Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 1 | #!/usr/bin/python |
| 2 | |
| 3 | from __future__ import print_function |
| 4 | |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 5 | from matplotlib import pylab |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 6 | import gflags |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 7 | import glog |
| 8 | import numpy |
| 9 | import scipy |
| 10 | import scipy.integrate |
| 11 | import sys |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 12 | |
Austin Schuh | 44aa914 | 2018-12-03 21:07:23 +1100 | [diff] [blame] | 13 | from frc971.control_loops.python import polydrivetrain |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 14 | from frc971.control_loops.python import drivetrain |
Austin Schuh | 44aa914 | 2018-12-03 21:07:23 +1100 | [diff] [blame] | 15 | import y2018.control_loops.python.drivetrain |
| 16 | |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 17 | """This file is my playground for implementing spline following. |
| 18 | |
| 19 | All splines here are cubic bezier splines. See |
| 20 | https://en.wikipedia.org/wiki/B%C3%A9zier_curve for more details. |
| 21 | """ |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 22 | |
| 23 | FLAGS = gflags.FLAGS |
| 24 | |
| 25 | |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 26 | def RungeKutta(f, y0, t, h, count=1): |
| 27 | """4th order RungeKutta integration of dy/dt = f(t, y) starting at X.""" |
| 28 | y1 = y0 |
| 29 | dh = h / float(count) |
| 30 | for x in xrange(count): |
| 31 | k1 = dh * f(t + dh * x, y1) |
| 32 | k2 = dh * f(t + dh * x + dh / 2.0, y1 + k1 / 2.0) |
| 33 | k3 = dh * f(t + dh * x + dh / 2.0, y1 + k2 / 2.0) |
| 34 | k4 = dh * f(t + dh * x + dh, y1 + k3) |
| 35 | y1 += (k1 + 2.0 * k2 + 2.0 * k3 + k4) / 6.0 |
| 36 | return y1 |
| 37 | |
| 38 | |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 39 | def spline(alpha, control_points): |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 40 | """Computes a Cubic Bezier curve. |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 41 | |
| 42 | Args: |
| 43 | alpha: scalar or list of spline parameters to calculate the curve at. |
| 44 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 45 | starting point, and n[:, 3] is the ending point. |
| 46 | |
| 47 | Returns: |
| 48 | n x m matrix of spline points. n is the dimension of the control |
| 49 | points, and m is the number of points in 'alpha'. |
| 50 | """ |
| 51 | if numpy.isscalar(alpha): |
| 52 | alpha = [alpha] |
| 53 | alpha_matrix = [[(1.0 - a)**3.0, 3.0 * (1.0 - a)**2.0 * a, |
| 54 | 3.0 * (1.0 - a) * a**2.0, a**3.0] for a in alpha] |
| 55 | |
| 56 | return control_points * numpy.matrix(alpha_matrix).T |
| 57 | |
| 58 | |
| 59 | def dspline(alpha, control_points): |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 60 | """Computes the derivative of a Cubic Bezier curve wrt alpha. |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 61 | |
| 62 | Args: |
| 63 | alpha: scalar or list of spline parameters to calculate the curve at. |
| 64 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 65 | starting point, and n[:, 3] is the ending point. |
| 66 | |
| 67 | Returns: |
| 68 | n x m matrix of spline point derivatives. n is the dimension of the |
| 69 | control points, and m is the number of points in 'alpha'. |
| 70 | """ |
| 71 | if numpy.isscalar(alpha): |
| 72 | alpha = [alpha] |
| 73 | dalpha_matrix = [[ |
| 74 | -3.0 * (1.0 - a)**2.0, 3.0 * (1.0 - a)**2.0 + -2.0 * 3.0 * |
| 75 | (1.0 - a) * a, -3.0 * a**2.0 + 2.0 * 3.0 * (1.0 - a) * a, 3.0 * a**2.0 |
| 76 | ] for a in alpha] |
| 77 | |
| 78 | return control_points * numpy.matrix(dalpha_matrix).T |
| 79 | |
| 80 | |
| 81 | def ddspline(alpha, control_points): |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 82 | """Computes the second derivative of a Cubic Bezier curve wrt alpha. |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 83 | |
| 84 | Args: |
| 85 | alpha: scalar or list of spline parameters to calculate the curve at. |
| 86 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 87 | starting point, and n[:, 3] is the ending point. |
| 88 | |
| 89 | Returns: |
| 90 | n x m matrix of spline point second derivatives. n is the dimension of |
| 91 | the control points, and m is the number of points in 'alpha'. |
| 92 | """ |
| 93 | if numpy.isscalar(alpha): |
| 94 | alpha = [alpha] |
| 95 | ddalpha_matrix = [[ |
| 96 | 2.0 * 3.0 * (1.0 - a), |
| 97 | -2.0 * 3.0 * (1.0 - a) + -2.0 * 3.0 * (1.0 - a) + 2.0 * 3.0 * a, |
| 98 | -2.0 * 3.0 * a + 2.0 * 3.0 * (1.0 - a) - 2.0 * 3.0 * a, |
| 99 | 2.0 * 3.0 * a |
| 100 | ] for a in alpha] |
| 101 | |
| 102 | return control_points * numpy.matrix(ddalpha_matrix).T |
| 103 | |
| 104 | |
| 105 | def dddspline(alpha, control_points): |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 106 | """Computes the third derivative of a Cubic Bezier curve wrt alpha. |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 107 | |
| 108 | Args: |
| 109 | alpha: scalar or list of spline parameters to calculate the curve at. |
| 110 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 111 | starting point, and n[:, 3] is the ending point. |
| 112 | |
| 113 | Returns: |
| 114 | n x m matrix of spline point second derivatives. n is the dimension of |
| 115 | the control points, and m is the number of points in 'alpha'. |
| 116 | """ |
| 117 | if numpy.isscalar(alpha): |
| 118 | alpha = [alpha] |
