Squashed 'third_party/ceres/' content from commit e51e9b4

Change-Id: I763587619d57e594d3fa158dc3a7fe0b89a1743b
git-subtree-dir: third_party/ceres
git-subtree-split: e51e9b46f6ca88ab8b2266d0e362771db6d98067
diff --git a/internal/ceres/solver_test.cc b/internal/ceres/solver_test.cc
new file mode 100644
index 0000000..6acae0b
--- /dev/null
+++ b/internal/ceres/solver_test.cc
@@ -0,0 +1,487 @@
+// Ceres Solver - A fast non-linear least squares minimizer
+// Copyright 2015 Google Inc. All rights reserved.
+// http://ceres-solver.org/
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+//   this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+//   this list of conditions and the following disclaimer in the documentation
+//   and/or other materials provided with the distribution.
+// * Neither the name of Google Inc. nor the names of its contributors may be
+//   used to endorse or promote products derived from this software without
+//   specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+// POSSIBILITY OF SUCH DAMAGE.
+//
+// Author: sameeragarwal@google.com (Sameer Agarwal)
+
+#include "ceres/solver.h"
+
+#include <limits>
+#include <memory>
+#include <cmath>
+#include <vector>
+#include "gtest/gtest.h"
+#include "ceres/evaluation_callback.h"
+#include "ceres/autodiff_cost_function.h"
+#include "ceres/sized_cost_function.h"
+#include "ceres/problem.h"
+#include "ceres/problem_impl.h"
+
+namespace ceres {
+namespace internal {
+
+using std::string;
+
+TEST(SolverOptions, DefaultTrustRegionOptionsAreValid) {
+  Solver::Options options;
+  options.minimizer_type = TRUST_REGION;
+  string error;
+  EXPECT_TRUE(options.IsValid(&error)) << error;
+}
+
+TEST(SolverOptions, DefaultLineSearchOptionsAreValid) {
+  Solver::Options options;
+  options.minimizer_type = LINE_SEARCH;
+  string error;
+  EXPECT_TRUE(options.IsValid(&error)) << error;
+}
+
+struct QuadraticCostFunctor {
+  template <typename T> bool operator()(const T* const x,
+                                        T* residual) const {
+    residual[0] = T(5.0) - *x;
+    return true;
+  }
+
+  static CostFunction* Create() {
+    return new AutoDiffCostFunction<QuadraticCostFunctor, 1, 1>(
+        new QuadraticCostFunctor);
+  }
+};
+
+struct RememberingCallback : public IterationCallback {
+  explicit RememberingCallback(double *x) : calls(0), x(x) {}
+  virtual ~RememberingCallback() {}
+  virtual CallbackReturnType operator()(const IterationSummary& summary) {
+    x_values.push_back(*x);
+    return SOLVER_CONTINUE;
+  }
+  int calls;
+  double *x;
+  std::vector<double> x_values;
+};
+
+struct NoOpEvaluationCallback : EvaluationCallback {
+  virtual ~NoOpEvaluationCallback() {}
+  virtual void PrepareForEvaluation(bool evaluate_jacobians,
+                                    bool new_evaluation_point) {
+    (void) evaluate_jacobians;
+    (void) new_evaluation_point;
+  }
+};
+
+TEST(Solver, UpdateStateEveryIterationOption) {
+  double x = 50.0;
+  const double original_x = x;
+
+  std::unique_ptr<CostFunction> cost_function(QuadraticCostFunctor::Create());
+  Problem::Options problem_options;
+  problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP;
+  Problem problem(problem_options);
+  problem.AddResidualBlock(cost_function.get(), NULL, &x);
+
+  Solver::Options options;
+  options.linear_solver_type = DENSE_QR;
+
+  RememberingCallback callback(&x);
+  options.callbacks.push_back(&callback);
+
+  Solver::Summary summary;
+
+  int num_iterations;
+
+  // There are four cases that need to be checked:
+  //
+  //   (update_state_every_iteration = true|false) X
+  //   (evaluation_callback = NULL|provided)
+  //
+  // These need to get checked since there is some interaction between them.
+
+  // First: update_state_every_iteration=false, evaluation_callback=NULL.
+  Solve(options, &problem, &summary);
+  num_iterations = summary.num_successful_steps +
+                   summary.num_unsuccessful_steps;
+  EXPECT_GT(num_iterations, 1);
+  for (int i = 0; i < callback.x_values.size(); ++i) {
+    EXPECT_EQ(50.0, callback.x_values[i]);
+  }
+
+  // Second: update_state_every_iteration=true, evaluation_callback=NULL.
