checked: |
| 118 | // |
| 119 | // (update_state_every_iteration = true|false) X |
| 120 | // (evaluation_callback = NULL|provided) |
| 121 | // |
| 122 | // These need to get checked since there is some interaction between them. |
| 123 | |
| 124 | // First: update_state_every_iteration=false, evaluation_callback=NULL. |
| 125 | Solve(options, &problem, &summary); |
| 126 | num_iterations = summary.num_successful_steps + |
| 127 | summary.num_unsuccessful_steps; |
| 128 | EXPECT_GT(num_iterations, 1); |
| 129 | for (int i = 0; i < callback.x_values.size(); ++i) { |
| 130 | EXPECT_EQ(50.0, callback.x_values[i]); |
| 131 | } |
| 132 | |
| 133 | // Second: update_state_every_iteration=true, evaluation_callback=NULL. |
| 134 | x = 50.0; |
| 135 | options.update_state_every_iteration = true; |
| 136 | callback.x_values.clear(); |
| 137 | Solve(options, &problem, &summary); |
| 138 | num_iterations = summary.num_successful_steps + |
| 139 | summary.num_unsuccessful_steps; |
| 140 | EXPECT_GT(num_iterations, 1); |
| 141 | EXPECT_EQ(original_x, callback.x_values[0]); |
| 142 | EXPECT_NE(original_x, callback.x_values[1]); |
| 143 | |
| 144 | NoOpEvaluationCallback evaluation_callback; |
| 145 | |
| 146 | // Third: update_state_every_iteration=true, evaluation_callback=!NULL. |
| 147 | x = 50.0; |
| 148 | options.update_state_every_iteration = true; |
| 149 | options.evaluation_callback = &evaluation_callback; |
| 150 | callback.x_values.clear(); |
| 151 | Solve(options, &problem, &summary); |
| 152 | num_iterations = summary.num_successful_steps + |
| 153 | summary.num_unsuccessful_steps; |
| 154 | EXPECT_GT(num_iterations, 1); |
| 155 | EXPECT_EQ(original_x, callback.x_values[0]); |
| 156 | EXPECT_NE(original_x, callback.x_values[1]); |
| 157 | |
| 158 | // Fourth: update_state_every_iteration=false, evaluation_callback=!NULL. |
| 159 | x = 50.0; |
| 160 | options.update_state_every_iteration = false; |
| 161 | options.evaluation_callback = &evaluation_callback; |
| 162 | callback.x_values.clear(); |
| 163 | Solve(options, &problem, &summary); |
| 164 | num_iterations = summary.num_successful_steps + |
| 165 | summary.num_unsuccessful_steps; |
| 166 | EXPECT_GT(num_iterations, 1); |
| 167 | EXPECT_EQ(original_x, callback.x_values[0]); |
| 168 | EXPECT_NE(original_x, callback.x_values[1]); |
| 169 | } |
| 170 | |
| 171 | // The parameters must be in separate blocks so that they can be individually |
| 172 | // set constant or not. |
| 173 | struct Quadratic4DCostFunction { |
| 174 | template <typename T> bool operator()(const T* const x, |
| 175 | const T* const y, |
| 176 | const T* const z, |
| 177 | const T* const w, |
| 178 | T* residual) const { |
| 179 | // A 4-dimension axis-aligned quadratic. |
| 180 | residual[0] = T(10.0) - *x + |
| 181 | T(20.0) - *y + |
| 182 | T(30.0) - *z + |
| 183 | T(40.0) - *w; |
| 184 | return true; |
| 185 | } |
| 186 | |
| 187 | static CostFunction* Create() { |
| 188 | return new AutoDiffCostFunction<Quadratic4DCostFunction, 1, 1, 1, 1, 1>( |
| 189 | new Quadratic4DCostFunction); |
| 190 | } |
| 191 | }; |
| 192 | |
| 193 | // A cost function that simply returns its argument. |
| 194 | class UnaryIdentityCostFunction : public SizedCostFunction<1, 1> { |
| 195 | public: |
| 196 | virtual bool Evaluate(double const* const* parameters, |
| 197 | double* residuals, |
| 198 | double** jacobians) const { |
| 199 | residuals[0] = parameters[0][0]; |
| 200 | if (jacobians != NULL && jacobians[0] != NULL) { |
| 201 | jacobians[0][0] = 1.0; |
| 202 | } |
| 203 | return true; |
| 204 | } |
| 205 | }; |
| 206 | |
| 207 | TEST(Solver, TrustRegionProblemHasNoParameterBlocks) { |