| 119 | ddalpha_matrix = [[ |
| 120 | -2.0 * 3.0, |
| 121 | 2.0 * 3.0 + 2.0 * 3.0 + 2.0 * 3.0, |
| 122 | -2.0 * 3.0 - 2.0 * 3.0 - 2.0 * 3.0, |
| 123 | 2.0 * 3.0 |
| 124 | ] for a in alpha] |
| 125 | |
| 126 | return control_points * numpy.matrix(ddalpha_matrix).T |
| 127 | |
| 128 | |
| 129 | def spline_theta(alpha, control_points, dspline_points=None): |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 130 | """Computes the heading of a robot following a Cubic Bezier curve at alpha. |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 131 | |
| 132 | Args: |
| 133 | alpha: scalar or list of spline parameters to calculate the heading at. |
| 134 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 135 | starting point, and n[:, 3] is the ending point. |
| 136 | |
| 137 | Returns: |
| 138 | m array of spline point headings. m is the number of points in 'alpha'. |
| 139 | """ |
| 140 | if dspline_points is None: |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 141 | dspline_points = dspline(alpha, control_points) |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 142 | |
| 143 | return numpy.arctan2( |
| 144 | numpy.array(dspline_points)[1, :], numpy.array(dspline_points)[0, :]) |
| 145 | |
| 146 | |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 147 | def dspline_theta(alpha, |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 148 | control_points, |
| 149 | dspline_points=None, |
| 150 | ddspline_points=None): |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 151 | """Computes the derivative of the heading at alpha. |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 152 | |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 153 | This is the derivative of spline_theta wrt alpha. |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 154 | |
| 155 | Args: |
| 156 | alpha: scalar or list of spline parameters to calculate the derivative |
| 157 | of the heading at. |
| 158 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 159 | starting point, and n[:, 3] is the ending point. |
| 160 | |
| 161 | Returns: |
| 162 | m array of spline point heading derivatives. m is the number of points |
| 163 | in 'alpha'. |
| 164 | """ |
| 165 | if dspline_points is None: |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 166 | dspline_points = dspline(alpha, control_points) |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 167 | |
| 168 | if ddspline_points is None: |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 169 | ddspline_points = ddspline(alpha, control_points) |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 170 | |
| 171 | dx = numpy.array(dspline_points)[0, :] |
| 172 | dy = numpy.array(dspline_points)[1, :] |
| 173 | |
| 174 | ddx = numpy.array(ddspline_points)[0, :] |
| 175 | ddy = numpy.array(ddspline_points)[1, :] |
| 176 | |
| 177 | return 1.0 / (dx**2.0 + dy**2.0) * (dx * ddy - dy * ddx) |
| 178 | |
| 179 | |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 180 | def ddspline_theta(alpha, |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 181 | control_points, |
| 182 | dspline_points=None, |
| 183 | ddspline_points=None, |
| 184 | dddspline_points=None): |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 185 | """Computes the second derivative of the heading at alpha. |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 186 | |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 187 | This is the second derivative of spline_theta wrt alpha. |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 188 | |
| 189 | Args: |
| 190 | alpha: scalar or list of spline parameters to calculate the second |
| 191 | derivative of the heading at. |
| 192 | control_points: n x 4 matrix of control points. n[:, 0] is the |
| 193 | starting point, and n[:, 3] is the ending point. |
| 194 | |
| 195 | Returns: |
| 196 | m array of spline point heading second derivatives. m is the number of |
| 197 | points in 'alpha'. |
| 198 | """ |
| 199 | if dspline_points is None: |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 200 | dspline_points = dspline(alpha, control_points) |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 201 | |
| 202 | if ddspline_points is None: |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 203 | ddspline_points = ddspline(alpha, control_points) |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 204 | |
| 205 | if dddspline_points is None: |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 206 | dddspline_points = dddspline(alpha, control_points) |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 207 | |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 208 | dddspline_points = dddspline(alpha, control_points) |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 209 | |
| 210 | dx = numpy.array(dspline_points)[0, :] |
| 211 | dy = numpy.array(dspline_points)[1, :] |
| 212 | |
| 213 | ddx = numpy.array(ddspline_points)[0, :] |
| 214 | ddy = numpy.array(ddspline_points)[1, :] |
| 215 | |
| 216 | dddx = numpy.array(dddspline_points)[0, :] |
| 217 | dddy = numpy.array(dddspline_points)[1, :] |
| 218 | |
| 219 | return -1.0 / ((dx**2.0 + dy**2.0)**2.0) * (dx * ddy - dy * ddx) * 2.0 * ( |
| 220 | dy * ddy + dx * ddx) + 1.0 / (dx**2.0 + dy**2.0) * (dx * dddy - dy * |
| 221 | dddx) |
| 222 | |
| 223 | |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 224 | class Path(object): |
| 225 | """Represents a path to follow.""" |
| 226 | def __init__(self, control_points): |