+  x = 50.0;
+  options.update_state_every_iteration = true;
+  callback.x_values.clear();
+  Solve(options, &problem, &summary);
+  num_iterations = summary.num_successful_steps +
+                   summary.num_unsuccessful_steps;
+  EXPECT_GT(num_iterations, 1);
+  EXPECT_EQ(original_x, callback.x_values[0]);
+  EXPECT_NE(original_x, callback.x_values[1]);
+
+  NoOpEvaluationCallback evaluation_callback;
+
+  // Third: update_state_every_iteration=true, evaluation_callback=!NULL.
+  x = 50.0;
+  options.update_state_every_iteration = true;
+  options.evaluation_callback = &evaluation_callback;
+  callback.x_values.clear();
+  Solve(options, &problem, &summary);
+  num_iterations = summary.num_successful_steps +
+                   summary.num_unsuccessful_steps;
+  EXPECT_GT(num_iterations, 1);
+  EXPECT_EQ(original_x, callback.x_values[0]);
+  EXPECT_NE(original_x, callback.x_values[1]);
+
+  // Fourth: update_state_every_iteration=false, evaluation_callback=!NULL.
+  x = 50.0;
+  options.update_state_every_iteration = false;
+  options.evaluation_callback = &evaluation_callback;
+  callback.x_values.clear();
+  Solve(options, &problem, &summary);
+  num_iterations = summary.num_successful_steps +
+                   summary.num_unsuccessful_steps;
+  EXPECT_GT(num_iterations, 1);
+  EXPECT_EQ(original_x, callback.x_values[0]);
+  EXPECT_NE(original_x, callback.x_values[1]);
+}
+
+// The parameters must be in separate blocks so that they can be individually
+// set constant or not.
+struct Quadratic4DCostFunction {
+  template <typename T> bool operator()(const T* const x,
+                                        const T* const y,
+                                        const T* const z,
+                                        const T* const w,
+                                        T* residual) const {
+    // A 4-dimension axis-aligned quadratic.
+    residual[0] = T(10.0) - *x +
+                  T(20.0) - *y +
+                  T(30.0) - *z +
+                  T(40.0) - *w;
+    return true;
+  }
+
+  static CostFunction* Create() {
+    return new AutoDiffCostFunction<Quadratic4DCostFunction, 1, 1, 1, 1, 1>(
+        new Quadratic4DCostFunction);
+  }
+};
+
+// A cost function that simply returns its argument.
+class UnaryIdentityCostFunction : public SizedCostFunction<1, 1> {
+ public:
+  virtual bool Evaluate(double const* const* parameters,
+                        double* residuals,
+                        double** jacobians) const {
+    residuals[0] = parameters[0][0];
+    if (jacobians != NULL && jacobians[0] != NULL) {
+      jacobians[0][0] = 1.0;
+    }
+    return true;
+  }
+};
+
+TEST(Solver, TrustRegionProblemHasNoParameterBlocks) {
+  Problem problem;
+  Solver::Options options;
+  options.minimizer_type = TRUST_REGION;
+  Solver::Summary summary;
+  Solve(options, &problem, &summary);
+  EXPECT_EQ(summary.termination_type, CONVERGENCE);
+  EXPECT_EQ(summary.message,
+            "Function tolerance reached. "
+            "No non-constant parameter blocks found.");
+}
+
+TEST(Solver, LineSearchProblemHasNoParameterBlocks) {
+  Problem problem;
+  Solver::Options options;
+  options.minimizer_type = LINE_SEARCH;
+  Solver::Summary summary;
+  Solve(options, &problem, &summary);
+  EXPECT_EQ(summary.termination_type, CONVERGENCE);
+  EXPECT_EQ(summary.message,
+            "Function tolerance reached. "
+            "No non-constant parameter blocks found.");
+}
+
+TEST(Solver, TrustRegionProblemHasZeroResiduals) {
+  Problem problem;
+  double x = 1;
+  problem.AddParameterBlock(&x, 1);
+  Solver::Options options;
+  options.minimizer_type = TRUST_REGION;
+  Solver::Summary summary;
+  Solve(options, &problem, &summary);
+  EXPECT_EQ(summary.termination_type, CONVERGENCE);
+  EXPECT_EQ(summary.message,
+            "Function tolerance reached. "
+            "No non-constant parameter blocks found.");
+}
+
+TEST(Solver, LineSearchProblemHasZeroResiduals) {
+  Problem problem;
+  double x = 1;
+  problem.AddParameterBlock(&x, 1);
+  Solver::Options options;
+  options.minimizer_type = LINE_SEARCH;
+  Solver::Summary summary;
+  Solve(options, &problem, &summary);