| 208 | Problem problem; |
| 209 | Solver::Options options; |
| 210 | options.minimizer_type = TRUST_REGION; |
| 211 | Solver::Summary summary; |
| 212 | Solve(options, &problem, &summary); |
| 213 | EXPECT_EQ(summary.termination_type, CONVERGENCE); |
| 214 | EXPECT_EQ(summary.message, |
| 215 | "Function tolerance reached. " |
| 216 | "No non-constant parameter blocks found."); |
| 217 | } |
| 218 | |
| 219 | TEST(Solver, LineSearchProblemHasNoParameterBlocks) { |
| 220 | Problem problem; |
| 221 | Solver::Options options; |
| 222 | options.minimizer_type = LINE_SEARCH; |
| 223 | Solver::Summary summary; |
| 224 | Solve(options, &problem, &summary); |
| 225 | EXPECT_EQ(summary.termination_type, CONVERGENCE); |
| 226 | EXPECT_EQ(summary.message, |
| 227 | "Function tolerance reached. " |
| 228 | "No non-constant parameter blocks found."); |
| 229 | } |
| 230 | |
| 231 | TEST(Solver, TrustRegionProblemHasZeroResiduals) { |
| 232 | Problem problem; |
| 233 | double x = 1; |
| 234 | problem.AddParameterBlock(&x, 1); |
| 235 | Solver::Options options; |
| 236 | options.minimizer_type = TRUST_REGION; |
| 237 | Solver::Summary summary; |
| 238 | Solve(options, &problem, &summary); |
| 239 | EXPECT_EQ(summary.termination_type, CONVERGENCE); |
| 240 | EXPECT_EQ(summary.message, |
| 241 | "Function tolerance reached. " |
| 242 | "No non-constant parameter blocks found."); |
| 243 | } |
| 244 | |
| 245 | TEST(Solver, LineSearchProblemHasZeroResiduals) { |
| 246 | Problem problem; |
| 247 | double x = 1; |
| 248 | problem.AddParameterBlock(&x, 1); |
| 249 | Solver::Options options; |
| 250 | options.minimizer_type = LINE_SEARCH; |
| 251 | Solver::Summary summary; |
| 252 | Solve(options, &problem, &summary); |
| 253 | EXPECT_EQ(summary.termination_type, CONVERGENCE); |
| 254 | EXPECT_EQ(summary.message, |
| 255 | "Function tolerance reached. " |
| 256 | "No non-constant parameter blocks found."); |
| 257 | } |
| 258 | |
| 259 | TEST(Solver, TrustRegionProblemIsConstant) { |
| 260 | Problem problem; |
| 261 | double x = 1; |
| 262 | problem.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x); |
| 263 | problem.SetParameterBlockConstant(&x); |
| 264 | Solver::Options options; |
| 265 | options.minimizer_type = TRUST_REGION; |
| 266 | Solver::Summary summary; |
| 267 | Solve(options, &problem, &summary); |
| 268 | EXPECT_EQ(summary.termination_type, CONVERGENCE); |
| 269 | EXPECT_EQ(summary.initial_cost, 1.0 / 2.0); |
| 270 | EXPECT_EQ(summary.final_cost, 1.0 / 2.0); |
| 271 | } |
| 272 | |
| 273 | TEST(Solver, LineSearchProblemIsConstant) { |
| 274 | Problem problem; |
| 275 | double x = 1; |
| 276 | problem.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x); |
| 277 | problem.SetParameterBlockConstant(&x); |
| 278 | Solver::Options options; |
| 279 | options.minimizer_type = LINE_SEARCH; |
| 280 | Solver::Summary summary; |
| 281 | Solve(options, &problem, &summary); |
| 282 | EXPECT_EQ(summary.termination_type, CONVERGENCE); |
| 283 | EXPECT_EQ(summary.initial_cost, 1.0 / 2.0); |
| 284 | EXPECT_EQ(summary.final_cost, 1.0 / 2.0); |
| 285 | } |
| 286 | |
| 287 | #if defined(CERES_NO_SUITESPARSE) |
| 288 | TEST(Solver, SparseNormalCholeskyNoSuiteSparse) { |
| 289 | Solver::Options options; |
| 290 | options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| 291 | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; |
| 292 | string message; |
| 293 | EXPECT_FALSE(options.IsValid(&message)); |
| 294 | } |
| 295 | |
| 296 | TEST(Solver, SparseSchurNoSuiteSparse) { |
| 297 | Solver::Options options; |
| 298 | options.sparse_linear_algebra_library_type = SUITE_SPARSE; |