| 227 | """Constructs a path given the control points.""" |
| 228 | self._control_points = control_points |
| 229 | |
| 230 | def spline_velocity(alpha): |
| 231 | return numpy.linalg.norm(dspline(alpha, self._control_points), axis=0) |
| 232 | |
| 233 | self._point_distances = [0.0] |
| 234 | num_alpha = 100 |
| 235 | # Integrate the xy velocity as a function of alpha for each step in the |
| 236 | # table to get an alpha -> distance calculation. Gaussian Quadrature |
| 237 | # is quite accurate, so we can get away with fewer points here than we |
| 238 | # might think. |
| 239 | for alpha in numpy.linspace(0.0, 1.0, num_alpha)[:-1]: |
| 240 | self._point_distances.append( |
| 241 | scipy.integrate.fixed_quad(spline_velocity, alpha, alpha + 1.0 |
| 242 | / (num_alpha - 1.0))[0] + |
| 243 | self._point_distances[-1]) |
| 244 | |
| 245 | def distance_to_alpha(self, distance): |
| 246 | """Converts distances along the spline to alphas. |
| 247 | |
| 248 | Args: |
| 249 | distance: A scalar or array of distances to convert |
| 250 | |
| 251 | Returns: |
| 252 | An array of distances, (1 big if the input was a scalar) |
| 253 | """ |
| 254 | if numpy.isscalar(distance): |
| 255 | return numpy.array([self._distance_to_alpha_scalar(distance)]) |
| 256 | else: |
| 257 | return numpy.array([self._distance_to_alpha_scalar(d) for d in distance]) |
| 258 | |
| 259 | def _distance_to_alpha_scalar(self, distance): |
| 260 | """Helper to compute alpha for a distance for a single scalar.""" |
| 261 | if distance <= 0.0: |
| 262 | return 0.0 |
| 263 | elif distance >= self.length(): |
| 264 | return 1.0 |
| 265 | after_index = numpy.searchsorted( |
| 266 | self._point_distances, distance, side='right') |
| 267 | before_index = after_index - 1 |
| 268 | |
| 269 | # Linearly interpolate alpha from our (sorted) distance table. |
| 270 | return (distance - self._point_distances[before_index]) / ( |
| 271 | self._point_distances[after_index] - |
| 272 | self._point_distances[before_index]) * (1.0 / ( |
| 273 | len(self._point_distances) - 1.0)) + float(before_index) / ( |
| 274 | len(self._point_distances) - 1.0) |
| 275 | |
| 276 | def length(self): |
| 277 | """Returns the length of the spline (in meters)""" |
| 278 | return self._point_distances[-1] |
| 279 | |
| 280 | # TODO(austin): need a better name... |
| 281 | def xy(self, distance): |
| 282 | """Returns the xy position as a function of distance.""" |
| 283 | return spline(self.distance_to_alpha(distance), self._control_points) |
| 284 | |
| 285 | # TODO(austin): need a better name... |
| 286 | def dxy(self, distance): |
| 287 | """Returns the xy velocity as a function of distance.""" |
| 288 | dspline_point = dspline( |
| 289 | self.distance_to_alpha(distance), self._control_points) |
| 290 | return dspline_point / numpy.linalg.norm(dspline_point, axis=0) |
| 291 | |
| 292 | # TODO(austin): need a better name... |
| 293 | def ddxy(self, distance): |
| 294 | """Returns the xy acceleration as a function of distance.""" |
| 295 | alpha = self.distance_to_alpha(distance) |
| 296 | dspline_points = dspline(alpha, self._control_points) |
| 297 | ddspline_points = ddspline(alpha, self._control_points) |
| 298 | |
| 299 | norm = numpy.linalg.norm( |
| 300 | dspline_points, axis=0)**2.0 |
| 301 | |
| 302 | return ddspline_points / norm - numpy.multiply( |
| 303 | dspline_points, (numpy.array(dspline_points)[0, :] * |
| 304 | numpy.array(ddspline_points)[0, :] + |
| 305 | numpy.array(dspline_points)[1, :] * |
| 306 | numpy.array(ddspline_points)[1, :]) / (norm**2.0)) |
| 307 | |
| 308 | def theta(self, distance, dspline_points=None): |
| 309 | """Returns the heading as a function of distance.""" |
| 310 | return spline_theta( |
| 311 | self.distance_to_alpha(distance), |
| 312 | self._control_points, |
| 313 | dspline_points=dspline_points) |
| 314 | |
| 315 | def dtheta(self, distance, dspline_points=None, ddspline_points=None): |
| 316 | """Returns the angular velocity as a function of distance.""" |
| 317 | alpha = self.distance_to_alpha(distance) |
| 318 | if dspline_points is None: |
| 319 | dspline_points = dspline(alpha, self._control_points) |
| 320 | if ddspline_points is None: |
| 321 | ddspline_points = ddspline(alpha, self._control_points) |
| 322 | |
| 323 | dtheta_points = dspline_theta(alpha, self._control_points, |
| 324 | dspline_points, ddspline_points) |
| 325 | |
| 326 | return dtheta_points / numpy.linalg.norm(dspline_points, axis=0) |
| 327 | |
| 328 | def ddtheta(self, |
| 329 | distance, |
| 330 | dspline_points=None, |
| 331 | ddspline_points=None, |
| 332 | dddspline_points=None): |
| 333 | """Returns the angular acceleration as a function of distance.""" |
| 334 | alpha = self.distance_to_alpha(distance) |
| 335 | if dspline_points is None: |
| 336 | dspline_points = dspline(alpha, self._control_points) |
| 337 | if ddspline_points is None: |
| 338 | ddspline_points = ddspline(alpha, self._control_points) |
| 339 | if dddspline_points is None: |
| 340 | dddspline_points = dddspline(alpha, self._control_points) |
| 341 | |
| 342 | dtheta_points = dspline_theta(alpha, self._control_points, |
| 343 | dspline_points, ddspline_points) |
| 344 | ddtheta_points = ddspline_theta(alpha, self._control_points, |
| 345 | dspline_points, ddspline_points, |
| 346 | dddspline_points) |
| 347 | |
| 348 | # TODO(austin): Factor out the d^alpha/dd^2. |
| 349 | return ddtheta_points / numpy.linalg.norm( |
| 350 | dspline_points, axis=0)**2.0 - numpy.multiply( |