+  EXPECT_EQ(summary.termination_type, CONVERGENCE);
+  EXPECT_EQ(summary.message,
+            "Function tolerance reached. "
+            "No non-constant parameter blocks found.");
+}
+
+TEST(Solver, TrustRegionProblemIsConstant) {
+  Problem problem;
+  double x = 1;
+  problem.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x);
+  problem.SetParameterBlockConstant(&x);
+  Solver::Options options;
+  options.minimizer_type = TRUST_REGION;
+  Solver::Summary summary;
+  Solve(options, &problem, &summary);
+  EXPECT_EQ(summary.termination_type, CONVERGENCE);
+  EXPECT_EQ(summary.initial_cost, 1.0 / 2.0);
+  EXPECT_EQ(summary.final_cost, 1.0 / 2.0);
+}
+
+TEST(Solver, LineSearchProblemIsConstant) {
+  Problem problem;
+  double x = 1;
+  problem.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x);
+  problem.SetParameterBlockConstant(&x);
+  Solver::Options options;
+  options.minimizer_type = LINE_SEARCH;
+  Solver::Summary summary;
+  Solve(options, &problem, &summary);
+  EXPECT_EQ(summary.termination_type, CONVERGENCE);
+  EXPECT_EQ(summary.initial_cost, 1.0 / 2.0);
+  EXPECT_EQ(summary.final_cost, 1.0 / 2.0);
+}
+
+#if defined(CERES_NO_SUITESPARSE)
+TEST(Solver, SparseNormalCholeskyNoSuiteSparse) {
+  Solver::Options options;
+  options.sparse_linear_algebra_library_type = SUITE_SPARSE;
+  options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
+  string message;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+
+TEST(Solver, SparseSchurNoSuiteSparse) {
+  Solver::Options options;
+  options.sparse_linear_algebra_library_type = SUITE_SPARSE;
+  options.linear_solver_type = SPARSE_SCHUR;
+  string message;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+#endif
+
+#if defined(CERES_NO_CXSPARSE)
+TEST(Solver, SparseNormalCholeskyNoCXSparse) {
+  Solver::Options options;
+  options.sparse_linear_algebra_library_type = CX_SPARSE;
+  options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
+  string message;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+
+TEST(Solver, SparseSchurNoCXSparse) {
+  Solver::Options options;
+  options.sparse_linear_algebra_library_type = CX_SPARSE;
+  options.linear_solver_type = SPARSE_SCHUR;
+  string message;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+#endif
+
+#if defined(CERES_NO_ACCELERATE_SPARSE)
+TEST(Solver, SparseNormalCholeskyNoAccelerateSparse) {
+  Solver::Options options;
+  options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE;
+  options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
+  string message;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+
+TEST(Solver, SparseSchurNoAccelerateSparse) {
+  Solver::Options options;
+  options.sparse_linear_algebra_library_type = ACCELERATE_SPARSE;
+  options.linear_solver_type = SPARSE_SCHUR;
+  string message;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+#endif
+
+#if !defined(CERES_USE_EIGEN_SPARSE)
+TEST(Solver, SparseNormalCholeskyNoEigenSparse) {
+  Solver::Options options;
+  options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
+  options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
+  string message;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+
+TEST(Solver, SparseSchurNoEigenSparse) {
+  Solver::Options options;
+  options.sparse_linear_algebra_library_type = EIGEN_SPARSE;
+  options.linear_solver_type = SPARSE_SCHUR;
+  string message;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+#endif
+
+TEST(Solver, SparseNormalCholeskyNoSparseLibrary) {
+  Solver::Options options;
+  options.sparse_linear_algebra_library_type = NO_SPARSE;
+  options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
+  string message;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+
+TEST(Solver, SparseSchurNoSparseLibrary) {
+  Solver::Options options;
+  options.sparse_linear_algebra_library_type = NO_SPARSE;
+  options.linear_solver_type = SPARSE_SCHUR;
+  string message;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+
+TEST(Solver, IterativeSchurWithClusterJacobiPerconditionerNoSparseLibrary) {
+  Solver::Options options;
+  options.sparse_linear_algebra_library_type = NO_SPARSE;
+  options.linear_solver_type = ITERATIVE_SCHUR;
+  // Requires SuiteSparse.