| 299 | options.linear_solver_type = SPARSE_SCHUR; |
| 300 | string message; |
| 301 | EXPECT_FALSE(options.IsValid(&message)); |
| 302 | } |
| 303 | #endif |
| 304 | |
| 305 | #if defined(CERES_NO_CXSPARSE) |
| 306 | TEST(Solver, SparseNormalCholeskyNoCXSparse) { |
| 307 | Solver::Options options; |
| 308 | options.sparse_linear_algebra_library_type = CX_SPARSE; |
| 309 | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; |
| 310 | string message; |
| 311 | EXPECT_FALSE(options.IsValid(&message)); |
| 312 | } |
| 313 | |
| 314 | TEST(Solver, SparseSchurNoCXSparse) { |
| 315 | Solver::Options options; |
| 316 | options.sparse_linear_algebra_library_type = CX_SPARSE; |
| 317 | options.linear_solver_type = SPARSE_SCHUR; |
| 318 | string message; |
| 319 | EXPECT_FALSE(options.IsValid(&message)); |
| 320 | } |
| 321 | #endif |
| 322 | |
| 323 | #if defined(CERES_NO_ACCELERATE_SPARSE) |
| 324 | TEST(Solver, SparseNormalCholeskyNoAccelerateSparse) { |
| 325 | Solver::Options options; |
| 326 | options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE; |
| 327 | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; |
| 328 | string message; |
| 329 | EXPECT_FALSE(options.IsValid(&message)); |
| 330 | } |
| 331 | |
| 332 | TEST(Solver, SparseSchurNoAccelerateSparse) { |
| 333 | Solver::Options options; |
| 334 | options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE; |
| 335 | options.linear_solver_type = SPARSE_SCHUR; |
| 336 | string message; |
| 337 | EXPECT_FALSE(options.IsValid(&message)); |
| 338 | } |
| 339 | #endif |
| 340 | |
| 341 | #if !defined(CERES_USE_EIGEN_SPARSE) |
| 342 | TEST(Solver, SparseNormalCholeskyNoEigenSparse) { |
| 343 | Solver::Options options; |
| 344 | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| 345 | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; |
| 346 | string message; |
| 347 | EXPECT_FALSE(options.IsValid(&message)); |
| 348 | } |
| 349 | |
| 350 | TEST(Solver, SparseSchurNoEigenSparse) { |
| 351 | Solver::Options options; |
| 352 | options.sparse_linear_algebra_library_type = EIGEN_SPARSE; |
| 353 | options.linear_solver_type = SPARSE_SCHUR; |
| 354 | string message; |
| 355 | EXPECT_FALSE(options.IsValid(&message)); |
| 356 | } |
| 357 | #endif |
| 358 | |
| 359 | TEST(Solver, SparseNormalCholeskyNoSparseLibrary) { |
| 360 | Solver::Options options; |
| 361 | options.sparse_linear_algebra_library_type = NO_SPARSE; |
| 362 | options.linear_solver_type = SPARSE_NORMAL_CHOLESKY; |
| 363 | string message; |
| 364 | EXPECT_FALSE(options.IsValid(&message)); |
| 365 | } |
| 366 | |
| 367 | TEST(Solver, SparseSchurNoSparseLibrary) { |
| 368 | Solver::Options options; |
| 369 | options.sparse_linear_algebra_library_type = NO_SPARSE; |
| 370 | options.linear_solver_type = SPARSE_SCHUR; |
| 371 | string message; |
| 372 | EXPECT_FALSE(options.IsValid(&message)); |
| 373 | } |
| 374 | |
| 375 | TEST(Solver, IterativeSchurWithClusterJacobiPerconditionerNoSparseLibrary) { |
| 376 | Solver::Options options; |
| 377 | options.sparse_linear_algebra_library_type = NO_SPARSE; |
| 378 | options.linear_solver_type = ITERATIVE_SCHUR; |
| 379 | // Requires SuiteSparse. |
| 380 | options.preconditioner_type = CLUSTER_JACOBI; |
| 381 | string message; |
| 382 | EXPECT_FALSE(options.IsValid(&message)); |
| 383 | } |
| 384 | |
| 385 | TEST(Solver, IterativeSchurWithClusterTridiagonalPerconditionerNoSparseLibrary) { |
| 386 | Solver::Options options; |
| 387 | options.sparse_linear_algebra_library_type = NO_SPARSE; |
| 388 | options.linear_solver_type = ITERATIVE_SCHUR; |
| 389 | // Requires SuiteSparse. |
| 390 | options.preconditioner_type = CLUSTER_TRIDIAGONAL; |