| 351 | dtheta_points, (numpy.array(dspline_points)[0, :] * |
| 352 | numpy.array(ddspline_points)[0, :] + |
| 353 | numpy.array(dspline_points)[1, :] * |
| 354 | numpy.array(ddspline_points)[1, :]) / |
| 355 | ((numpy.array(dspline_points)[0, :]**2.0 + |
| 356 | numpy.array(dspline_points)[1, :]**2.0)**2.0)) |
| 357 | |
| 358 | |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 359 | def integrate_accel_for_distance(f, v, x, dx): |
| 360 | # Use a trick from |
| 361 | # https://www.johndcook.com/blog/2012/02/21/care-and-treatment-of-singularities/ |
| 362 | # |
| 363 | # We want to calculate: |
| 364 | # v0 + (integral of dv/dt = f(x, v) from x to x + dx); noting that dv/dt |
| 365 | # is expressed in t, not distance, so we want to do the integral of |
| 366 | # dv/dx = f(x, v) / v. |
| 367 | # |
| 368 | # Because v can be near zero at the start of the integral (but because f is |
| 369 | # nonnegative, v will never go to zero), but the integral should still be |
| 370 | # valid, we follow the suggestion and instead calculate |
| 371 | # v0 + integral((f(x, v) - f(x0, v0)) / v) + integral(f(x0, v0) / v). |
| 372 | # |
| 373 | # Using a0 = f(x0, v0), we get the second term as |
| 374 | # integral((f(x, v) - a0) / v) |
| 375 | # where when v is zero we will also be at x0/v0 (because v can only start |
| 376 | # at zero, not go to zero). |
| 377 | # |
| 378 | # The second term, integral(a0 / v) requires an approximation.--in |
| 379 | # this case, that dv/dt is constant. Thus, we have |
| 380 | # integral(a0 / sqrt(v0^2 + 2*a0*x)) = sqrt(2*a0*dx + v0^2) - sqrt(v0^2) |
| 381 | # = sqrt(2 * a0 * dx * v0^2) - v0. |
| 382 | # |
| 383 | # Because the RungeKutta function returns v0 + the integral, this |
| 384 | # gives the statements below. |
| 385 | |
| 386 | a0 = f(x, v) |
| 387 | |
| 388 | def integrablef(t, y): |
| 389 | # Since we know that a0 == a(0) and that they are asymptotically the |
| 390 | # same at 0, we know that the limit is 0 at 0. This is true because |
| 391 | # when starting from a stop, under sane accelerations, we can assume |
| 392 | # that we will start with a constant acceleration. So, hard-code it. |
| 393 | if numpy.abs(y) < 1e-6: |
| 394 | return 0.0 |
| 395 | return (f(t, y) - a0) / y |
| 396 | |
| 397 | return (RungeKutta(integrablef, v, x, dx) - v) + numpy.sqrt(2.0 * a0 * dx + v * v) |
| 398 | |
| 399 | |
| 400 | class Trajectory(object): |
| 401 | def __init__(self, path, drivetrain, longitudal_accel, lateral_accel, distance_count): |
| 402 | self._path = path |
| 403 | self._drivetrain = drivetrain |
| 404 | self.distances = numpy.linspace(0.0, |
| 405 | self._path.length(), distance_count) |
| 406 | self._longitudal_accel = longitudal_accel |
| 407 | self._lateral_accel = lateral_accel |
| 408 | |
| 409 | self._B_inverse = numpy.linalg.inv(self._drivetrain.B_continuous) |
| 410 | |
| 411 | def create_plan(self, vmax): |
| 412 | vmax = 10.0 |
| 413 | plan = numpy.array(numpy.zeros((len(self.distances), ))) |
| 414 | plan.fill(vmax) |
| 415 | return plan |
| 416 | |
| 417 | def lateral_velocity_curvature(self, distance): |
| 418 | return numpy.sqrt(self._lateral_accel / |
| 419 | numpy.linalg.norm(self._path.ddxy(distance))) |
| 420 | |
| 421 | def lateral_accel_pass(self, plan): |
| 422 | plan = plan.copy() |
| 423 | # TODO(austin): This appears to be doing nothing. |
| 424 | for i, distance in enumerate(self.distances): |
| 425 | plan[i] = min(plan[i], self.lateral_velocity_curvature(distance)) |
| 426 | return plan |
| 427 | |
| 428 | def compute_K345(self, current_dtheta, current_ddtheta): |
| 429 | # We've now got the equation: |
| 430 | # K2 * d^2x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U |
| 431 | K1 = numpy.matrix( |
| 432 | [[-self._drivetrain.robot_radius_l * current_ddtheta], |
| 433 | [self._drivetrain.robot_radius_r * current_ddtheta]]) |
| 434 | K2 = numpy.matrix( |
| 435 | [[1.0 - self._drivetrain.robot_radius_l * current_dtheta], |
| 436 | [1.0 + self._drivetrain.robot_radius_r * current_dtheta]]) |
| 437 | |
| 438 | # Now, rephrase it as K5 a + K3 v^2 + K4 v = U |
| 439 | K3 = self._B_inverse * K1 |
| 440 | K4 = -self._B_inverse * self._drivetrain.A_continuous * K2 |
| 441 | K5 = self._B_inverse * K2 |
| 442 | return K3, K4, K5 |
| 443 | |
| 444 | def curvature_voltage_pass(self, plan): |
| 445 | plan = plan.copy() |
| 446 | for i, distance in enumerate(self.distances): |
| 447 | current_ddtheta = self._path.ddtheta(distance)[0] |
| 448 | current_dtheta = self._path.dtheta(distance)[0] |
| 449 | # We've now got the equation: |
| 450 | # K2 * d^2x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U |
| 451 | # Now, rephrase it as K3 v^2 + K4 v = U |
| 452 | K3, K4, K5 = self.compute_K345(current_dtheta, current_ddtheta) |
| 453 | # But, we are going to assume that d^2x/dt^2 = 0 |
| 454 | |
| 455 | x = [] |
| 456 | for a, b in [(K3[0, 0], K4[0, 0]), (K3[1, 0], K4[1, 0])]: |
| 457 | for c in [12.0, -12.0]: |
| 458 | middle = b * b - 4.0 * a * c |
| 459 | if middle >= 0.0: |
| 460 | x.append((-b + numpy.sqrt(middle)) / (2.0 * a)) |
| 461 | x.append((-b - numpy.sqrt(middle)) / (2.0 * a)) |
| 462 | |
| 463 | maxx = 0.0 |
| 464 | for newx in x: |
| 465 | if newx < 0.0: |
| 466 | continue |
| 467 | U = (K3 * newx * newx + K4 * newx).T |
| 468 | # TODO(austin): We know that one of these *will* be +-12.0. Only |
| 469 | # check the other one. |
| 470 | if not (numpy.abs(U) > 12.0 + 1e-6).any(): |
| 471 | maxx = max(newx, maxx) |