+  options.preconditioner_type = CLUSTER_JACOBI;
+  string message;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+
+TEST(Solver, IterativeSchurWithClusterTridiagonalPerconditionerNoSparseLibrary) {
+  Solver::Options options;
+  options.sparse_linear_algebra_library_type = NO_SPARSE;
+  options.linear_solver_type = ITERATIVE_SCHUR;
+  // Requires SuiteSparse.
+  options.preconditioner_type = CLUSTER_TRIDIAGONAL;
+  string message;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+
+TEST(Solver, IterativeLinearSolverForDogleg) {
+  Solver::Options options;
+  options.trust_region_strategy_type = DOGLEG;
+  string message;
+  options.linear_solver_type = ITERATIVE_SCHUR;
+  EXPECT_FALSE(options.IsValid(&message));
+
+  options.linear_solver_type = CGNR;
+  EXPECT_FALSE(options.IsValid(&message));
+}
+
+TEST(Solver, LinearSolverTypeNormalOperation) {
+  Solver::Options options;
+  options.linear_solver_type = DENSE_QR;
+
+  string message;
+  EXPECT_TRUE(options.IsValid(&message));
+
+  options.linear_solver_type = DENSE_NORMAL_CHOLESKY;
+  EXPECT_TRUE(options.IsValid(&message));
+
+  options.linear_solver_type = DENSE_SCHUR;
+  EXPECT_TRUE(options.IsValid(&message));
+
+  options.linear_solver_type = SPARSE_SCHUR;
+#if defined(CERES_NO_SUITESPARSE) &&            \
+    defined(CERES_NO_CXSPARSE) &&               \
+   !defined(CERES_USE_EIGEN_SPARSE)
+  EXPECT_FALSE(options.IsValid(&message));
+#else
+  EXPECT_TRUE(options.IsValid(&message));
+#endif
+
+  options.linear_solver_type = ITERATIVE_SCHUR;
+  EXPECT_TRUE(options.IsValid(&message));
+}
+
+TEST(Solver, CantMixEvaluationCallbackWithInnerIterations) {
+  Solver::Options options;
+  NoOpEvaluationCallback evaluation_callback;
+  string message;
+
+  // Can't combine them.
+  options.use_inner_iterations = true;
+  options.evaluation_callback = &evaluation_callback;
+  EXPECT_FALSE(options.IsValid(&message));
+
+  // Either or none is OK.
+  options.use_inner_iterations = false;
+  options.evaluation_callback = &evaluation_callback;
+  EXPECT_TRUE(options.IsValid(&message));
+
+  options.use_inner_iterations = true;
+  options.evaluation_callback = NULL;
+  EXPECT_TRUE(options.IsValid(&message));
+
+  options.use_inner_iterations = false;
+  options.evaluation_callback = NULL;
+  EXPECT_TRUE(options.IsValid(&message));
+}
+
+template <int kNumResiduals, int... Ns>
+class DummyCostFunction : public SizedCostFunction<kNumResiduals, Ns...> {
+ public:
+  bool Evaluate(double const* const* parameters,
+                double* residuals,
+                double** jacobians) const {
+    for (int i = 0; i < kNumResiduals; ++i) {
+      residuals[i] = kNumResiduals * kNumResiduals + i;
+    }
+
+    return true;
+  }
+};
+
+TEST(Solver, FixedCostForConstantProblem) {
+  double x = 1.0;
+  Problem problem;
+  problem.AddResidualBlock(new DummyCostFunction<2, 1>(), NULL, &x);
+  problem.SetParameterBlockConstant(&x);
+  const double expected_cost = 41.0 / 2.0;  // 1/2 * ((4 + 0)^2 + (4 + 1)^2)
+  Solver::Options options;
+  Solver::Summary summary;
+  Solve(options, &problem, &summary);
+  EXPECT_TRUE(summary.IsSolutionUsable());
+  EXPECT_EQ(summary.fixed_cost, expected_cost);
+  EXPECT_EQ(summary.initial_cost, expected_cost);
+  EXPECT_EQ(summary.final_cost, expected_cost);
+  EXPECT_EQ(summary.iterations.size(), 0);
+}
+
+}  // namespace internal
+}  // namespace ceres