| 391 | string message; |
| 392 | EXPECT_FALSE(options.IsValid(&message)); |
| 393 | } |
| 394 | |
| 395 | TEST(Solver, IterativeLinearSolverForDogleg) { |
| 396 | Solver::Options options; |
| 397 | options.trust_region_strategy_type = DOGLEG; |
| 398 | string message; |
| 399 | options.linear_solver_type = ITERATIVE_SCHUR; |
| 400 | EXPECT_FALSE(options.IsValid(&message)); |
| 401 | |
| 402 | options.linear_solver_type = CGNR; |
| 403 | EXPECT_FALSE(options.IsValid(&message)); |
| 404 | } |
| 405 | |
| 406 | TEST(Solver, LinearSolverTypeNormalOperation) { |
| 407 | Solver::Options options; |
| 408 | options.linear_solver_type = DENSE_QR; |
| 409 | |
| 410 | string message; |
| 411 | EXPECT_TRUE(options.IsValid(&message)); |
| 412 | |
| 413 | options.linear_solver_type = DENSE_NORMAL_CHOLESKY; |
| 414 | EXPECT_TRUE(options.IsValid(&message)); |
| 415 | |
| 416 | options.linear_solver_type = DENSE_SCHUR; |
| 417 | EXPECT_TRUE(options.IsValid(&message)); |
| 418 | |
| 419 | options.linear_solver_type = SPARSE_SCHUR; |
| 420 | #if defined(CERES_NO_SUITESPARSE) && \ |
| 421 | defined(CERES_NO_CXSPARSE) && \ |
| 422 | !defined(CERES_USE_EIGEN_SPARSE) |
| 423 | EXPECT_FALSE(options.IsValid(&message)); |
| 424 | #else |
| 425 | EXPECT_TRUE(options.IsValid(&message)); |
| 426 | #endif |
| 427 | |
| 428 | options.linear_solver_type = ITERATIVE_SCHUR; |
| 429 | EXPECT_TRUE(options.IsValid(&message)); |
| 430 | } |
| 431 | |
| 432 | TEST(Solver, CantMixEvaluationCallbackWithInnerIterations) { |
| 433 | Solver::Options options; |
| 434 | NoOpEvaluationCallback evaluation_callback; |
| 435 | string message; |
| 436 | |
| 437 | // Can't combine them. |
| 438 | options.use_inner_iterations = true; |
| 439 | options.evaluation_callback = &evaluation_callback; |
| 440 | EXPECT_FALSE(options.IsValid(&message)); |
| 441 | |
| 442 | // Either or none is OK. |
| 443 | options.use_inner_iterations = false; |
| 444 | options.evaluation_callback = &evaluation_callback; |
| 445 | EXPECT_TRUE(options.IsValid(&message)); |
| 446 | |
| 447 | options.use_inner_iterations = true; |
| 448 | options.evaluation_callback = NULL; |
| 449 | EXPECT_TRUE(options.IsValid(&message)); |
| 450 | |
| 451 | options.use_inner_iterations = false; |
| 452 | options.evaluation_callback = NULL; |
| 453 | EXPECT_TRUE(options.IsValid(&message)); |
| 454 | } |
| 455 | |
| 456 | template <int kNumResiduals, int... Ns> |
| 457 | class DummyCostFunction : public SizedCostFunction<kNumResiduals, Ns...> { |
| 458 | public: |
| 459 | bool Evaluate(double const* const* parameters, |
| 460 | double* residuals, |
| 461 | double** jacobians) const { |
| 462 | for (int i = 0; i < kNumResiduals; ++i) { |
| 463 | residuals[i] = kNumResiduals * kNumResiduals + i; |
| 464 | } |
| 465 | |
| 466 | return true; |
| 467 | } |
| 468 | }; |
| 469 | |
| 470 | TEST(Solver, FixedCostForConstantProblem) { |
| 471 | double x = 1.0; |
| 472 | Problem problem; |
| 473 | problem.AddResidualBlock(new DummyCostFunction<2, 1>(), NULL, &x); |
| 474 | problem.SetParameterBlockConstant(&x); |
| 475 | const double expected_cost = 41.0 / 2.0; // 1/2 * ((4 + 0)^2 + (4 + 1)^2) |
| 476 | Solver::Options options; |
| 477 | Solver::Summary summary; |
| 478 | Solve(options, &problem, &summary); |
| 479 | EXPECT_TRUE(summary.IsSolutionUsable()); |
| 480 | EXPECT_EQ(summary.fixed_cost, expected_cost); |
| 481 | EXPECT_EQ(summary.initial_cost, expected_cost); |
| 482 | EXPECT_EQ(summary.final_cost, expected_cost); |
| 483 | EXPECT_EQ(summary.iterations.size(), 0); |
| 484 | } |
| 485 | |
| 486 | } // namespace internal |
| 487 | } // namespace ceres |