| 472 | |
| 473 | if maxx == 0.0: |
| 474 | print('Could not solve') |
| 475 | return None |
| 476 | plan[i] = min(plan[i], maxx) |
| 477 | pass |
| 478 | return plan |
| 479 | |
| 480 | def forward_acceleration(self, x, v): |
| 481 | current_ddtheta = self._path.ddtheta(x)[0] |
| 482 | current_dtheta = self._path.dtheta(x)[0] |
| 483 | # We've now got the equation: |
| 484 | # K2 * d^2x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U |
| 485 | # Now, rephrase it as K5 a + K3 v^2 + K4 v = U |
| 486 | K3, K4, K5 = self.compute_K345(current_dtheta, current_ddtheta) |
| 487 | |
| 488 | C = K3 * v * v + K4 * v |
| 489 | # Note: K345 are not quite constant over the step, but we are going |
| 490 | # to assume they are for now. |
| 491 | accelerations = [(12.0 - C[0, 0]) / K5[0, 0], (12.0 - C[1, 0]) / |
| 492 | K5[1, 0], (-12.0 - C[0, 0]) / K5[0, 0], |
| 493 | (-12.0 - C[1, 0]) / K5[1, 0]] |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 494 | maxa = -float('inf') |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 495 | for a in accelerations: |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 496 | U = K5 * a + K3 * v * v + K4 * v |
| 497 | if not (numpy.abs(U) > 12.0 + 1e-6).any(): |
| 498 | maxa = max(maxa, a) |
| 499 | |
| 500 | lateral_accel = v * v * numpy.linalg.norm(self._path.ddxy(x)) |
| 501 | # Constrain the longitudinal acceleration to keep in a pseudo friction |
| 502 | # circle. This will make it so we don't floor it while in a turn and |
| 503 | # cause extra wheel slip. |
| 504 | long_accel = numpy.sqrt(1.0 - (lateral_accel / self._lateral_accel)** |
| 505 | 2.0) * self._longitudal_accel |
| 506 | return min(long_accel, maxa) |
| 507 | |
| 508 | def forward_pass(self, plan): |
| 509 | plan = plan.copy() |
| 510 | for i, distance in enumerate(self.distances): |
| 511 | if i == len(self.distances) - 1: |
| 512 | break |
| 513 | |
| 514 | plan[i + 1] = min( |
| 515 | plan[i + 1], |
| 516 | integrate_accel_for_distance( |
| 517 | self.forward_acceleration, plan[i], self.distances[i], |
| 518 | self.distances[i + 1] - self.distances[i])) |
| 519 | return plan |
| 520 | |
| 521 | def backward_acceleration(self, x, v): |
| 522 | # TODO(austin): Forwards and backwards are quite similar. Can we |
| 523 | # factor this out? |
| 524 | current_ddtheta = self._path.ddtheta(x)[0] |
| 525 | current_dtheta = self._path.dtheta(x)[0] |
| 526 | # We've now got the equation: |
| 527 | # K2 * d^2x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U |
| 528 | # Now, rephrase it as K5 a + K3 v^2 + K4 v = U |
| 529 | K3, K4, K5 = self.compute_K345(current_dtheta, current_ddtheta) |
| 530 | |
| 531 | C = K3 * v * v + K4 * v |
| 532 | # Note: K345 are not quite constant over the step, but we are going |
| 533 | # to assume they are for now. |
| 534 | accelerations = [(12.0 - C[0, 0]) / K5[0, 0], (12.0 - C[1, 0]) / |
| 535 | K5[1, 0], (-12.0 - C[0, 0]) / K5[0, 0], |
| 536 | (-12.0 - C[1, 0]) / K5[1, 0]] |
Austin Schuh | ec7f06d | 2019-01-04 07:47:15 +1100 | [diff] [blame] | 537 | mina = float('inf') |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 538 | for a in accelerations: |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 539 | U = K5 * a + K3 * v * v + K4 * v |
| 540 | if not (numpy.abs(U) > 12.0 + 1e-6).any(): |
| 541 | mina = min(mina, a) |
| 542 | |
| 543 | lateral_accel = v * v * numpy.linalg.norm(self._path.ddxy(x)) |
| 544 | # Constrain the longitudinal acceleration to keep in a pseudo friction |
| 545 | # circle. This will make it so we don't floor it while in a turn and |
| 546 | # cause extra wheel slip. |
| 547 | long_accel = -numpy.sqrt(1.0 - (lateral_accel / self._lateral_accel)** |
| 548 | 2.0) * self._longitudal_accel |
| 549 | return max(long_accel, mina) |
| 550 | |
| 551 | def backward_pass(self, plan): |
| 552 | plan = plan.copy() |
| 553 | for i, distance in reversed(list(enumerate(self.distances))): |
| 554 | if i == 0: |
| 555 | break |
| 556 | |
| 557 | plan[i - 1] = min( |
| 558 | plan[i - 1], |
| 559 | integrate_accel_for_distance( |
| 560 | self.backward_acceleration, plan[i], self.distances[i], |
| 561 | self.distances[i - 1] - self.distances[i])) |
| 562 | return plan |
| 563 | |
| 564 | # TODO(austin): The plan should probably not be passed in... |
| 565 | def ff_voltage(self, plan, distance): |
| 566 | if distance < self.distances[1]: |
| 567 | after_index = 1 |
| 568 | before_index = after_index - 1 |
| 569 | if distance < self.distances[0]: |
| 570 | distance = 0.0 |
| 571 | elif distance > self.distances[-2]: |
| 572 | after_index = len(self.distances) - 1 |
| 573 | before_index = after_index - 1 |
| 574 | if distance > self.distances[-1]: |
| 575 | distance = self.distances[-1] |
| 576 | else: |
| 577 | after_index = numpy.searchsorted( |
| 578 | self.distances, distance, side='right') |
| 579 | before_index = after_index - 1 |
| 580 | |
| 581 | vforwards = integrate_accel_for_distance( |
| 582 | self.forward_acceleration, plan[before_index], |
| 583 | self.distances[before_index], |
| 584 | distance - self.distances[before_index]) |
| 585 | vbackward = integrate_accel_for_distance( |
| 586 | self.backward_acceleration, plan[after_index], |
| 587 | self.distances[after_index], |
| 588 | distance - self.distances[after_index]) |
| 589 | |
| 590 | vcurvature = self.lateral_velocity_curvature(distance) |
| 591 | |
| 592 | if vcurvature < vforwards and vcurvature < vbackward: |
| 593 | accel = 0 |
| 594 | velocity = vcurvature |
| 595 | elif vforwards < vbackward: |
| 596 | velocity = vforwards |
| 597 | accel = self.forward_acceleration(distance, velocity) |
| 598 | else: |
| 599 | velocity = vbackward |
| 600 | accel = self.backward_acceleration(distance, velocity) |
| 601 | |
| 602 | current_ddtheta = self._path.ddtheta(distance)[0] |
| 603 | current_dtheta = self._path.dtheta(distance)[0] |
| 604 | # TODO(austin): Factor these out. |
| 605 | # We've now got the equation: |
| 606 | # K2 * d^2x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U |
| 607 | # Now, rephrase it as K5 a + K3 v^2 + K4 v = U |
| 608 | K3, K4, K5 = self.compute_K345(current_dtheta, current_ddtheta) |
| 609 | |
| 610 | U = K5 * accel + K3 * velocity * velocity + K4 * velocity |
| 611 | return U |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 612 | |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 613 | def main(argv): |
| 614 | # Build up the control point matrix |
| 615 | start = numpy.matrix([[0.0, 0.0]]).T |
| 616 | c1 = numpy.matrix([[0.5, 0.0]]).T |
| 617 | c2 = numpy.matrix([[0.5, 1.0]]).T |
| 618 | end = numpy.matrix([[1.0, 1.0]]).T |
| 619 | control_points = numpy.hstack((start, c1, c2, end)) |
| 620 | |
| 621 | # The alphas to plot |
| 622 | alphas = numpy.linspace(0.0, 1.0, 1000) |
| 623 | |
| 624 | # Compute x, y and the 3 derivatives |
| 625 | spline_points = spline(alphas, control_points) |
| 626 | dspline_points = dspline(alphas, control_points) |
| 627 | ddspline_points = ddspline(alphas, control_points) |
| 628 | dddspline_points = dddspline(alphas, control_points) |
| 629 | |
| 630 | # Compute theta and the two derivatives |
| 631 | theta = spline_theta(alphas, control_points, dspline_points=dspline_points) |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 632 | dtheta = dspline_theta( |
| 633 | alphas, control_points, dspline_points=dspline_points) |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 634 | ddtheta = ddspline_theta( |
| 635 | alphas, |
| 636 | control_points, |
| 637 | dspline_points=dspline_points, |
| 638 | dddspline_points=dddspline_points) |
| 639 | |
| 640 | # Plot the control points and the spline. |
| 641 | pylab.figure() |
| 642 | pylab.plot( |
| 643 | numpy.array(control_points)[0, :], |
| 644 | numpy.array(control_points)[1, :], |
| 645 | '-o', |
| 646 | label='control') |
| 647 | pylab.plot( |
| 648 | numpy.array(spline_points)[0, :], |
| 649 | numpy.array(spline_points)[1, :], |
| 650 | label='spline') |
| 651 | pylab.legend() |
| 652 | |
| 653 | # For grins, confirm that the double integral of the acceleration (with |
| 654 | # respect to the spline parameter) matches the position. This lets us |
| 655 | # confirm that the derivatives are consistent. |
| 656 | xint_plot = numpy.matrix(numpy.zeros((2, len(alphas)))) |
| 657 | dxint_plot = xint_plot.copy() |
| 658 | xint = spline_points[:, 0].copy() |
| 659 | dxint = dspline_points[:, 0].copy() |
| 660 | xint_plot[:, 0] = xint |
| 661 | dxint_plot[:, 0] = dxint |
| 662 | for i in range(len(alphas) - 1): |
| 663 | xint += (alphas[i + 1] - alphas[i]) * dxint |
| 664 | dxint += (alphas[i + 1] - alphas[i]) * ddspline_points[:, i] |
| 665 | xint_plot[:, i + 1] = xint |
| 666 | dxint_plot[:, i + 1] = dxint |
| 667 | |
| 668 | # Integrate up the spline velocity and heading to confirm that given a |
| 669 | # velocity (as a function of the spline parameter) and angle, we will move |
| 670 | # from the starting point to the ending point. |
| 671 | thetaint_plot = numpy.zeros((len(alphas),)) |
| 672 | thetaint = theta[0] |
| 673 | dthetaint_plot = numpy.zeros((len(alphas),)) |
| 674 | dthetaint = dtheta[0] |
| 675 | thetaint_plot[0] = thetaint |
| 676 | dthetaint_plot[0] = dthetaint |
| 677 | |
| 678 | txint_plot = numpy.matrix(numpy.zeros((2, len(alphas)))) |
| 679 | txint = spline_points[:, 0].copy() |
| 680 | txint_plot[:, 0] = txint |
| 681 | for i in range(len(alphas) - 1): |
| 682 | dalpha = alphas[i + 1] - alphas[i] |
| 683 | txint += dalpha * numpy.linalg.norm( |
| 684 | dspline_points[:, i]) * numpy.matrix( |
| 685 | [[numpy.cos(theta[i])], [numpy.sin(theta[i])]]) |
| 686 | txint_plot[:, i + 1] = txint |
| 687 | thetaint += dalpha * dtheta[i] |
| 688 | dthetaint += dalpha * ddtheta[i] |
| 689 | thetaint_plot[i + 1] = thetaint |
| 690 | dthetaint_plot[i + 1] = dthetaint |
| 691 | |
| 692 | |
| 693 | # Now plot x, dx/dalpha, ddx/ddalpha, dddx/dddalpha, and integrals thereof |
| 694 | # to perform consistency checks. |
| 695 | pylab.figure() |
| 696 | pylab.plot(alphas, numpy.array(spline_points)[0, :], label='x') |
| 697 | pylab.plot(alphas, numpy.array(xint_plot)[0, :], label='ix') |
| 698 | pylab.plot(alphas, numpy.array(dspline_points)[0, :], label='dx') |
| 699 | pylab.plot(alphas, numpy.array(dxint_plot)[0, :], label='idx') |
| 700 | pylab.plot(alphas, numpy.array(txint_plot)[0, :], label='tix') |
| 701 | pylab.plot(alphas, numpy.array(ddspline_points)[0, :], label='ddx') |
| 702 | pylab.plot(alphas, numpy.array(dddspline_points)[0, :], label='dddx') |
| 703 | pylab.legend() |
| 704 | |
| 705 | # Now do the same for y. |
| 706 | pylab.figure() |
| 707 | pylab.plot(alphas, numpy.array(spline_points)[1, :], label='y') |
| 708 | pylab.plot(alphas, numpy.array(xint_plot)[1, :], label='iy') |
| 709 | pylab.plot(alphas, numpy.array(dspline_points)[1, :], label='dy') |
| 710 | pylab.plot(alphas, numpy.array(dxint_plot)[1, :], label='idy') |
| 711 | pylab.plot(alphas, numpy.array(txint_plot)[1, :], label='tiy') |
| 712 | pylab.plot(alphas, numpy.array(ddspline_points)[1, :], label='ddy') |
| 713 | pylab.plot(alphas, numpy.array(dddspline_points)[1, :], label='dddy') |
| 714 | pylab.legend() |
| 715 | |
| 716 | # And for theta. |
| 717 | pylab.figure() |
| 718 | pylab.plot(alphas, theta, label='theta') |
| 719 | pylab.plot(alphas, dtheta, label='dtheta') |
| 720 | pylab.plot(alphas, ddtheta, label='ddtheta') |
| 721 | pylab.plot(alphas, thetaint_plot, label='thetai') |
| 722 | pylab.plot(alphas, dthetaint_plot, label='dthetai') |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 723 | pylab.plot( |
| 724 | alphas, |
| 725 | numpy.linalg.norm( |
| 726 | numpy.array(dspline_points), axis=0), |
| 727 | label='velocity') |
| 728 | |
| 729 | # Now, repeat as a function of path length as opposed to alpha |
| 730 | path = Path(control_points) |
| 731 | distance_count = 1000 |
| 732 | position = path.xy(0.0) |
| 733 | velocity = path.dxy(0.0) |
| 734 | theta = path.theta(0.0) |
| 735 | omega = path.dtheta(0.0) |
| 736 | |
| 737 | iposition_plot = numpy.matrix(numpy.zeros((2, distance_count))) |
| 738 | ivelocity_plot = numpy.matrix(numpy.zeros((2, distance_count))) |
| 739 | iposition_plot[:, 0] = position.copy() |
| 740 | ivelocity_plot[:, 0] = velocity.copy() |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 741 | itheta_plot = numpy.zeros((distance_count, )) |
| 742 | iomega_plot = numpy.zeros((distance_count, )) |
Austin Schuh | 387a687 | 2018-12-01 19:14:33 +1100 | [diff] [blame] | 743 | itheta_plot[0] = theta |
| 744 | iomega_plot[0] = omega |
| 745 | |
| 746 | distances = numpy.linspace(0.0, path.length(), distance_count) |
| 747 | |
| 748 | for i in xrange(len(distances) - 1): |
| 749 | position += velocity * (distances[i + 1] - distances[i]) |
| 750 | velocity += path.ddxy(distances[i]) * (distances[i + 1] - distances[i]) |
| 751 | iposition_plot[:, i + 1] = position |
| 752 | ivelocity_plot[:, i + 1] = velocity |
| 753 | |
| 754 | theta += omega * (distances[i + 1] - distances[i]) |
| 755 | omega += path.ddtheta(distances[i]) * (distances[i + 1] - distances[i]) |
| 756 | itheta_plot[i + 1] = theta |
| 757 | iomega_plot[i + 1] = omega |
| 758 | |
| 759 | pylab.figure() |
| 760 | pylab.plot(distances, numpy.array(path.xy(distances))[0, :], label='x') |
| 761 | pylab.plot(distances, numpy.array(iposition_plot)[0, :], label='ix') |
| 762 | pylab.plot(distances, numpy.array(path.dxy(distances))[0, :], label='dx') |
| 763 | pylab.plot(distances, numpy.array(ivelocity_plot)[0, :], label='idx') |
| 764 | pylab.plot(distances, numpy.array(path.ddxy(distances))[0, :], label='ddx') |
| 765 | pylab.legend() |
| 766 | |
| 767 | pylab.figure() |
| 768 | pylab.plot(distances, numpy.array(path.xy(distances))[1, :], label='y') |
| 769 | pylab.plot(distances, numpy.array(iposition_plot)[1, :], label='iy') |
| 770 | pylab.plot(distances, numpy.array(path.dxy(distances))[1, :], label='dy') |
| 771 | pylab.plot(distances, numpy.array(ivelocity_plot)[1, :], label='idy') |
| 772 | pylab.plot(distances, numpy.array(path.ddxy(distances))[1, :], label='ddy') |
| 773 | pylab.legend() |
| 774 | |
| 775 | pylab.figure() |
| 776 | pylab.plot(distances, path.theta(distances), label='theta') |
| 777 | pylab.plot(distances, itheta_plot, label='itheta') |
| 778 | pylab.plot(distances, path.dtheta(distances), label='omega') |
| 779 | pylab.plot(distances, iomega_plot, label='iomega') |
| 780 | pylab.plot(distances, path.ddtheta(distances), label='alpha') |
| 781 | pylab.legend() |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 782 | |
| 783 | # TODO(austin): Start creating a velocity plan now that we have all the |
| 784 | # derivitives of our spline. |
| 785 | |
Austin Schuh | 44aa914 | 2018-12-03 21:07:23 +1100 | [diff] [blame] | 786 | velocity_drivetrain = polydrivetrain.VelocityDrivetrainModel( |
| 787 | y2018.control_loops.python.drivetrain.kDrivetrain) |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 788 | position_drivetrain = drivetrain.Drivetrain( |
| 789 | y2018.control_loops.python.drivetrain.kDrivetrain) |
| 790 | |
| 791 | longitudal_accel = 3.0 |
| 792 | lateral_accel = 2.0 |
| 793 | |
| 794 | trajectory = Trajectory( |
| 795 | path, |
| 796 | drivetrain=velocity_drivetrain, |
| 797 | longitudal_accel=longitudal_accel, |
| 798 | lateral_accel=lateral_accel, |
| 799 | distance_count=500) |
Austin Schuh | 44aa914 | 2018-12-03 21:07:23 +1100 | [diff] [blame] | 800 | |
| 801 | vmax = numpy.inf |
| 802 | vmax = 10.0 |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 803 | lateral_accel_plan = trajectory.lateral_accel_pass( |
| 804 | trajectory.create_plan(vmax)) |
Austin Schuh | 44aa914 | 2018-12-03 21:07:23 +1100 | [diff] [blame] | 805 | |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 806 | forward_accel_plan = lateral_accel_plan.copy() |
| 807 | # Start and end the path stopped. |
| 808 | forward_accel_plan[0] = 0.0 |
| 809 | forward_accel_plan[-1] = 0.0 |
Austin Schuh | 44aa914 | 2018-12-03 21:07:23 +1100 | [diff] [blame] | 810 | |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 811 | forward_accel_plan = trajectory.forward_pass(forward_accel_plan) |
Austin Schuh | 44aa914 | 2018-12-03 21:07:23 +1100 | [diff] [blame] | 812 | |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 813 | backward_accel_plan = trajectory.backward_pass(forward_accel_plan) |
Austin Schuh | 44aa914 | 2018-12-03 21:07:23 +1100 | [diff] [blame] | 814 | |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 815 | # And now, calculate the left, right voltage as a function of distance. |
Austin Schuh | 44aa914 | 2018-12-03 21:07:23 +1100 | [diff] [blame] | 816 | |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 817 | # TODO(austin): Factor out the accel and decel functions so we can use them |
| 818 | # to calculate voltage as a function of distance. |
Austin Schuh | 44aa914 | 2018-12-03 21:07:23 +1100 | [diff] [blame] | 819 | |
| 820 | pylab.figure() |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 821 | pylab.plot(trajectory.distances, lateral_accel_plan, label='accel pass') |
| 822 | pylab.plot(trajectory.distances, forward_accel_plan, label='forward pass') |
| 823 | pylab.plot(trajectory.distances, backward_accel_plan, label='forward pass') |
Austin Schuh | 44aa914 | 2018-12-03 21:07:23 +1100 | [diff] [blame] | 824 | pylab.xlabel("distance along spline (m)") |
| 825 | pylab.ylabel("velocity (m/s)") |
| 826 | pylab.legend() |
| 827 | |
Austin Schuh | 8cb98eb | 2018-12-05 22:06:45 +1100 | [diff] [blame] | 828 | voltages = numpy.matrix(numpy.zeros((2, len(distances)))) |
| 829 | for i in range(len(distances)): |
| 830 | voltages[:, i] = trajectory.ff_voltage(backward_accel_plan, |
| 831 | distances[i]) |
| 832 | |
| 833 | # Now, let's integrate up the feed forwards voltage to see where we end up. |
| 834 | spline_state = numpy.matrix(numpy.zeros((4, 1))) |
| 835 | # x, y, theta, vl, vr |
| 836 | state = numpy.matrix(numpy.zeros((5, 1))) |
| 837 | dt = 0.005 |
| 838 | num_timesteps = 400 |
| 839 | spline_states = numpy.matrix(numpy.zeros((4, num_timesteps))) |
| 840 | states = numpy.matrix(numpy.zeros((5, num_timesteps))) |
| 841 | Us = numpy.matrix(numpy.zeros((2, num_timesteps))) |
| 842 | t = numpy.array(range(num_timesteps)) * dt |
| 843 | for i in range(num_timesteps): |
| 844 | spline_distance = 0.5 * (spline_state[0, 0] + spline_state[2, 0]) |
| 845 | spline_velocity = 0.5 * (spline_state[1, 0] + spline_state[3, 0]) |
| 846 | def distance_spline_diffeq(t, x): |
| 847 | spline_distance = 0.5 * (x[0, 0] + x[2, 0]) |
| 848 | spline_velocity = 0.5 * (x[1, 0] + x[3, 0]) |
| 849 | U = trajectory.ff_voltage( |
| 850 | backward_accel_plan, |
| 851 | spline_distance) |
| 852 | dXdt = (position_drivetrain.A_continuous * x + |
| 853 | position_drivetrain.B_continuous * U) |
| 854 | return dXdt |
| 855 | spline_state = RungeKutta(distance_spline_diffeq, spline_state, i * dt, dt) |
| 856 | |
| 857 | def spline_diffeq(t, x): |
| 858 | spline_distance = 0.5 * (spline_state[0, 0] + spline_state[2, 0]) |
| 859 | spline_velocity = 0.5 * (spline_state[1, 0] + spline_state[3, 0]) |
| 860 | velocity = x[3:, :] |
| 861 | theta = x[2, 0] |
| 862 | linear_velocity = (velocity[0, 0] + velocity[1, 0]) / 2.0 |
| 863 | angular_velocity = (velocity[1, 0] - velocity[0, 0]) / ( |
| 864 | velocity_drivetrain.robot_radius_l + |
| 865 | velocity_drivetrain.robot_radius_r) |
| 866 | U = trajectory.ff_voltage( |
| 867 | backward_accel_plan, |
| 868 | spline_distance + numpy.linalg.norm(x[0:2, 0] - state[0:2, 0])) |
| 869 | accel = (velocity_drivetrain.A_continuous * velocity + |
| 870 | velocity_drivetrain.B_continuous * U) |
| 871 | return numpy.matrix( |
| 872 | [[numpy.cos(theta) * linear_velocity], |
| 873 | [numpy.sin(theta) * linear_velocity], [angular_velocity], |
| 874 | [accel[0, 0]], [accel[1, 0]]]) |
| 875 | |
| 876 | U = trajectory.ff_voltage(backward_accel_plan, spline_distance) |
| 877 | state = RungeKutta(spline_diffeq, state, i * dt, dt) |
| 878 | spline_states[:, i] = spline_state |
| 879 | states[:, i] = state |
| 880 | Us[:, i] = U |
| 881 | |
| 882 | spline_distances = numpy.array( |
| 883 | (numpy.array(spline_states)[0, :] + numpy.array(spline_states)[2, :]) / |
| 884 | 2.0) |
| 885 | pylab.figure() |
| 886 | pylab.plot(distances, numpy.array(voltages)[0, :], label='vl') |
| 887 | pylab.plot(distances, numpy.array(voltages)[1, :], label='vr') |
| 888 | pylab.legend() |
| 889 | |
| 890 | pylab.figure() |
| 891 | pylab.plot( |
| 892 | numpy.array(spline_points)[0, :], |
| 893 | numpy.array(spline_points)[1, :], |
| 894 | label='spline') |
| 895 | pylab.plot( |
| 896 | numpy.array(states)[0, :], numpy.array(states)[1, :], label="robot") |
| 897 | pylab.legend() |
| 898 | |
| 899 | pylab.figure() |
| 900 | pylab.plot( |
| 901 | spline_distances, (numpy.array(states)[0, :] - numpy.array( |
| 902 | path.xy(spline_distances))[0, :]) * 100.0, |
| 903 | label='robotx_error * 100') |
| 904 | pylab.plot( |
| 905 | spline_distances, (numpy.array(states)[1, :] - numpy.array( |
| 906 | path.xy(spline_distances))[1, :]) * 100.0, |
| 907 | label='roboty_error * 100') |
| 908 | pylab.plot( |
| 909 | spline_distances, (numpy.array(states)[2, :] - numpy.array( |
| 910 | path.theta(spline_distances))) * 100.0, |
| 911 | label='robottheta_error * 100') |
| 912 | pylab.plot(distances, numpy.array(voltages)[0, :], label='voltsl') |
| 913 | pylab.plot(distances, numpy.array(voltages)[1, :], label='voltsr') |
| 914 | pylab.legend() |
| 915 | |
| 916 | def a(_, x): |
| 917 | return 2.0 |
| 918 | return 2.0 + 0.0001 * x |
| 919 | |
| 920 | v = 0.0 |
| 921 | for _ in xrange(10): |
| 922 | dx = 4.0 / 10.0 |
| 923 | v = integrate_accel_for_distance(a, v, 0.0, dx) |
| 924 | print('v', v) |
| 925 | |
Austin Schuh | 35d1987 | 2018-11-30 15:50:47 +1100 | [diff] [blame] | 926 | pylab.show() |
| 927 | |
| 928 | |
| 929 | if __name__ == '__main__': |
| 930 | argv = FLAGS(sys.argv) |
| 931 | sys.exit(main(argv)) |